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Abstract 

The analysis of the response statistics of mistuned 
turbomachinery rotors requires an expensive Monte Carlo 
simulation approach. Simple lumped parameter models 
capture basic localization effects but do not represent well 
actual engineering structures without a difficult parame- 
ter identification. Current component mode analysis tech- 
niques generally require a minimum number of degrees 
of freedom which is too large for running Monte Carlo 
simulations at a reasonable cost. In the present work, a 
novel order reduction method is introduced which is ca- 
pable of generating reasonably accurate, very low order 
models of bladed disks. This technique is based on com- 
ponent modes of vibration found from a finite element 
analysis of a single disk-blade sector. 

1. Introduction 

A system which features spatial repetition is known 
as a periodic system. A periodic system is an assembly 
of identical subsystems which are dynamically coupled in 
an identical manner. It is characterized by mode shapes 
which are extended throughout the system. 

A periodic system is an idealization, however, since 
in an actual engineering structure, the substructures are 
not identical. Material and manufacturing flaws, as well 
as non-uniform wear and other operational factors, cause 
differences among the substructures. In some cases, these 
discrepancies, which are known as disorder or mistun- 
ing, can lead to localized mode shapes. Localized mode 
shapes feature large vibration amplitudes in a small re- 
gion of the structure, with a spatial amplitude decay away 
from this region. This decay is asymptotically exponen- 
tial over many realizations of a randomly mistuned struc- 
ture. Localization is known to be especially severe in sys- 
tems which feature weak coupling between subsystems [I]. 
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One group of structures which exhibit localization 
phenomena are turbomachinery rotors. Indeed, much of 
the early work in localization focused on turbomachinery 
[Z, 3, 4, 5, 61. Ideally, bladed disks in turbomachinery 
are cyclically symmetric, which means that they have ro- 
tational periodicity. One substructure would consist of a 
disk sector and one attached blade. In finite element mod- 
els (FEMs) of bladed disks, modelers typically take advan- 
tage of cyclic symmetry by modeling only one disk-blade 
sector, and then finding the modes for the entire structure 
by applying a cyclicity argument. As a result, computation 
time and storage requirements are greatly reduced. Many 
finite element packages include cyclic symmetry routines 
for this purpose. 

Since actual turbomachinery rotors feature mistuned 
blades, they often exhibit localized modes. Also, it is 
not uncommon for a rotor to have weak blade-to-blade 
coupling through the disk, which leads to strong local- 
ization. The attendant increase in forced response vibra- 
tion amplitudes can cause rogue blades. Thus, there are 
great benefits to accurately modeling the structure and 
predicting localization effects. However, mistuning in the 
blades destroys the rotational periodicity, and therefore 
cyclic symmetry techniques cannot be employed. This 
means that the entire bladed disk must be modeled, which 
makes FEMs very expensive. In addition, rnistuning is a 
random phenomenon, and many realizations of randomly 
mistuned structures must be run in Monte Carlo simula- 
tions or similar methods in order to predict localization. 
This makes FEMs impractical for mistuning analyses. 

Reduced-order models (ROMs) of rotors have been de- 
veloped so that localization may be studied. An example 
of a ROM is a lumped parameter model in which each disk 
sector is represented by a spring-mass oscillator that is 
connected to ground and coupled to neighboring sectors 
by linear springs, with the blades appearing as oscillators 
connected to each disk sector [7]. This model may be 
made more sophisticated by representing the disk sector 
or blade with multi-degree-of-freedom oscillators, or by 
allowing coupling to sectors other than the nearest neigh- 
boring sectors. Another type of model was introduced by 
Kaza and Kielb [8], in which the disk was modeled as a cir- 
cular plate with constant thickness, and the blades were 
modeled by elastic beams. The blades were attached to 
the disk by maintaining continuity of displacement and 
slope at the disk-blade junction. The dynamics were de- 
scribed by the standing wave modes of the disk and the 



traveling wave modes of the blades. 
Such models capture the basic bladed disk dynamics, 

and exhibit localization due to mistuning. The localization 
may then be analyzed by using Monte Carlo techniques 
to determine the structure's sensitivity to localization for 
a given mistuning strength, by investigating the effect of 
various parameters on the localization, or by other types 
of analysis. However, in terms of representing actual sys- 
tems, these models are rather crude. Furthermore, if one 
wishes to use such a model to predict the localization in a 
particular engineering structure, parameter identification 
can be extremely difficult. 

