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A Reduced-Order Recursive Algorithm for the Computation of the

Operational-Space Inertia Matrix

Patrick Wensing, Roy Featherstone, David E. Orin

Abstract— This paper provides a reduced-order algorithm,
the Extended-Force-Propagator Algorithm (EFPA), for the
computation of operational-space inertia matrices in branched
kinematic trees. The algorithm accommodates an operational
space of multiple end-effectors, and is the lowest-order algo-
rithm published to date for this computation. The key feature
of this algorithm is the explicit calculation and use of matrices
that propagate a force across a span of several links in a single
operation. This approach allows the algorithm to achieve a
computational complexity of O(N +md+m

2) where N is the
number of bodies, m is the number of end-effectors, and d is the
depth of the system’s connectivity tree. A detailed cost compar-
ison is provided to the propagation algorithms of Rodriguez et
al. (complexity O(N + dm

2)) and to the sparse factorization
methods of Featherstone (complexity O(nd2 +md

2 +m
2
d)).

For the majority of examples considered, our algorithm outper-
forms the previous best recursive algorithm, and demonstrates
efficiency gains over sparse methods for some topologies.

I. INTRODUCTION

Recursive dynamics algorithms for robotic mechanisms

have enjoyed a history of success due to their low com-

putational complexity. This class of algorithms has enabled

efficient solutions to problems in forward [1], [2], inverse

[3], and operational-space dynamics [4]. In this paper, we

present the lowest-order algorithm to date for computation

of the inverse of the operational-space matrix Λ
−1, a key

component in the operational-space dynamics formulation.

The original operational-space formulation [5] has un-

locked a vast body of research over the past decades

that enables, in principle, decoupling of task and null-

space dynamics through operational-space control. While

the operational-space formalism was originally developed

to describe the dynamics of a single end-effector, it was

extended to accommodate general task spaces that depend

on the motion of more than one body in [6].

More recent work has also demonstrated the applicability

of the operational-space formalism to the control of con-

strained and underactuated systems (e.g. [7], [8], [9], [10]).

Sentis et al. extended the framework to provide operational

control of free floating systems [7]. Park et al. introduced

contact constrained operational dynamics for a humanoid

in [8] which was later extended to operational control of

contact force behavior in [9]. The work of Mistry and

Righetti [10] addressed these challenges as well, but through
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a substantially different approach. Through considering the

operational task within the framework of projected inverse

dynamics, their results provide simplified control laws in

comparison to previous work. This plethora of practical

applications motivates the need for efficient operational-

space dynamics algorithms to support these controllers.

Many algorithms have been developed to efficiently com-

pute operational-space dynamics quantities. The largest body

of work has concentrated on the operational-space inertia

matrix, with original algorithms in [11], [12], [13] for single

end-effector manipulators. The Force Propagation algorithm

of Lilly [11], [14] was independently formulated by Kreutz-

Delgado et al. [12] within their spatial operator algebra

framework. An alternate approach of Lilly and Orin [13]

approximates Λ through direct application of the articulated

body inertia recursions of [1].

These approaches have been extended to a more general

operational space that may include multiple end-effectors.

Chang and Khatib presented a recursive method that ex-

tended Lilly’s Force Propagation approach to this setting

[15]. A very similar method had been developed previously

by Rodriguez et al. [4]. An optimized version of the Ro-

driguez algorithm was provided in [16] and is used as a

benchmark for recursive algorithms here.

An alternative line of research has developed methods that

exploit sparsity in the structural components of the dynamic

equations of motion to compute forward and operational

dynamics [16], [17]. The kinematic branching that is found

in complex mechanisms leads to specific patterns of zero

elements in the system’s mass matrix and task Jacobian. The

exploitation of this sparsity pattern, referred to as branch-

induced sparsity, has led to algorithms that are competitive

with, and sometimes superior to, recursive approaches.

