
 627

A Reduction of Imitation Learning and Structured Prediction
to No-Regret Online Learning

Stéphane Ross Geoffrey J. Gordon J. Andrew Bagnell

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213, USA

stephaneross@cmu.edu

Machine Learning Department

Carnegie Mellon University

Pittsburgh, PA 15213, USA

ggordon@cs.cmu.edu

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213, USA

dbagnell@ri.cmu.edu

Abstract

Sequential prediction problems such as imitation

learning, where future observations depend on

previous predictions (actions), violate the com-

mon i.i.d. assumptions made in statistical learn-

ing. This leads to poor performance in theory

and often in practice. Some recent approaches

(Daumé III et al., 2009; Ross and Bagnell, 2010)

provide stronger guarantees in this setting, but re-

main somewhat unsatisfactory as they train either

non-stationary or stochastic policies and require

a large number of iterations. In this paper, we

propose a new iterative algorithm, which trains a

stationary deterministic policy, that can be seen

as a no regret algorithm in an online learning set-

ting. We show that any such no regret algorithm,

combined with additional reduction assumptions,

must find a policy with good performance under

the distribution of observations it induces in such

sequential settings. We demonstrate that this

new approach outperforms previous approaches

on two challenging imitation learning problems

and a benchmark sequence labeling problem.

1 INTRODUCTION

Sequence Prediction problems arise commonly in practice.

For instance, most robotic systems must be able to pre-

dict/make a sequence of actions given a sequence of obser-

vations revealed to them over time. In complex robotic sys-

tems where standard control methods fail, we must often

resort to learning a controller that can make such predic-

tions. Imitation learning techniques, where expert demon-

Appearing in Proceedings of the 14
th International Conference on

Artificial Intelligence and Statistics (AISTATS) 2011, Fort Laud-
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright
2011 by the authors.

strations of good behavior are used to learn a controller,

have proven very useful in practice and have led to state-

of-the art performance in a variety of applications (Schaal,

1999; Abbeel and Ng, 2004; Ratliff et al., 2006; Silver

et al., 2008; Argall et al., 2009; Chernova and Veloso, 2009;

Ross and Bagnell, 2010). A typical approach to imitation

learning is to train a classifier or regressor to predict an ex-

pert’s behavior given training data of the encountered ob-

servations (input) and actions (output) performed by the ex-

pert. However since the learner’s prediction affects future

input observations/states during execution of the learned

policy, this violate the crucial i.i.d. assumption made by

most statistical learning approaches.

Ignoring this issue leads to poor performance both in the-

ory and practice (Ross and Bagnell, 2010). In particular,

a classifier that makes a mistake with probability ǫ under

the distribution of states/observations encountered by the

expert can make as many as T
2
ǫ mistakes in expectation

over T -steps under the distribution of states the classifier

itself induces (Ross and Bagnell, 2010). Intuitively this is

because as soon as the learner makes a mistake, it may en-

counter completely different observations than those under

expert demonstration, leading to a compounding of errors.

Recent approaches (Ross and Bagnell, 2010) can guarantee

an expected number of mistakes linear (or nearly so) in the

task horizon T and error ǫ by training over several itera-

tions and allowing the learner to influence the input states

where expert demonstration is provided (through execution

of its own controls in the system). One approach (Ross and

Bagnell, 2010) learns a non-stationary policy by training

a different policy for each time step in sequence, starting

from the first step. Unfortunately this is impractical when

T is large or ill-defined. Another approach called SMILe

(Ross and Bagnell, 2010), similar to SEARN (Daumé III

et al., 2009) and CPI (Kakade and Langford, 2002), trains

a stationary stochastic policy (a finite mixture of policies)

by adding a new policy to the mixture at each iteration of

training. However this may be unsatisfactory for practical

applications as some policies in the mixture are worse than

 628

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

others and the learned controller may be unstable.

We propose a new meta-algorithm for imitation learning

which learns a stationary deterministic policy guaranteed

to perform well under its induced distribution of states

(number of mistakes/costs that grows linearly in T and

classification cost ǫ). We take a reduction-based approach

(Beygelzimer et al., 2005) that enables reusing existing su-

pervised learning algorithms. Our approach is simple to

implement, has no free parameters except the supervised

learning algorithm sub-routine, and requires a number of

iterations that scales nearly linearly with the effective hori-

zon of the problem. It naturally handles continuous as well

as discrete predictions. Our approach is closely related to

no regret online learning algorithms (Cesa-Bianchi et al.,

2004; Hazan et al., 2006; Kakade and Shalev-Shwartz,

2008) (in particular Follow-The-Leader) but better lever-

ages the expert in our setting. Additionally, we show that

any no-regret learner can be used in a particular fashion to

learn a policy that achieves similar guarantees.