There is therefore a need for an improved, systematic 
reduced-order modeling technique for bladed disks. Ide- 
ally, this technique would make use of a modal analysis 
for a single sector FEM, so that the ROM would represent 
well the actual structure. Furthermore, it should employ 
a component mode approach, with the disk and blades 
as the components, so that the blades' natural frequen- 
cies may be individually mistuned. Finally, the technique 
should be able to produce a model with a highly reduced 
number of degrees of freedom, so that Monte Carlo simu- 
lations may be performed at a reasonable cost. 

Several component-mode modeling techniques exist 
[8, 9, 10, 11, 121, where the motion of the structure is de- 
scribed by a truncated set of component modes. However, 
none of these meet all of the requirements outlined above. 
In particular, most of these techniques require an addi- 
tional set of mode shapes which allow the model to span 
the space of possible motions of the connected structure. 
These additional mode shapes are typically necessitated 
by artificial constraints imposed at component interfaces, 
and are therefore often referred to as constraint modes. 
The constraint modes can lead to an unsatisfactorily large 
number of degrees of freedom in the ROM. For instance, if 
one were to apply the Craig-Bampton technique to a solid 
element FEM, there would be 3 constraint modes for each 
finite element node at the disk-blade interface. 

In this paper, we present a reduced-order modeling 
technique which is tailored to representing particular mis- 
tuned bladed disk structures based on a FEM of a sin- 
gle disk-blade sector of the tuned structure. We use a 
component-mode approach, in which the disk motion is 
described by finite element mode shapes of the disk, and 
the blade elastic motion is ditscribed by the finite element 
mode shapes of a blade fixed at the disk-blade interface. 
The motion of the blade due to the motion of the disk is 
described as a summation of disk mode motions at the 
disk-blade interface. Therefore, disk-blade attachment is 
achieved, and no constraint mode shapes are necessary. 
This technique: 

is systematic from the FEM of one disk-blade sector 
features the blade modal stiffnesses as explicit param- 
eters so that the blade natural frequencies may be di- 
rectly mistuned 
minimizes storage requirements 

is capable of producing models with a small number 
of degrees of freedom 

This method places importance on the last item, and as a 
result it may not be as accurate as other component-mode 
techniques. However, with the present method, we can 
generate models which are of sufficiently low order as to 
be suitable for Monte Carlo simulations. 

The paper is organized as follows. In section 2, we re- 
view the modes of cyclic systems, and formulate the equa- 
tions of motion for the ROM. In addition, mistuning in the 
model is considered, and we explore the relationship be- 
tween the present ROM and previous lumped parameter 
models as well as the associated transfer matrix method 
of analysis. In section 3 ,  we describe in detail how the nec- 
essary mode shapes are generated from the FEM. We then 
present an example in section 4, using a simple FEM of one 
sector of the bladed disk This system is represented by a 
full mistuned FEM in section 5, for the purposes of com- 
paring the localized modes of the reduced-order and finite 
element models. We draw conclusions from this study in 
section 6. 

2. Methodologies 

In the vibration analysis of turbomachinery rotors it is 
normal to assume perfect cyclic symmetry, thereby reduc- 
ing the analysis to that of one blade and the corresponding 
disk sector. In the first part of this section, the theory be- 
hind this type of analysis is briefly reviewed. 

When the random mistuning of blade frequencies is 
considered, the cyclic symmetry assumption is no longer 
valid, requiring Monte Carlo simulations of models of the 
entire assembly. The second part of this section intro- 
duces an aggressive order reduction technique aimed at 
alleviating the cost of such analyses. 

2.1. Cyclic Symmetry 

Consider the finite element analysis of the free re- 
sponse of a structure with perfect cyclic symmetry. 

Assuming an identical element mesh for each disk-blade 
sector then the stiffness matrix, K, and the mass matrix, 
M, will have a block circulant, symmetric structure 



where the block matrices Ki and Mi ( i  = 0,. . . , INT[N/2])  
are square matrices of dimension equal to the number of 
degrees of freedom of each disk-blade sector. 