The algorithm presented in this paper, called the

Extended-Force-Propagator Algorithm (EFPA), calculates

Λ
−1 highly efficiently, and achieves a computational com-

plexity of O(N + md + m2) where N is the number

of bodies, m is the number of end-effectors, and d is

the depth of the system’s connectivity tree. This beats the

previous best reported complexity of O(N +dm2) achieved

by the algorithm of Rodriguez et al. [4]. The key feature

of the EFPA, which is responsible for both its high effi-

ciency and low complexity, is the explicit calculation and

use of matrices that propagate a force applied at an end-

effector directly to an equivalent force at another body in

the mechanism that may be several joints away from the

end-effector. This approach substantially alters the structure

of the computation, so that the EFPA has relatively few



Fig. 1. (a) A kinematic tree and (b) its connectivity graph from [16].

intermediate results in common with previous algorithms.

The rest of this paper will be organized as follows.

Section II reviews the conventions and notation that will

be used to describe the dynamic properties and topology

of a branched kinematic tree. Section III briefly reviews

the operational-space dynamic equations of motion. Section

IV introduces and derives the EFPA. Section V compares

the algorithm’s computational performance to the leading

recursive and sparse techniques previously mentioned, and

Section VI summarizes our work.

II. KINEMATIC TREES - CONVENTIONS AND NOTATION

This section will outline the conventions and notation that

will be used to describe the topology and dynamic properties

of a rigid-body system. The conventions adopted in [18] will

be employed. 6D spatial vector algebra will be used to enable

compact notation for algorithm development and efficient

spatial vector arithmetic for implementation. Tutorials on

spatial vectors and their specific use in dynamics algorithms

can be found in [19], [20].

A. Describing Connectivity

A rigid-body system can be modeled as a set of N bodies

connected together by a set of joints, each with up to 6

degrees of freedom. The connectivity of such a system

can generally be described by a graph, wherein each node

represents a body, and each arc represents a joint. In this

paper, we restrict our attention to those rigid-body systems

which fall into the class of kinematic trees. The connectivity

graph of such systems forms a tree, while physically, these

systems are free of kinematic loops. An example of a

kinematic tree is shown in Fig. 1(a) and its connectivity

graph is shown in Fig. 1(b) [16].

Systems which fall into the class of kinematic trees can

be modeled as a set of N bodies, a fixed base, and N joints.

In the case of a mobile robot, one of the bodies is assigned

as a floating base, and a six-degree-of-freedom (DoF) virtual

joint is inserted between the fixed and floating base. The

fixed base is labeled 0, while the other bodies are labeled 1
through N . Numbering may be done in any order such that

the label of body i’s parent, denoted p(i), is less than i. The

joints, represented by the arcs in the connectivity tree, are

then numbered such that joint i connects bodies i and p(i).
Given these conventions, we make the following definitions:

c(i): the set of children of body i, defined by

c(i) = {j | p(j) = i}

κ(i) : the set of joints that support body i, defined

by κ(i) = {i} ∪ κ(p(i)) and κ(0) = ∅

Here, a joint is said to support body i precisely when

it lies on the path between body i and the fixed base.

Additionally, we use the support sets to define the nearest

common ancestor for a pair of bodies as follows:

ancest(i, j) = max(κ(i) ∩ κ(j)). (1)

For example, in Fig. 1, ancest(2, 6)=1 and ancest(4, 5)=2.

In this work we consider a set of m end-effectors, each

of which is rigidly attached to a single body in the tree.

We extend the connectivity tree to accommodate the end-

effectors, which are numbered from N + 1 to N +m. As

a result, p(k) denotes the body to which end-effector k is

rigidly attached. Letting κ(k) be similarly defined as before,

we define the following sets to describe the end-effectors

supported (ES) by each joint in the tree:

ES(i) = {k | N < k and i ∈ κ(k)}. (2)

B. Spatial Notation

We briefly review some of the basic spatial quantities [18]

that will be employed in the algorithm. A coordinate frame

will be attached to each body in the tree to describe spatial

quantities with respect to a local basis. The general joint

notation of Roberson and Schwertassek [21] will be adopted

to describe the relationship between connected links. With

this notation, the spatial velocity vi of link i is related to its

parent through the following equation:

vi =

[

ωi

vi

]

= iXp(i)vp(i) +Φiq̇i

where ωi and vi are the angular and linear velocities of

body i (as referenced to the local coordinate frame). The

matrix iXp(i) provides a transformation of spatial motion

vectors from p(i) to i coordinates, and the matrix Φi is a

full-rank matrix that encodes joint i’s free modes of motion.