We begin by establishing our notation and setting, discuss

related work, and then present the DAGGER (Dataset Ag-

gregation) method. We analyze this approach using a no-

regret and a reduction approach (Beygelzimer et al., 2005).

Beyond the reduction analysis, we consider the sample

complexity of our approach using online-to-batch (Cesa-

Bianchi et al., 2004) techniques. We demonstrate DAGGER

is scalable and outperforms previous approaches in practice

on two challenging imitation learning problems: 1) learn-

ing to steer a car in a 3D racing game (Super Tux Kart) and

2) and learning to play Super Mario Bros., given input im-

age features and corresponding actions by a human expert

and near-optimal planner respectively. Following Daumé

III et al. (2009) in treating structured prediction as a de-

generate imitation learning problem, we apply DAGGER to

the OCR (Taskar et al., 2003) benchmark prediction prob-

lem achieving results competitive with the state-of-the-art

(Taskar et al., 2003; Ratliff et al., 2007; Daumé III et al.,

2009) using only single-pass, greedy prediction.

2 PRELIMINARIES

We begin by introducing notation relevant to our setting.

We denote by Π the class of policies the learner is consid-

ering and T the task horizon. For any policy π, we let dt
π

denote the distribution of states at time t if the learner exe-

cuted policy π from time step 1 to t − 1. Furthermore, we

denote dπ = 1
T

∑T

t=1 dt
π the average distribution of states

if we follow policy π for T steps. Given a state s, we de-

note C(s, a) the expected immediate cost of performing ac-

tion a in state s for the task we are considering and denote

Cπ(s) = Ea∼π(s)[C(s, a)] the expected immediate cost of

π in s. We assume C is bounded in [0, 1]. The total cost

of executing policy π for T -steps (i.e., the cost-to-go) is

denoted J(π) =
∑T

t=1 Es∼dt
π
[Cπ(s)] = TEs∼dπ

[Cπ(s)].

In imitation learning, we may not necessarily know or ob-

serve true costs C(s, a) for the particular task. Instead,

we observe expert demonstrations and seek to bound J(π)
for any cost function C based on how well π mimics the

expert’s policy π∗. Denote ℓ the observed surrogate loss

function we minimize instead of C. For instance ℓ(s, π)
may be the expected 0-1 loss of π with respect to π∗ in

state s, or a squared/hinge loss of π with respect to π∗ in s.

Importantly, in many instances, C and ℓ may be the same

function– for instance, if we are interested in optimizing the

learner’s ability to predict the actions chosen by an expert.

Our goal is to find a policy π̂ which minimizes the observed

surrogate loss under its induced distribution of states, i.e.:

π̂ = arg min
π∈Π

Es∼dπ
[ℓ(s, π)] (1)

As system dynamics are assumed both unknown and com-

plex, we cannot compute dπ and can only sample it by exe-

cuting π in the system. Hence this is a non-i.i.d. supervised

learning problem due to the dependence of the input distri-

bution on the policy π itself. The interaction between pol-

icy and the resulting distribution makes optimization diffi-

cult as it results in a non-convex objective even if the loss

ℓ(s, ·) is convex in π for all states s. We now briefly review

previous approaches and their guarantees.

2.1 Supervised Approach to Imitation

The traditional approach to imitation learning ignores the

change in distribution and simply trains a policy π that per-

forms well under the distribution of states encountered by

the expert dπ∗ . This can be achieved using any standard

supervised learning algorithm. It finds the policy π̂sup:

π̂sup = arg min
π∈Π

Es∼dπ∗
[ℓ(s, π)] (2)

Assuming ℓ(s, π) is the 0-1 loss (or upper bound on the 0-

1 loss) implies the following performance guarantee with

respect to any task cost function C bounded in [0, 1]:

Theorem 2.1. (Ross and Bagnell, 2010) Let

Es∼dπ∗
[ℓ(s, π)] = ǫ, then J(π) ≤ J(π∗) + T 2ǫ.

Proof. Follows from result in Ross and Bagnell (2010)

since ǫ is an upper bound on the 0-1 loss of π in dπ∗ .

Note that this bound is tight, i.e. there exist problems

such that a policy π with ǫ 0-1 loss on dπ∗ can incur ex-

tra cost that grows quadratically in T . Kääriäinen (2006)

demonstrated this in a sequence prediction setting1 and

1In their example, an error rate of ǫ > 0 when trained to
predict the next output in sequence with the previous correct
output as input can lead to an expected number of mistakes of
T

2
−

1−(1−2ǫ)T+1

4ǫ
+ 1

2
over sequences of length T at test time.