All circulant matrices of dimension N share the same 
set of eigenvectors that are arranged as the columns of the 
Fourier matrix, E: 

The E matrix is unitary, i.e., E*E = I where * denotes the 
complex conjugate transpose. The Fourier matrix has a 
real valued form, F: 

fki = 

Note that the column i = only occurs if the number of 
blades, N, is even. The F matrixis orthogonal, i.e., FTF = I. 

Given this information, we see that Eq. (1) may be 
brought into a block diagonal form using the transforma- 
tion 

x = (F e I) a. (4) 

where e denotes the Kronecker product whichis discussed 
in Appendix A. Thus 

thereby decoupling the many circumferential harmonics 
of the problem. For example, cosine modes of harmonic 2 
(two nodal diameter modes) may be found by solving 

This effectively reduces the size of the problem to that of 
only one sector. Many modern finite element codes feature 
this type of analysis. 

2.2. ROMs of Nearlv Cvclic Blade Assemblies 

When blade mistuning prevents the use of cyclic sym- 
metry arguments, a model of the full assembly is required. 
If the FEM is not given a much coarser mesh, the increase 
in problem size may be so drastic that the problem is 
rendered unsolvable. Furthermore, a full analysis of the 
statistics of response of a randomly mistuned system calls 
for multiple realizations of mistuned assemblies, which 
necessitates an even more severe order reduction. A full 
blown Monte Carlo simulation of a mistuned structure may 
require thousands of realizations, which is a monumental 
task unless the number of degrees of freedom per realiza- 
tion is kept within reason. In many cases, this may limit 
the number of degrees of freedom per sector to less than 
ten. Only modal analysis provides satisfactory accuracy at 
such low orders, and given the readily available modes of 
free vibration of the tuned assembly, a modal analysis of 
the mistuned problem is very tempting. However, in the 
modal analysis, all information about the blade dynam- 
ics is embedded in the modes, leaving no way of entering 
blade mistuning in a controlled manner. 

An alternative approach is that of component mode 
analysis, in which the blades and the disk are treated as 
separate components. The most difficult problem in com- 
ponent mode analysis is the modeling of the interface be- 
tween the components. This problem is effectively ad- 
dressed in the several component mode techniques that 
have been suggested. Common to all of these techniques 
is the considerable expense associated with the assembly 
of the substructures, which for solidmodels adds three de- 
grees of freedom for each node of the substructure inter- 
face. This cost is unacceptable for the analysis suggested 
herein. Instead, we consider the following simplified ap- 
proach. 

2.2.1. Nomenclature 

N The number of disk-blade sectors. 
P The maximum number of nodal diameters for a 

disk mode shape. P = int[N/2]. 

Vn A matrix formed with the selected n nodal diam- 
eter (nth harmonic) mode shapes of the disk as its 
columns. The tilde signifies that each mode only 
contains the degrees of freedom of a single sec- 
tor. When selecting modes to be considered in 
the analysis, both modes of a pair corresponding 
to a double natural frequency must be included. 
Note that the following analysis assumes that the 
vectors are normalized with respect to the mass 
matriu. 

g$ Each column of this matrix is the disk-induced 
motion of a single blade when the disk sector to 
which it is attached is vibrating in a mode shape 
of Vn. The_ordering of these modes should corre- 
spond to V,. The scaling of these modes ~ollows 
from the normalization of the modes of V,. 



A matrix formed with the selected set of can- 
tilevered blade mode shapes as its columns. 

The Kronecker product (see Appendix A). 

The n nodal diameter mode shapes of an en- 
tire disk, formed by expanding the single sector 
mode shapes contained in Vn, as explained in Ap- 
pendix B. 

The matrix of all disk modes. V = [Vo, V1, . . . , Vpl 

Disk-induced motions of all the attached blades 
as the disk vibrates with the shapes in Vn. The 
columns of U$ are formed like the columns of Vn 
(see Appendix B). 

The matrix of all disk-induced motions corre- 
sponding to V. ud = [u:, u:, . . . , U$] 

A block diagonal matrix, ub = (I @ fib), where 
the order of I is equal to N. Each block corre- 
sponds to the cantilevered mode shapes for an 
individual blade in the bladed disk 
A vector of generalized coordinates correspond- 
ing to the n nodal diameter disk modes. 