This matrix is dependent on the type of joint, but takes the

simplified form Φi = [0, 0, 1, 0, 0, 0]T for revolute joints

following the Denavit-Hartenberg convention.

Similarly, the matrix iXT
p(i) provides a spatial transforma-

tion of forces from i coordinates to p(i) coordinates. Body

i’s rigid-body inertia tensor will be denoted Ii, while the

articulated body inertia of the subtree rooted at i will be

denoted IA
i [18]. Intuitively, IA

i is the apparent inertia that

would be “felt” by a force acting at the base of the subtree

rooted at i if the subsystem were at rest and no joint torques

were applied.

III. OPERATIONAL SPACE DYNAMICS

This section briefly introduces the various quantities that

are used to describe operational-space dynamics [5]. Given



a rigid-body system, with end-effectors as described previ-

ously, we first consider the standard dynamic equations of

motion:

H(q)q̈ +C(q, q̇) +G(q) = τ + J(q)TF (3)

where H , C , and G are the familiar mass matrix, velocity

product terms, and gravitational terms respectively. Here F

collects end-effector forces and J is a combined end-effector

Jacobian that relates joint rates to end-effector velocities as,

ẋ = J(q)q̇ . (4)

Premultiplication of (3) by JH−1 and incorporation of the

time derivative of (4) provides:

ẍ = JH−1τ +Λ
−1F + β, (5)

where

β(q, q̇) = J̇ q̇ − JH−1 (C +G) , and

Λ
−1(q) = JH−1JT .

Efficient computation of Λ−1 is required for any operational-

space control application. The following section provides a

recursive algorithm to compute this matrix which is then

compared to existing approaches. Zero joint rates, zero joint

torques, and no gravity are assumed for the algorithm, as

they have no effect on Λ
−1. Methods to efficiently compute

JH−1τ + β can be found in [18], Section 2.5.4.

IV. THE EXTENDED-FORCE-PROPAGATOR ALGORITHM

Recursive algorithms for articulated structures have been

shown to be very efficient, for example, in the calculation

of forward dynamics with the articulated body algorithm

(ABA) [18]. The ABA proceeds with three recursions. The

first, outward from base-to-tips, calculates joint velocities

and associated velocity dependent terms. The second re-

cursion, inward from tips-to-base, then computes articulated

body inertias and bias forces. The final recursion, once again

outward, calculates body accelerations. In this paper, we

extend the ABA to isolate the effects of the end-effector

forces that are needed in operational-space dynamics.

The EFPA stems from the final two recursions of the

articulated body algorithm. Its main feature is the recursive

calculation and re-use of the extended force propagator

matrices k
X

T
i , in which body i may be arbitrarily far

away from end-effector k. While the standard spatial force

transform kXT
i provides a transformation of spatial forces

from k to i as if the bodies are locked at the joints, the

matrix k
X

T
i provides an articulated transformation as if the

joints are free to move. As a result, k
X

T
i fk describes the

force that is felt at i due to a force fk at k.

Analogous to the relationship between kXT
i and kXi,

k
X i

is an extended acceleration propagator that transforms an

acceleration at body i to body k given that the system is

free at the joints. As such, k
X i and k

X
T
i can be referred to

as articulated transforms as in [14] to convey their operation.

The concept of an articulated transform is not new.

For example, k
X

T
i appears in [15] as i

kL
∗ and in [4] as

f
i

fe

k

f
i(a) (b)

fe

k

aiai k
X

T

i

k
X

T

i
fe

k

k

Fig. 2. (a) Spatial quantities used to describe the dynamics of body i in
the subtree rooted at i. (b) Recursive relationships obtained by the inward
recursion of the EFPA. An articulated inertia is used to describe the effective
inertia of all outlined bodies. The force propagator k

X
T
i transforms the

dynamic effect of the end-effector force fe
k through bodies k to i to describe

the force effect on the i-th body.

ψ(i, k). However, the EFPA is the first algorithm to explicitly

compute and use these matrices for efficiency gains.