This is bounded by T
2
ǫ and behaves as Θ(T 2

ǫ) for small ǫ.

 629

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell

Ross and Bagnell (2010) provided an imitation learning ex-

ample where J(π̂sup) = (1 − ǫT)J(π∗) + T 2ǫ. Hence the

traditional supervised learning approach has poor perfor-

mance guarantees due to the quadratic growth in T . Instead

we would prefer approaches that can guarantee growth lin-

ear or near-linear in T and ǫ. The following two approaches

from Ross and Bagnell (2010) achieve this on some classes

of imitation learning problems, including all those where

surrogate loss ℓ upper bounds C.

2.2 Forward Training

The forward training algorithm introduced by Ross and

Bagnell (2010) trains a non-stationary policy (one policy

πt for each time step t) iteratively over T iterations, where

at iteration t, πt is trained to mimic π∗ on the distribution

of states at time t induced by the previously trained poli-

cies π1, π2, . . . , πt−1. By doing so, πt is trained on the

actual distribution of states it will encounter during exe-

cution of the learned policy. Hence the forward algorithm

guarantees that the expected loss under the distribution of

states induced by the learned policy matches the average

loss during training, and hence improves performance.

We here provide a theorem slightly more general than the

one provided by Ross and Bagnell (2010) that applies to

any policy π that can guarantee ǫ surrogate loss under its

own distribution of states. This will be useful to bound the

performance of our new approach presented in Section 3.

Let Qπ′

t (s, π) denote the t-step cost of executing π in initial

state s and then following policy π′ and assume ℓ(s, π) is

the 0-1 loss (or an upper bound on the 0-1 loss), then we

have the following performance guarantee with respect to

any task cost function C bounded in [0, 1]:

Theorem 2.2. Let π be such that Es∼dπ
[ℓ(s, π)] = ǫ, and

Qπ∗

T−t+1(s, a) − Qπ∗

T−t+1(s, π
∗) ≤ u for all action a, t ∈

{1, 2, . . . , T}, dt
π(s) > 0, then J(π) ≤ J(π∗) + uTǫ.

Proof. We here follow a similar proof to Ross and Bagnell

(2010). Given our policy π, consider the policy π1:t, which

executes π in the first t-steps and then execute the expert

π∗. Then

J(π)

= J(π∗) +
∑T−1

t=0 [J(π1:T−t) − J(π1:T−t−1)]

= J(π∗) +
∑T

t=1 Es∼dt
π
[Qπ∗

T−t+1(s, π) − Qπ∗

T−t+1(s, π
∗)]

≤ J(π∗) + u
∑T

t=1 Es∼dt
π
[ℓ(s, π)]

= J(π∗) + uTǫ

The inequality follows from the fact that ℓ(s, π) upper

bounds the 0-1 loss, and hence the probability π and π∗

pick different actions in s; when they pick different actions,

the increase in cost-to-go ≤ u.

In the worst case, u could be O(T) and the forward al-

gorithm wouldn’t provide any improvement over the tra-

ditional supervised learning approach. However, in many

cases u is O(1) or sub-linear in T and the forward algo-

rithm leads to improved performance. For instance if C is

the 0-1 loss with respect to the expert, then u ≤ 1. Addi-

tionally if π∗ is able to recover from mistakes made by π, in

the sense that within a few steps, π∗ is back in a distribution

of states that is close to what π∗ would be in if π∗ had been

executed initially instead of π, then u will be O(1). 2 A

drawback of the forward algorithm is that it is impractical

when T is large (or undefined) as we must train T different

policies sequentially and cannot stop the algorithm before

we complete all T iterations. Hence it can not be applied

to most real-world applications.

2.3 Stochastic Mixing Iterative Learning

SMILe, proposed by Ross and Bagnell (2010), alleviates

this problem and can be applied in practice when T is

large or undefined by adopting an approach similar to

SEARN (Daumé III et al., 2009) where a stochastic sta-

tionary policy is trained over several iterations. Initially

SMILe starts with a policy π0 which always queries and

executes the expert’s action choice. At iteration n, a pol-

icy π̂n is trained to mimic the expert under the distribu-

tion of trajectories πn−1 induces and then updates πn =
πn−1 + α(1− α)n−1(π̂n − π0). This update is interpreted

as adding probability α(1 − α)n−1 to executing policy π̂n

at any step and removing probability α(1 − α)n−1 of ex-

ecuting the queried expert’s action. At iteration n, πn is

a mixture of n policies and the probability of using the

queried expert’s action is (1 − α)n. We can stop the al-

gorithm at any iteration N by returning the re-normalized

policy π̃N = πN−(1−α)N π0

1−(1−α)N which doesn’t query the expert

anymore. Ross and Bagnell (2010) showed that choosing

α in O(1
T 2) and N in O(T 2 log T) guarantees near-linear

regret in T and ǫ for some class of problems.