The vector of generalized coordinates for all disk 
T T T T modes, a = [+,al ,..., ap] 

A vector of generalized coordinates for blade i. 

The vector of generalized coordinates for all N 
blades. It is formed as b = [b:. b:, . . . . b;lT. 

The disk deflection vector. 

The blade deflection vector, containing the total 
motion of all N attached blades. 

The finite element mass matrixand stiffness ma- 
trix of a disk sector. 
The finite element mass matrix and stiffness ma- 
trix of the entire disk 

The modal mass matrix and modal stiffness ma- 
trix of the entire disk The modal mass matrix is 
the identity matrix since the modes are normal- 
ized with respect to the mass matrix. 

The finite element mass matrix and stiffness ma- 
trix of a free blade. 

I, &, The modal mass matrix and modal stiffness ma- 
trix of a cantilevered blade with no mistuning. 
For simplicity, we choose the convention that 
blade mistuning only occurs in the blade modal 
stiffness matrix, and that the modal stifiness ma- 
trix of mistuned blade i is 2; = ( 1 + ai)Kb, where 
ai is a mistuning value from a random variable. 

2.2.2. Formulation 

The disk motion is written in terms of modal ampli- 
tudes, Va (see the Nomenclature section). The motion of 
an individual blade then consists of two components: the 
motion of the blade due to the disk motion, Uda; and an 
elastic blade motion written in terms of a the modes of 
a cantilevered blade, ubb. Since the elastic motion of the 
blade is written relative to the disk-induced motion of the 
blade, the attachment of the blade to the disk is automatic. 
Note that the disk-induced motion of the blade is not sim- 
ply a rigid body motion, since it also accounts for the de- 
formation of the blade due to disk deformation. Later sec- 
tions explain how the modes in V, ub, and ud may be effi- 
ciently calculated with a finite element approach. 

The kinetic energy of the assembly may be written as: 

Similarly, the strain energy is 



where i(dn is the block of Kd which contains the modal 
stiffnesses of the disk modes with n nodal diameters. Re- 
call that ud constitutes the blade motions due to disk mo- 
tion. It is clear that in many cases, this will be almost pure 
rigid body motion. It is our contention that the strain en- 
ergy due to this term may often be negligible. It will, how- 
ever, be included here. 

We apply Hamilton's principle, 

and find 

At this point we make an important approximation. 
Recall that we suggested above that the strain energy due 
to the disk-induced motion of the blade should in many 
cases be a small term. Given this assumption we elect to 
ignore the effect of blade mistuning in this term reason- 
ing that the effect of mistuning on this small term will be 
negligible. Hence, blade mistuning will only be included in 
the strain energy of the blades due to the deformation of 
blades in the cantilevered blades modes. This approxima- 
tion dramatically increases the efficiency of the generation 
of the reduced order equations of motion of the mistuned 
assembly. 

We using the definition of a and ud (see Nomencla- 
ture section) we may cast our equations into the following 
matrix form 

diag (1 + di) s kb 

where Bdiag denotes a block diagonal matrix, and diag 
denotes a diagonal matrix. A few comments about Eq. (14) 
are in order. First it is to be noted that no information 
about mode shapes in the disk is required. Only the modal 
stiffnesses of the disk and blade modes, the disk-induced 
shape functions and elastic modes in the blade, and the 
blade mass and stiffness matrices enter the analysis. 

In the mass and stiffness matrices, the bottom right 
blocks are diagonal, te. ,  no coupling of blade modes oc- 
curs. Coupling of blade modes and disk modes appears 

in the top right and bottom left blocks of the mass and 
stiffness matrices. These blocks are in general full, hence 
there is full coupling of all blade and disk modes. The top 
left blocks feature two terms: one that corresponds to the 
disk alone, and a second term related to the assembly of 
disk and blades. Yet, we note that the top left blocks of 
the mass and stiffness matrices are block diagonal for the 
following reason: addition of blade inertia preserves the 
cyclicity of the assembly. Likewise, since the contribution 
of blade stiffness rnistuning on the disk-induced strain en- 
ergy in the blades was ignored, addition of blade stiffness 
does not alter the cyclicity of the disk Hence there is no 
coupling among the different nodal diameter modes. How- 
ever, the addition of the blade inertia and stiffness cou- 
ples the modal circle modes that have the same number 
of nodal diameters. 