A. Inward Recursion

The first pass of the EFPA proceeds from tip to base. It

seeks to propagate the following equation:

f i = IA
i ai −

∑

k∈ES(i)

k
X

T
i f

e
k , (6)

which provides a force-acceleration relationship for body i
of the articulated subtree rooted at joint i. Here fe

k repre-

sents a force which acts at end-effector k. The articulated

transforms k
X

T
i are extended force propagators as described

previously and illustrated in Fig. 2. This inward recursion

is more complex in comparison to previous algorithms [4],

[15], but enables computational savings in the outward

recursion. Initialization of (6) at the end-effector bodies

seeds this recursion with k
X p(k) =

kXp(k).

The assumptions of zero joint torques and zero velocities

provide the following relationships at each joint:

Φ
T
i f i = 0, (7)

ai =
iXp(i) ap(i) +Φi q̈i, and (8)

fp(i) = Ip(i) ap(i) +
∑

j∈c(p(i))

jXT
p(i) f j . (9)

Similar to the ABA derivation [22], relationships (6)-(8) can

be combined to relate the acceleration of the i-th subtree

to the predecessor acceleration and end-effector forces. This

relationship can then be combined with (9) to provide:

fp(i) =



Ip(i) +
∑

j∈c(p(i))

jXT
p(i) L

T
j IA

j
jXp(i)



ap(i)

−
∑

j∈c(p(i))

∑

k∈ES(j)

jXT
p(i) L

T
j

k
X

T
j fe

k, (10)

where each LT
i is a force propagator across the i-th joint

and takes the form:

LT
i = 16×6 − IA

i Ki



where Ki = Φi (Φ
T
i IA

i Φi)
−1

Φ
T
i . While the quantity in

parenthesis in (10) provides the familiar recursive relation-

ship for the articulated body inertia, the remaining portion

provides the following recursive relationships for each k
X i:

k
X p(i) :=

k
X i Li

iXp(i). (11)

We note that the product Li
iXp(i) used here is an articulated

acceleration transform (an acceleration propagator) across

a single joint. This recursion is required no more than d
times for each end-effector. This leads to a computational

complexity of O(md) to calculate all required articulated

transforms. The articulated inertia computation has complex-

ity O(N), providing a overall complexity of O(N+md) for

this pass of the algorithm.

B. Outward Recursion

The final goal of the outward recursion is to produce

the combined force-acceleration relationship a = Λ
−1f for

the end-effectors. This relationship is arrived at recursively,

from base to tips, through the solution for accelerations

at intermediate links along the tree. This is accomplished

through propagation of the following equation:

ai =

N+m
∑

k=N+1

Λ
−1
ik fe

k , (12)

where each Λ
−1
ik describes the acceleration at link i caused

by end-effector force fe
k. We note that Λ−1

ik is not a block

of Λ
−1 when i refers to a body. The assumption that the

fixed base is stationary seeds this recursion with:

Λ
−1
0k = 06×6.

To propagate (12) to body i from its predecessor, the

combination of (12) at p(i) along with (6)-(8) leads to:

ai =
∑

k/∈ES(i)

Li
iXp(i) Λ

−1
p(i) k f

e
k

+
∑

k∈ES(i)

(

Li
iXp(i) Λ

−1
p(i) k +Ki

k
X

T
i

)

fe
k .

That is, the recursive relationship between Λ
−1
i k and Λ

−1
p(i) k

is dependent on whether or not joint i supports end-effector

k. For each k ∈ ES(i) we have the recursion:

Λ
−1
i k := Li

iXp(i) Λ
−1
p(i) k +Ki

k
X

T
i , (13)

while

Λ
−1
i k := Li

iXp(i) Λ
−1
p(i) k

for each k /∈ ES(i). Thus, if i does not support end-effector

k2, the acceleration influence of fe
k2

propagates from p(i)
to i according to an articulated acceleration transform (as

if the joint i were free to move). As a result, for any other

end-effector k1 in the subtree at i we have the following:

Λ
−1
k1 k2

:= k1X p(i) Λ
−1
p(i) k2

. (14)

This simplification is illustrated in Fig. 3 for a basic exam-

ple. We note that this simplification is first possible when

i is the child of ancest(k1, k2). In the example figure, an

fe

k2

Λ
−1

1 k2

Λ
−1

2 k2

Λ
−1

3 k2

Λ
−1

k1 k2

1

2

3

k1

k2

0

fe

k1

k1X 1

Fig. 3. Simplification to the outward recursion that is provided by the
acceleration propagator k1X 1. It’s transpose, the force propagator 1