3 DATASET AGGREGATION

We now present DAGGER (Dataset Aggregation), an it-

erative algorithm that trains a deterministic policy that

achieves good performance guarantees under its induced

distribution of states.

In its simplest form, the algorithm proceeds as follows.

At the first iteration, it uses the expert’s policy to gather

a dataset of trajectories D and train a policy π̂2 that best

mimics the expert on those trajectories. Then at iteration

n, it uses π̂n to collect more trajectories and adds those

trajectories to the dataset D. The next policy π̂n+1 is the

policy that best mimics the expert on the whole dataset D.

2This is the case for instance in Markov Desision Processes
(MDPs) when the Markov Chain defined by the system dynamics
and policy π

∗ is rapidly mixing. In particular, if it is α-mixing
with exponential decay rate δ then u is O(1

1−exp(−δ)
).

 630

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

Initialize D ← ∅.
Initialize π̂1 to any policy in Π.

for i = 1 to N do

Let πi = βiπ
∗ + (1− βi)π̂i.

Sample T -step trajectories using πi.

Get dataset Di = {(s, π∗(s))} of visited states by πi

and actions given by expert.

Aggregate datasets: D ← D
⋃
Di.

Train classifier π̂i+1 on D.

end for

Return best π̂i on validation.

Algorithm 3.1: DAGGER Algorithm.

In other words, DAGGER proceeds by collecting a dataset

at each iteration under the current policy and trains the next

policy under the aggregate of all collected datasets. The in-

tuition behind this algorithm is that over the iterations, we

are building up the set of inputs that the learned policy is

likely to encounter during its execution based on previous

experience (training iterations). This algorithm can be in-

terpreted as a Follow-The-Leader algorithm in that at itera-

tion n we pick the best policy π̂n+1 in hindsight, i.e. under

all trajectories seen so far over the iterations.

To better leverage the presence of the expert in our imita-

tion learning setting, we optionally allow the algorithm to

use a modified policy πi = βiπ
∗ + (1 − βi)π̂i at iteration

i that queries the expert to choose controls a fraction of the

time while collecting the next dataset. This is often desir-

able in practice as the first few policies, with relatively few

datapoints, may make many more mistakes and visit states

that are irrelevant as the policy improves.

We will typically use β1 = 1 so that we do not have to spec-

ify an initial policy π̂1 before getting data from the expert’s

behavior. Then we could choose βi = pi−1 to have a prob-

ability of using the expert that decays exponentially as in

SMILe and SEARN. We show below the only requirement

is that {βi} be a sequence such that βN = 1

N

∑
N

i=1
βi → 0

as N → ∞. The simple, parameter-free version of the al-

gorithm described above is the special case βi = I(i = 1)
for I the indicator function, which often performs best in

practice (see Section 5). The general DAGGER algorithm is

detailed in Algorithm 3.1. The main result of our analysis

in the next section is the following guarantee for DAGGER.

Let π1:N denote the sequence of policies π1, π2, . . . , πN .

Assume ℓ is strongly convex and bounded over Π. Suppose

βi ≤ (1− α)i−1 for all i for some constant α independent

of T . Let ǫN = minπ∈Π
1

N

∑
N

i=1
Es∼dπi

[ℓ(s, π)] be the

true loss of the best policy in hindsight. Then the following

holds in the infinite sample case (infinite number of sample

trajectories at each iteration):

Theorem 3.1. For DAGGER, if N is Õ(T) there exists a

policy π̂ ∈ π̂1:N s.t. Es∼dπ̂
[ℓ(s, π̂)] ≤ ǫN + O(1/T)

In particular, this holds for the policy π̂ =
arg minπ∈π̂1:N

Es∼dπ
[ℓ(s, π)]. 3 If the task cost

function C corresponds to (or is upper bounded by) the

surrogate loss ℓ then this bound tells us directly that

J(π̂) ≤ TǫN + O(1). For arbitrary task cost function C,

then if ℓ is an upper bound on the 0-1 loss with respect to

π∗, combining this result with Theorem 2.2 yields that:

Theorem 3.2. For DAGGER, if N is Õ(uT) there exists a

policy π̂ ∈ π̂1:N s.t. J(π̂) ≤ J(π∗) + uTǫN + O(1).