An examination of Eq. (14) reveals the reason for ig- 
noring the contribution of blade stiffness mistuning on the 
disk-induced strain energy. Thanks to this approximation, 
the mistuning random variables 6i only appear in the bot- 
tom right hand block, which is the only block that must 
be generated for successive mistuning patterns. If this as- 
sumption had not been made, the entire stiffness matrix 
would have to be regenerated for each mistuning pattern. 

As an aside, we point out the fact that individual 
blades are not directly coupled. Thus, the blade degrees of 
freedom may be written in terms of disk coordinates. This 
is strictly equivalent to the elimination of all degrees of 
freedom except the coupling coordinates that was shown 
to be possible in the coupled oscillator models 11 31. From 
Eq. (13), assuming harmonic motion, 

where the matrix [diag (1 + 6i) e kb - w21] is diagonal. 
For this reason, the blade degrees of freedom may be 
efficiently represented in terms of the disk degrees of 
freedom. By substituting this relationship into Eq. (12), 
thereby eliminating b the computational efficiency may be 
greatly improved. However, this elimination of blade coor- 
dinates may be of limited use in a free response analysis, 
because the natural frequencies become embedded in the 
eigenvalue problem preventing the use of canned eigen- 
value solvers. The elimination of blade degrees of freedom 
should considered an essential part of a forced response 
analysis or a transfer matrix approach. 

2.2.3. Pseudo-Physical Coordinate System 

The coordinate system presented above features a 
mixture of modal amplitudes of interblade phase angle 
modes for the disk, and blade modal amplitudes. Hence, 
only the blade degrees of freedom in the reduced or- 
der model are directly associated with individual sectors. 
Therefore, a direct comparison with the lumped mass 



models hitherto utilized in the analysis of bladed disks 
is difficult. A coordinate transformation from the disk 
modal amplitude coordinates to disk sector coordinates 
would be useful. 

Since the top left blocks of the mass and stiffness ma- 
trices are block diagonal, there exists a transformation to 
a block circulant form (See Eq. (4)). The resulting coordi- 
nate system will be referred to as pseudo-physical coor- 
dinates, because the transformation is to the deflections 
of an equivalent lumped mass model for the disk sector. 
The transformation does not effect the blade degrees of 
freedom. We define the following transformed matrices: 

A = (F B I) [I + Bdiag (6$Th71bc$)] (F @ 1') (16) 

C = (F D I )  [ I  + Bdiag (6$Th71b6$)] (F B I ~ )  (1 8) 

Eq. (14) may then be rewritten in the pseudo-physical co- 
ordinate basis as 

where y is the vector of disk pseudo-ph_ysical coordinates. 
We have introduced the notation diag[Ki] for the diag_onal 
matrix of mistuned modal stiffnesses, diag(1 +ai) s Kb. 

Equation (20) still features the inertial coupling of 
blades observed in Eq. (14), caused by the coordinate sys- 
tem for the blades being relative to the disk Yet an- 
other step is required to complete the transformation to 
the lumped mass models similar to the ones in the liter- 
ature which usually feature absolute deflections resulting 
in stiffness coupling of the blades. 

We define a transformation from b, the coordinates of 
blade motion relative to disk motion, to z ,  the coordinates 
of absolute blade motion. 

Applying Eq. (2  l), Eq. (20) becomes 

which features the more familiar stiffness coupling of in- 
dividual blades through the disk Finally, [y, zlT may be 
reordered so that coordinates of each sector are grouped. 
The vector xT is formed, where X i  contains both blade and 
disk absolute, pseudo-physical coordinates of sector i. In 
a tuned form, the equations of motion have the form pre- 
sented in Eq. (1). In the mistuned case, the circulant form 
of Eq. (1) is destroyed giving rise to the form 

where the superscripts in the stiffness matrix correspond 
to the sector numbers. 