X
T
k1

was calculated during the inward recursion. As a result, three recursive

steps for the calculation of Λ−1
k1 k2

are able to be replaced with one matrix

multiplication.

acceleration propagator may be applied to calculate Λ
−1
k1 k2

recursively through links 1, 2, and 3. Yet, computational

savings can occur when Λ
−1
k1 k2

is computed directly at the

common ancestor of k1 and k2 through the use of k1X 1.

With this insight we define the following set:

GCA(i) = {(k1, k2) | k1 < k2

and i = ancest(k1, k2)} (15)

which contains all end-effector pairs that have a greatest

common ancestor at i. The EFPA, uses this set to determine

the links at which the cross-terms of Λ−1 may be computed.

Through the use of these simplifications, the recursion

listed in (13) is required not more than d times for each end-

effector. This ultimately leads to the computation of each

Λ
−1
kk and has overall complexity of O(md). These quantities

represent the diagonal blocks of Λ
−1. Each of the cross

terms in Λ
−1 can then be calculated via an appropriate ver-

sion of (14), resulting in a cross-term calculation complexity

of O(m2). Thus, the overall complexity of this recursion

is O(md +m2). Including both passes of the algorithm, a

complexity of O(N +md+m2) is achieved.

The full EFP algorithm is listed in Table I. The second

and third loops provide implementations of the inward

and outward recursions respectively. We note that due to

the symmetry of Λ
−1, only the upper triangle of Λ

−1 is

computed by the algorithm. The final loop provides the

necessary transformation for each Λ
−1
k k into end-effector co-

ordinates. This additional transformation loop is not required

for off-diagonal terms, as the acceleration propagators k
X i

transform accelerations directly to the end-effector frames.

V. ALGORITHM COMPARISON

This section will provide a comparison of the compu-

tational performance of the EFPA to the algorithms of

Rodriguez et al. [4] and Featherstone [16]. We first briefly

describe the operation of these algorithms.



Initialize: Λ−1
0k = 06×6, IA

i = Ii

for k = N + 1 to N +m do
k
X

T
p(k) =

kXT
p(k)

end for k

for i = N to 1 do

Ki = Φi (Φ
T
i IA

i Φi)
−1 Φ

T
i

Li = 16×6 −KiI
A
i

if p(i) 6= 0 then

IA
p(i) = IA

p(i) +
iXT

p(i) L
T
i IA

i
iXp(i)

for all k ∈ ES(i) do
k
X p(i) = k

X i Li
iXp(i)

end for k
end

end for i

for i = 1 to N do

for all k ∈ ES(i) do

Λ
−1
ik

= Li
iXp(i) Λ

−1
p(i) k

+Ki
k
X

T
i

end for k
for all (k1, k2) ∈ GCA(i) do

Λ
−1
k1k2

= k1X i Λ
−1
i k2

end for k
end for i

for k = N + 1 to N +m do

Λ
−1
kk

= kXp(k) Λ
−1
p(k) k

end for i

Λ
−1 =









Λ
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N+1,N+1 . . . Λ
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. . . Λ
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TABLE I

EXTENDED-FORCE-PROPAGATOR ALGORITHM

A. RJK Algorithm

The algorithm of Rodriguez, Jain and Kreutz-Delgado

(RJKA) is described in [4] and a dramatically optimized

version can be found in [16]. The main differences between

the RJKA and EFPA can be summarized as follows.

• Only the EFPA calculates extended force propagators.

• The RJKA calculates Λ
−1
kk via a recursion that calcu-

lates Λ
−1
ii from Λ

−1
p(i)p(i), whereas the EFPA instead

calculates Λ
−1
ik from Λ

−1
p(i)k.

• The RJKA calculates Λ
−1
k1k2

recursively from a com-

mon ancestor using local articulated transforms only,

whereas the EFPA calculates these quantities in a single

step using (14).