Finite Sample Results In the finite sample case, sup-

pose we sample m trajectories with πi at each it-

eration i, and denote this dataset Di. Let ǫ̂N =
minπ∈Π

1

N

∑
N

i=1
Es∼Di

[ℓ(s, π)] be the training loss of the

best policy on the sampled trajectories, then using Azuma-

Hoeffding’s inequality leads to the following guarantee:

Theorem 3.3. For DAGGER, if N is O(T 2 log(1/δ)) and

m is O(1) then with probability at least 1− δ there exists a

policy π̂ ∈ π̂1:N s.t. Es∼dπ̂
[ℓ(s, π̂)] ≤ ǫ̂N + O(1/T)

A more refined analysis taking advantage of the strong con-

vexity of the loss function (Kakade and Tewari, 2009) may

lead to tighter generalization bounds that require N only of

order Õ(T log(1/δ)). Similarly:

Theorem 3.4. For DAGGER, if N is O(u2T 2 log(1/δ))
and m is O(1) then with probability at least 1 − δ there

exists a policy π̂ ∈ π̂1:N s.t. J(π̂) ≤ J(π∗)+uT ǫ̂N +O(1).

4 THEORETICAL ANALYSIS

The theoretical analysis of DAGGER only relies on the no-

regret property of the underlying Follow-The-Leader algo-

rithm on strongly convex losses (Kakade and Tewari, 2009)

which picks the sequence of policies π̂1:N . Hence the pre-

sented results also hold for any other no regret online learn-

ing algorithm we would apply to our imitation learning set-

ting. In particular, we can consider the results here a re-

duction of imitation learning to no-regret online learning

where we treat mini-batches of trajectories under a single

policy as a single online-learning example. We first briefly

review concepts of online learning and no regret that will

be used for this analysis.

4.1 Online Learning

In online learning, an algorithm must provide a policy πn at

iteration n which incurs a loss ℓn(πn). After observing this

loss, the algorithm can provide a different policy πn+1 for

the next iteration which will incur loss ℓn+1(πn+1). The

3It is not necessary to find the best policy in the sequence
that minimizes the loss under its distribution; the same guarantee
holds for the policy which uniformly randomly picks one policy
in the sequence π̂1:N and executes that policy for T steps.

 631

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell

loss functions ℓn+1 may vary in an unknown or even adver-

sarial fashion over time. A no-regret algorithm is an algo-

rithm that produces a sequence of policies π1, π2, . . . , πN

such that the average regret with respect to the best policy

in hindsight goes to 0 as N goes to ∞:

1

N

N
∑

i=1

ℓi(πi) − min
π∈Π

1

N

N
∑

i=1

ℓi(π) ≤ γN (3)

for limN→∞ γN = 0. Many no-regret algorithms guar-

antee that γN is Õ(1
N) (e.g. when ℓ is strongly convex)

(Hazan et al., 2006; Kakade and Shalev-Shwartz, 2008;

Kakade and Tewari, 2009).

4.2 No Regret Algorithms Guarantees

Now we show that no-regret algorithms can be used to find

a policy which has good performance guarantees under its

own distribution of states in our imitation learning setting.

To do so, we must choose the loss functions to be the loss

under the distribution of states of the current policy chosen

by the online algorithm: ℓi(π) = Es∼dπi
[ℓ(s, π)].

For our analysis of DAGGER, we need to bound the to-

tal variation distance between the distribution of states en-

countered by π̂i and πi, which continues to call the expert.

The following lemma is useful:

Lemma 4.1. ||dπi
− dπ̂i

||1 ≤ 2Tβi.

Proof. Let d the distribution of states over T steps condi-

tioned on πi picking π∗ at least once over T steps. Since πi

always executes π̂i over T steps with probability (1−βi)
T

we have dπi
= (1 − βi)

T dπ̂i
+ (1 − (1 − βi)

T)d. Thus

||dπi
− dπ̂i

||1
= (1 − (1 − βi)

T)||d − dπ̂i
||1

≤ 2(1 − (1 − βi)
T)

≤ 2Tβi

The last inequality follows from the fact that (1 − β)T ≥
1 − βT for any β ∈ [0, 1].