2.2.4. Transfer Matrices 

In the earlier work by the authors [7, 131, a trans- 
fer matrix approach to the analysis of bladed-disks was 
presented. A low number of coupling coordinates was 
shown the be the prerequisite to the applicability of this 
approach. It was hypothesized that in many cases the ele- 
ments of M and K will exhibit rapid decay away from diago- 
nal. In such cases, the dominance of the coupling between 
neighboring sectors may be capitalized upon by ignoring 
the coupling between weakly coupled sectors. Assume, 
for instance, that only three blocks away from the diago- 
nal in Eq. (23) are deemed significant. Then the remaining 
blocks mav be truncated and the dvnamics of the system 
represented in a transfer matrix form 

X i  

Xi-1 - - 
x i - 2  

x i - 3  

x i - 4  

where 

Naturally, the elimination of the blade degrees of freedom 
as discussed above is highly advantageous since it reduces 
the dimension of the blocks of the transfer matrix. 



1 3. Generating Component Modes Using the FEM 

In this section we outline how the the finite element 
method may be utilized to obtain the ingredients required 
for the order reduction method. Tho separate finite ele- 
ment eigenvalue analyses are required: a cyclic symmetry 
analysis of the disk alone, and an analysis of a fixed blade. 
Throughout the discussion it is assumed that eigenvec- 
tors are normalized with respect to the mass matrix. From 
Eq. (14) we make the following inventory: 

mode shapes for a fixed blade, f ib  
corresponding modal stiffnesses, &, 
the finite e l eme~t  mass and stiffness matrices of a free 
blade, fib and Kb 
shape functions for the attached blades thakare due 
to nodal diameter mode shapes in the disk, ud 
modal stiffnesses of the disk nodal diameter modes, 
Kd 

The eigenvalue analysis of a single cantilevered blade 
is straightforward. The blade mass and stiffness matri- 
ces may not be as easily obtained but are required for the 
analysis. 

The method for obtaining the disk-induced shapes in 
the blade is less apparent. An approach fundamental to 
the current work is as follows. By performing the cyclic 
symmetry analysis of the disk component with massless 
blades attached, the required shape functions in the blade 
are automatically generated. This technique requires no 
modification to a pre-existing FEM apart from setting the 
blade material density to zero. Because massless blades 
have no inertia, they will follow the motion of the disk, 
and will not add spurious natural frequencies. 

A serendipitous consequence of this approach is the 
stiffening of the disk component by the attached blades. 
Since this setup mimics the actual disk-blade interface, the 
disk mode shapes are improved. As a result modal conver- 
gence is enhanced. The analysis yields the desired number 
of families of nodal diameter modes for the disk compo- 
nent. A family refers to all nodal diameter modes of a 
certain type in the disk, e.g., the one nodal circle out of 
plane bending. Only the modal stiffnesses of the modes 
as well as the part of the eigenvectors pertaining to the 
blade (the blade shape functions) are retained. The part 
of the eigenvectors pertaining to the disk (the disk modes) 
are discarded. 

4. Example 

As an example, we present a simple FEM of one sector 
of a fictitious bladed-disk structure. Top and side views of 
the finite element mesh are shown in Fig. 1. The elements 
are all eight-noded solid bricks. The disk sector has 15  
elements, and the blade has 3 elements. In general, the 
blade substructure may be defined as the part of the model 
which is to have mistuned properties. 

Figure 1 An example finite element model. 

All nodes of the inner radius of the disk are completely 
constrained. Also, all elements have the same material 
properties. This FEM therefore represents a blisk which 
is clamped at the inner radius. There are 138 degrees of 
freedom per disk-blade sector, and a total of 24 sectors 
for the full blisk All finite element work was done on 
NASTRAN using SOL 48 for the disk component, and SOL 
103 for the cantilevered blade. 

Although this model is simple, the properties and di- 
mensions were chosen so that the dynamics would be quite 
challenging to reproduce with a ROM. As a benchmark, we 
show the natural frequencies of the FEM versus the num- 
ber of nodal diameters in Fig. 2. Note that this plot shows 
several very close frequency veerings. 

For the ROM, we take five families of disk modes, and 
four cantilevered elastic blade modes. Thus, there are nine 
degrees of freedom per sector for the ROM, compared to 
138 degrees of freedom per sector for the FEM. 