B. Sparse Factorization Algorithm (SFA)

Featherstone’s sparse factorization algorithm (SFA) [16] is

based on the exploitation of branch-induced sparsity in the

system mass matrix H and the rows of the task Jacobian J .

The algorithm first uses the factorization approach of [17] to

express the mass matrix as H = LTL, where L is a lower-

triangular matrix that enjoys the same sparsity pattern as the

lower triangle of H . The class of lower-triangular matrices

that possesses this branch-induced sparsity pattern is shown

to be a group, which implies the same sparsity pattern in

thumb
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6 DoF join t

feet

hands

fixed
base

hip

Fig. 4. Connectivity graph of the ASIMO Next-Generation robot (modified
from [16]).
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off-diagonal terms of Λ−1
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. Still, the sparsity from this topology provides

advantage to the SFA.

L−1, and thus in the rows of Y = JL−1. This definition

provides:

Λ
−1 = JH−1JT = Y Y T .

The properties of branch-induced sparsity are then exploited

to greatly accelerate the computation of Y and Λ
−1. The

final algorithm to compute Λ
−1 can be shown to have

computational complexity O(nd2 +md2 +m2d) where n
represents the total number of degrees of freedom in the

system.

C. Computational Examples

To understand the comparative performance of the al-

gorithms, this section presents the floating point operation

counts (flops) for the calculation of Λ
−1 in a number of

examples. We mainly consider the same examples as those

in [16] for the ASIMO Next-Generation humanoid robot and

derived mechanisms. This floating base humanoid consists

of N = 35 bodies, with connectivity shown in Fig. 4. All

joints aside from the floating base are modeled as revolutes.

We first consider an operational space consisting of the

position and orientation of the hands and feet (4 end-

effectors) for this system. Figure 5 provides a breakdown of

the cost to calculate Λ
−1 for each algorithm. Further details

on the computational costs for the RJK and EFP algorithms

are provided in the Appendix.

This example highlights the advantages afforded by the

computation of the extended-force-propagators over previous

recursive algorithms. In comparison to the RJKA, the EFPA

incurs additional cost during the inward recursion to obtain
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each k
X i. Yet, this enables significant savings in the com-

putation of the cross-terms of Λ−1, which is by far the most

expensive step in the RJKA. The sparsity of the system mass

matrix still allows the SFA to obtain Λ
−1 with 78 percent

of the flops when compared to the EFPA. Approximately 67

percent of the elements of J and 56 percent of the elements

of H are zero in this case.

The next series of examples show the benefits of the

reduced order EFPA for higher DoF systems that lack

a high-degree of sparsity in their mass matrix. Figure 6

shows the computational costs for a series of alterations

to the ASIMO Next-Generation mechanism. We consider

additional DoFs in the appendages, additional appendages,

and the modification to 12-DoF four-fingered hands. The

EFPA provides advantages over the other recursive algorithm

(RJKA) in every case. This is largely the result of RJKA’s

high calculation cost for the cross-terms of Λ−1.

The modifications of additional DoFs in the arms, legs,

or hands adversely effect the sparsity of the system’s mass

matrix and thus provide advantages for the EFPA over the

SFA. The addition of extra DoFs in any of the appendages

lengthens the unbranched chains in the mechanism’s con-

nectivity tree. These unbranched chains lead to fully dense

blocks in the system mass matrix, reducing the benefits of

sparse techniques. Thus, the SFA exhibits a lower relative

efficiency in these cases.

The EFPA is outperformed when 2 arms and 2 legs are

added, an unexpected result for the low-order algorithm. This

is mainly a result of the high-degree of sparsity in the mass

matrix for this mechanism. The mass matrix has 73 percent

zero elements, providing advantages to the SFA. Despite this

sparsity increase, the cost ratio to the EFPA is nearly the

same as in the base example. This property is not shared by

the RJKA, whose cost ratio to the SFA increases over 50

percent in comparison to the base example.

The fore-fingers, thumbs, feet (FTF) operational-space

example does highlight a potential improvement for the

EFPA. Considering the fore-finger and thumb end-effectors

for the left hand, these end effectors have a long, common,

support chain (from the base to the left hand). As a result,

force propagators for these end-effectors have much common

structure. This fact is not currently exploited, and provides

opportunity for algorithmic improvements in similar cases.