This is only better than the trivial bound ||dπi
− dπ̂i

||1 ≤ 2
for βi ≤ 1

T . Assume βi is non-increasing and define

nβ the largest n ≤ N such that βn > 1
T . Let ǫN =

minπ∈Π
1
N

∑N
i=1 Es∼dπi

[ℓ(s, π)] the loss of the best pol-

icy in hindsight after N iterations and let ℓmax be an upper

bound on the loss, i.e. ℓi(s, π̂i) ≤ ℓmax for all policies π̂i,

and state s such that dπ̂i
(s) > 0. We have the following:

Theorem 4.1. For DAGGER, there exists a policy π̂ ∈
π̂1:N s.t. Es∼dπ̂

[ℓ(s, π̂)] ≤ ǫN + γN + 2ℓmax

N [nβ +

T
∑N

i=nβ+1 βi], for γN the average regret of π̂1:N .

Proof. The last lemma implies Es∼dπ̂i
(ℓi(s, π̂i)) ≤

Es∼dπi
(ℓi(s, π̂i)) + 2ℓmax min(1, Tβi). Then:

minπ̂∈π̂1:N
Es∼dπ̂

[ℓ(s, π̂)]

≤ 1
N

∑N
i=1 Es∼dπ̂i

(ℓ(s, π̂i))

≤ 1
N

∑N
i=1[Es∼dπi

(ℓ(s, π̂i)) + 2ℓmax min(1, Tβi)]

≤ γN + 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi] + minπ∈Π

∑N
i=1 ℓi(π)

= γN + ǫN + 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi]

Under an error reduction assumption that for any input dis-

tribution, there is some policy π ∈ Π that achieves sur-

rogate loss of ǫ, this implies we are guaranteed to find a

policy π̂ which achieves ǫ surrogate loss under its own

state distribution in the limit, provided βN → 0. For in-

stance, if we choose βi to be of the form (1 − α)i−1, then
1
N [nβ + T

∑N
i=nβ+1 βi] ≤ 1

Nα [log T + 1] and this extra

penalty becomes negligible for N as Õ(T). As we need

at least Õ(T) iterations to make γN negligible, the num-

ber of iterations required by DAGGER is similar to that re-

quired by any no-regret algorithm. Note that this is not

as strong as the general error or regret reductions consid-

ered in (Beygelzimer et al., 2005; Ross and Bagnell, 2010;

Daumé III et al., 2009) which require only classification:

we require a no-regret method or strongly convex surrogate

loss function, a stronger (albeit common) assumption.

Finite Sample Case: The previous results hold if the on-

line learning algorithm observes the infinite sample loss,

i.e. the loss on the true distribution of trajectories induced

by the current policy πi. In practice however the algorithm

would only observe its loss on a small sample of trajecto-

ries at each iteration. We wish to bound the true loss under

its own distribution of the best policy in the sequence as a

function of the regret on the finite sample of trajectories.

At each iteration i, we assume the algorithm samples m

trajectories using πi and then observes the loss ℓi(π) =
Es∼Di

(ℓ(s, π)), for Di the dataset of those m trajectories.

The online learner guarantees 1
N

∑N
i=1 Es∼Di

(ℓ(s, πi)) −

minπ∈Π
1
N

∑N
i=1 Es∼Di

(ℓ(s, π)) ≤ γN . Let ǫ̂N =

minπ∈Π
1
N

∑N
i=1 Es∼Di

[ℓ(s, π)] the training loss of the

best policy in hindsight. Following a similar analysis to

Cesa-Bianchi et al. (2004), we obtain:

Theorem 4.2. For DAGGER, with probability at least 1−δ,

there exists a policy π̂ ∈ π̂1:N s.t. Es∼dπ̂
[ℓ(s, π̂)] ≤ ǫ̂N +

γN + 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi] + ℓmax

√

2 log(1/δ)
mN , for

γN the average regret of π̂1:N .

Proof. Let Yij be the difference between the expected per

step loss of π̂i under state distribution dπi
and the aver-

age per step loss of π̂i under the jth sample trajectory

with πi at iteration i. The random variables Yij over all

i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,m} are all zero

mean, bounded in [−ℓmax, ℓmax] and form a martingale

(considering the order Y11, Y12, . . . , Y1m, Y21, . . . , YNm).