The natural frequencies found from the ROM are com- 
pared to the finite element frequencies in Fig. 3. Glob- 
ally, the frequency distribution is very well captured by 
the ROM. In particular, the disk modes are almost exact. 
The blade modes are nicely approximated although not as 
accurately as the disk modes. The ROM frequencies for 
blade modes tend to be higher than the FEM frequencies. 
This is most likely due to the fact that cantilevered blade 
modes were used, and the fixed end boundary condition 
makes the blade modal stiffnesses too large. The low num- 
ber of disk mode families accounted, for fails to compen- 
sate for this. The exaggerated stiffness is most apparent 
in the second blade mode. 

It is especially gratifying to see the performance of the 
ROM in the neighborhood of the frequency curve veerings. 
The veerings are directly related to the disk-blade cou- 
pling (and therefore blade-to-blade coupling) which has 
been shown to be the single most inportant factor in the 
analysis of mode localization 11, 131. This suggests that 
the proposed reduced order modeling technique will pro- 
vide a valuable tool in the analysis of mistuning sensitivity 
in bladed disks. 

The previous nine-degree-of-freedom model captures 
well the natural frequencies in a rather broad frequency 
range. For the purposes of mistuning analysis, however, 
the structural dynarnicist often chooses to focus on a small 
frequency band which includes a set of blade modes. It is 
the blade modes which feature large localization, and are 



therefore of primary importance. We now take the first 
two families of FEM disk modes and the first FEM blade 
mode in order to create a ROM with only three degrees of 
freedom per sector. 

The natural frequencies of the ROM with three degrees 
of freedom are shown in Fig. 4. Considering that we have 
approximated a 138-degree-of-freedom-per-sector model 
with a three-degree-of-freedom-per-sector model, the fre- 
quency fit is excellent. 

5. Mistuning 

In order to reproduce the dynamics of the FEM with 
the ROM, not only must the frequencies be well approx- 
imated, but the mode shapes must match as well. Even 
though the component mode shapes for the ROM are taken 
from the FEM, we are interested in comparing the mode 
shapes for the bladed disk assembly, which are created in 
the reduced-order modeling process. In addition, we need 
to verify that the mistuning effects are well captured by the 
ROM. Therefore, we proceed to validate the order reduc- 
tion method by examining how well the frequencies and 
the localized mode shapes of the ROM compare to those 
of the FEM for one realization of a mistuned bladed disk 

For this validation, we constructed a FEM for the full 
blisk of which one sector was presented in Fig. 1. Mistun- 
ing was added by allowing each blade to have a different 
Young's modulus. The Young's modulus for each blade i, 
Ei, was found as: 

Ei = Eo(l + 6i) (25) 

where Eo is the Young's modulus for a tuned blade, and 6i 
is a sample - from a uniform distribution with standard 
deviation 5% - produced by a random number generator. 

For this mistuning example, we use the ROM with nine 
degrees of freedom per sector. The modal stiffnesses of 
the ROM were changed so that the mistuning pattern was 
identical to that of the FEM. Note that 5% stiffness mis- 
tuning corresponds to approximately 2.5% blade natural 
frequency mistuning. The FEM considered here has a total 
of 33 1 2  degrees of freedom, while the ROM has only 216 
degrees of freedom. 

Since the mistuning destroys the cyclic symmetry of 
the structure, the modes will no longer be associated with 
a certain number of nogal diameters. We therefore plot 
the natural frequencies of both models versus occurrence 
number in Fig. 5. The frequencies of the two models com- 
pare very well over this frequency range. Note, however, 
that the frequencies of the in-plane blade modes are still 
higher for the ROM than for the FEM. 

Finally, we compare selected localized mode shapes of 
the FEM and ROM in Fig. 6. The vibration amplitude of each 
blade was reduced to a scalar by taking the square root of 
the sum of the squares of the amplitudes for all degrees 
of freedom in the blade. The vector of these amplitudes 
was then normalized so as to have unit length. 

Note that the mode shapes are very similar. Although 
the amplitudes at a certain blade may differ slightly, the 

maximum amplitudes occur at the same blade and are very 
close. Furthermore, the mode shapes of the FEM and ROM 
exhibit similar spatial amplitude decay, and we found this 
to be typical of the FEM and ROM modes. This is of pri- 
mary importance since it demonstrates that the two mod- 
els have comparable sensitivities to mistuning. 