The final example is another case that would benefit from

this type of improvement. In this example, the humanoid is

balanced on one foot, which is treated as a fixed-base, with

the hands and free foot as the operational space. Here, the

links between the torso and grounded foot provide a common

support chain that could be exploited in the computation of

many of the extended-force-propagators. This current draw-

back of our algorithm, repeated propagation calculations

over common support chains, is not shared with the RJKA,

providing advantage to it in this and similar examples.

VI. CONCLUSIONS AND FUTURE WORK

This paper has detailed the Extended-Force-Propagator

Algorithm, the lowest-order algorithm to date for the com-

putation of Λ−1. The algorithm is shown to provide compu-

tational efficiency benefits over the optimized RJK algorithm

[4], [16], the previous benchmark for recursive Λ
−1 algo-

rithms. The recursive approach is able to maintain efficient

computation for systems that lack sparsity, providing benefits

over the sparse techniques of Featherstone for some topolo-

gies. These computational benefits have been enabled by the

use of extended-force-propagators, which provide articulated

transformations of spatial quantities over spans of links. This

represents the first time these quantities have been explicitly

computed and used in recursive dynamics algorithms.

Aside from the potential algorithmic improvements noted

previously, future work will include the extension of the

extended-force-propagator approach to calculate other quan-

tities of interest in operation-space dynamics, such as the dy-

namically consistent Jacobian pseudo-inverse J . The sparse

matrix approach currently has a large computational advan-

tage over the EFPA if J is required in addition to Λ
−1, as

the sparse factors of Λ−1 and H can be used to accelerate

computation of J . Preliminary work also shows promise for

the extension of our approach to the recursive computation of



closed-chain operational dynamics, a realm where sparsity-

based approaches have yet to show their applicability.
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APPENDIX

The computational costs of each of the algorithms follow

mainly from the results presented in [16] (Table 4, Appendix

B). Note that this table uses the notation of [4]. The

correspondence to notation in this paper is established below.

The correspondence in the last line is only approximate, as

[16], Table 4 EFPA

D−1
i (ΦT

i IA
i Φi)

−1

τ i LT
i

φi
iXT

p(i)

P i IA
i

Ωij Λ
−1
ij

the RJKA computes Λ
−1 from Ω in a post-processing step

to accommodate general end-effector coordinates.

Each of the spatial operations in the algorithms employ

various efficiency tricks that are enabled by each recursive

step taking place in local coordinates. For the RJKA, we

modify the assumptions in [16] as follows:

• As noted in [23], the floating-base coordinate system

can be located such that it is related by a pure rotation

about a fixed-axis to a privileged child. This provides

the following reduced costs for the privileged child:

Calculation Cost Flops

iXT
p(i) I

A
i Li

iXp(i) 22m + 25a 47

IA
p(i) + (. . .) 15 a 15

iXp(i) Λ
−1
p(i)k

48 m + 24 a 72

iXp(i) Λ
−1
p(i)p(i)

iXT
p(i) 63 m + 54 a 117

Cost modifications for transformations that require iXp(i)

where i is the privileged child of the floating-base.

• The floating-base joint is not modeled as revolute. This

requires additional computation for K1 =
(

IA
1

)−1

which is carried out through an LDLT factor and

invert. This amounts to a cost of 231 flops.

• We allow general end-effector coordinates, which re-

quires post processing of the matrix Ω found in [16]

to produce Λ
−1. This requires a series of spatial trans-

forms with cost 137m + 137a to compute each Λ
−1
kk (a

spatial congruence in this case) and cost 288m + 216a

to compute each Λ
−1
k1k2

.

We employ the same efficiency tricks for the implementation

of the EFPA. Substantial cost is incurred by the application

of k
X i across multiple links. That is, multiplications:

Λ
−1
k1k2

= k1X i Λ
−1
i k2

and Λ
−1
1 k = K1

k
X

T
1

require dense matrix multiplications with cost 216m + 180a

in general. (This cost is reduced by 36m+36a for the second

operation if k is supported by the privileged child, since
k
X

T
1 has a zero row in this case.) Despite this high cost,

application of k
X i is still cheaper than repeated application

of local transforms, even for relatively short chains.
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