By Azuma-Hoeffding’s inequality 1
mN

∑N
i=1

∑m
j=1 Yij ≤

 632

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

ℓmax

√

2 log(1/δ)
mN with probability at least 1 − δ. Hence, we

obtain that with probability at least 1 − δ:

minπ̂∈π̂1:N
Es∼dπ̂

[ℓ(s, π̂)]

≤
1
N

∑N
i=1 Es∼dπ̂i

[ℓ(s, π̂i)]

≤
1
N

∑N
i=1 Es∼dπi

[ℓ(s, π̂i)] + 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi]

= 1
N

∑N
i=1 Es∼Di

[ℓ(s, π̂i)] + 1
mN

∑N
i=1

∑m
j=1 Yij

+ 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi]

≤
1
N

∑N
i=1 Es∼Di

[ℓ(s, π̂i)] + ℓmax

√

2 log(1/δ)
mN

+ 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi]

≤ ǫ̂N + γN + ℓmax

√

2 log(1/δ)
mN + 2ℓmax

N [nβ + T
∑N

i=nβ+1 βi]

The use of Azuma-Hoeffding’s inequality suggests we need

Nm in O(T 2 log(1/δ)) for the generalization error to be

O(1/T) and negligible over T steps. Leveraging the strong

convexity of ℓ as in (Kakade and Tewari, 2009) may lead to

a tighter bound requiring only O(T log(T/δ)) trajectories.

5 EXPERIMENTS

To demonstrate the efficacy and scalability of DAGGER, we

apply it to two challenging imitation learning problems and

a sequence labeling task (handwriting recognition).

5.1 Super Tux Kart

Super Tux Kart is a 3D racing game similar to the popular

Mario Kart. Our goal is to train the computer to steer the

kart moving at fixed speed on a particular race track, based

on the current game image features as input (see Figure 1).

A human expert is used to provide demonstrations of the

correct steering (analog joystick value in [-1,1]) for each of

the observed game images. For all methods, we use a linear

Figure 1: Image from Super Tux Kart’s Star Track.

controller as the base learner which updates the steering at

5Hz based on the vector of image features4.

4Features x: LAB color values of each pixel in a 25x19 re-
sized image of the 800x600 image; output steering: ŷ = wT x+ b
where w, b minimizes ridge regression objective: L(w, b) =
1

n

P

n

i=1
(wT xi + b− yi)

2 + λ

2
wT w, for regularizer λ = 10−3.

We compare performance on a race track called Star Track.

As this track floats in space, the kart can fall off the track at

any point (the kart is repositioned at the center of the track

when this occurs). We measure performance in terms of the

average number of falls per lap. For SMILe and DAGGER,

we used 1 lap of training per iteration (∼1000 data points)

and run both methods for 20 iterations. For SMILe we

choose parameter α = 0.1 as in Ross and Bagnell (2010),

and for DAGGER the parameter βi = I(i = 1) for I the in-

dicator function. Figure 2 shows 95% confidence intervals

on the average falls per lap of each method after 1, 5, 10, 15

and 20 iterations as a function of the total number of train-

ing data collected. We first observe that with the baseline

0 0.5 1 1.5 2 2.5
x 10

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Training Data

A
ve

ra
g

e
F

al
ls

 P
er

 L
ap

DAgger (β
i
 = I(i=1))

SMILe (α = 0.1)
Supervised

Figure 2: Average falls/lap as a function of training data.

supervised approach where training always occurs under

the expert’s trajectories that performance does not improve

as more data is collected. This is because most of the train-

ing laps are all very similar and do not help the learner to

learn how to recover from mistakes it makes. With SMILe

we obtain some improvements but the policy after 20 iter-

ations still falls off the track about twice per lap on aver-

age. This is in part due to the stochasticity of the policy

which sometimes makes bad choices of actions. For DAG-

GER, we were able to obtain a policy that never falls off

the track after 15 iterations of training. Though even after

5 iterations, the policy we obtain almost never falls off the

track and is significantly outperforming both SMILe and

the baseline supervised approach. Furthermore, the policy

obtained by DAGGER is smoother and looks qualitatively

better than the policy obtained with SMILe. A video avail-

able on YouTube (Ross, 2010a) shows a qualitative com-

parison of the behavior obtained with each method.

5.2 Super Mario Bros.

Super Mario Bros. is a platform video game where the

character, Mario, must move across each stage by avoid-

 633

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell

ing being hit by enemies and falling into gaps, and before

running out of time. We used the simulator from a recent

Mario Bros. AI competition (Togelius and Karakovskiy,

2009) which can randomly generate stages of varying diffi-

culty (more difficult gaps and types of enemies). Our goal

is to train the computer to play this game based on the cur-

rent game image features as input (see Figure 3). Our ex-

pert in this scenario is a near-optimal planning algorithm

that has full access to the game’s internal state and can

simulate exactly the consequence of future actions. An ac-

tion consists of 4 binary variables indicating which subset

of buttons we should press in {left,right,jump,speed}. For

Figure 3: Captured image from Super Mario Bros.

all methods, we use 4 independent linear SVM as the base

learner which update the 4 binary actions at 5Hz based on

the vector of image features5.