6. Conclusions 

A reduced-order modeling technique was presented 
which is tailored to producing a very low-order model of 
an actual bladed disk structure. The method is systematic 
from a finite element model (FEM) of one disk-blade sector 
of the structure. A component mode approach is used, 
where the disk modal stiffnesses and the blade motion due 
to disk mode shapes are found from the FEM modes of the 
disk with massless blades. The blade modal stiffnesses are 
found from the FEM modes of the blade with all nodes at 
the disk-blade interface fixed. The finite element mass and 
stiffness matrices for the blade alone are also used. This 
is all the information that is needed from the FEM runs, so 
storage requirements are modest. Mistuning may easily 
be added to the reduced-order model (ROM) by slightly 
disordering the blade stiffness properties. 

For the example case considered, the reduced-order 
modeling technique performed well. For order reduction 
per sector 138 -- 9, the system dynamics were well cap- 
tured over a broad frequency range. For order reduction 
per sector 138 - 3, the system natural frequencies were 
approximated in the frequency band of interest. It was 
found that the technique captures well blade-disk cou- 
pling, an important feature in the analysis of blade mis- 
tuning. 

The frequencies and mode shapes were compared for 
the FEM and ROM of the example system with mistuned 
blade stiffnesses. The frequencies for the two models were 
very similar. The match between FEM and ROM mistuned 
mode shapes was excellent. The maximum amplitudes oc- 
curred at the same blade and were nearly equal in magni- 
tude. Also, the spatial amplitude decay rates were simi- 
lar, which means that sensitivity to mistuning is well pre- 
served in the order reduction process. 
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Appendix A: The Kronecker Product AsB 

In the study of the block circulant matrices, that arise 
in the analysis of structures with cyclic symmetry, the Kro- 
necker produce is a useful tool. A brief introduction of the 
product and some of its properties is in order. Many users 
will be be familiar with the Kronecker product of a column 
vector and a line vector to form a matrix 

r a l b l  albz ... a l b ~ 1  

The Kronecker product of two matrices is 

Some of the useful properties of the Kronecker product 
include 

(A @ B) (C e D) = (AC) 8 (BD) 

Appendix B: Generation of Full Assembly Mode Shapes 

A finite element analysis of a blade assembly, using 
cyclic symmetry, yields the real and imaginary parts of an 
nth harmonic mode of a single sector 

The corresponding pair of counter-rotating (complex con- 
jugate) modes of the entire assembly may be generated 
using the Kronecker product (see Appendix A) 

where en is the nth harmonic vector from the Fourier ma- 
trix E in Eq. (2), 

1 
cos an + j sin an 

en = - 

cos[(N - l)a;t] + j sin[(N - l)a;t] 

Here, a = 9 is the interblade phase angle of the mode 
pair. We may write Eqs. (27) and (28) as 

where f; and f; denote, respectively the nth harmonic 
sine and cosine vectors from the real form of the Fourier 
matrix F in Eq. (3). We may define a new pair of eigenvec- 
tors as the real and imaginary parts of 9, and Q;, 

and 
v', = [f:, . i;: + f; . T i ]  . 

All the modes of the blade assembly may be written in this 
form and put into a matrix V = [vo, v i ,  ~, v;, 6,. . . I .  
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Figure 2 Natural frequencies of the example system shown as a function of the num- 
ber of nodal diameters in the corresponding mode shape. The lines connect 
members of a modal families. 
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Figure 3 Natural frequencies of 9-degree-of-freedom ROM (0) compare favorably with 
the natural-frequencies of-the FEM (-) when plotted as a function bf the 
number of nodal diameters in the corresponding mode shape. 
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Figure 4 Natural frequencies of 3-degree-of-freedom ROM (0) compare favorably with 
the natural frequencies of the FEM (--) in a narrow frequency band. 
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Figure 5 Comparison of the natural frequencies of the FEM and ROM for the mistuned case. 
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Figure 6 Selected localized mode shapes of a mistuned realization of the FEM com- 
pared with the ROM. Standard deviation of uniform mistuning is 5%.  
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