We compare performance in terms of the average distance

travelled by Mario per stage before dying, running out of

time or completing the stage, on randomly generated stages

of difficulty 1 with a time limit of 60 seconds to complete

the stage. The total distance of each stage varies but is

around 4200-4300 on average, so performance can vary

roughly in [0,4300]. Stages of difficulty 1 are fairly easy

for an average human player but contain most types of en-

emies and gaps, except with fewer enemies and gaps than

stages of harder difficulties. We compare performance of

DAgger, SMILe and SEARN6 to the supervised approach

(Sup). With each approach we collect 5000 data points per

iteration (each stage is about 150 data points if run to com-

pletion) and run the methods for 20 iterations. For SMILe

we choose parameter α = 0.1 (Sm0.1) as in Ross and Bag-

5For the input features x: each image is discretized in a grid
of 22x22 cells centered around Mario; 14 binary features de-
scribe each cell (types of ground, enemies, blocks and other spe-
cial items); a history of those features over the last 4 images is
used, in addition to other features describing the last 6 actions
and the state of Mario (small,big,fire,touches ground), for a to-
tal of 27152 binary features (very sparse). The kth output binary
variable ŷk = I(wT

k x + bk > 0), where wk, bk optimizes the
SVM objective with regularizer λ = 10−4 using stochastic gradi-
ent descent (Ratliff et al., 2007; Bottou, 2009).

6We use the same cost-to-go approximation in Daumé III et al.
(2009); in this case SMILe and SEARN differs only in how the
weights in the mixture are updated at each iteration.

nell (2010). For DAGGER we obtain results with differ-

ent choice of the parameter βi: 1) βi = I(i = 1) for I

the indicator function (D0); 2) βi = pi−1 for all values

of p ∈ {0.1, 0.2, . . . , 0.9}. We report the best results ob-

tained with p = 0.5 (D0.5). We also report the results with

p = 0.9 (D0.9) which shows the slower convergence of

using the expert more frequently at later iterations. Simi-

larly for SEARN, we obtain results with all choice of α in

{0.1, 0.2, . . . , 1}. We report the best results obtained with

α = 0.4 (Se0.4). We also report results with α = 1.0
(Se1), which shows the unstability of such a pure policy

iteration approach. Figure 4 shows 95% confidence inter-

vals on the average distance travelled per stage at each it-

eration as a function of the total number of training data

collected. Again here we observe that with the supervised

0 1 2 3 4 5 6 7 8 9 10
x 10

4

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

Number of Training Data

A
ve

ra
g

e
D

is
ta

n
ce

 T
ra

ve
lle

d
 P

er
 S

ta
g

e

D0 D0.5 D0.9 Se1 Se0.4 Sm0.1 Sup

Figure 4: Average distance/stage as a function of data.

approach, performance stagnates as we collect more data

from the expert demonstrations, as this does not help the

particular errors the learned controller makes. In particu-

lar, a reason the supervised approach gets such a low score

is that under the learned controller, Mario is often stuck at

some location against an obstacle instead of jumping over

it. Since the expert always jumps over obstacles at a sig-

nificant distance away, the controller did not learn how to

get unstuck in situations where it is right next to an ob-

stacle. On the other hand, all the other iterative methods

perform much better as they eventually learn to get unstuck

in those situations by encountering them at the later iter-

ations. Again in this experiment, DAGGER outperforms

SMILe, and also outperforms SEARN for all choice of α

we considered. When using βi = 0.9i−1, convergence is

significantly slower could have benefited from more itera-

tions as performance was still improving at the end of the

20 iterations. Choosing 0.5i−1 yields slightly better per-

formance (3030) then with the indicator function (2980).

This is potentially due to the large number of data gener-

ated where mario is stuck at the same location in the early

iterations when using the indicator; whereas using the ex-

 634

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning

pert a small fraction of the time still allows to observe those

locations but also unstucks mario and makes it collect a

wider variety of useful data. A video available on YouTube

(Ross, 2010b) also shows a qualitative comparison of the

behavior obtained with each method.

5.3 Handwriting Recognition

Finally, we demonstrate the efficacy of our approach on a

structured prediction problem involving recognizing hand-

written words given the sequence of images of each charac-

ter in the word. We follow Daumé III et al. (2009) in adopt-

ing a view of structured prediction as a degenerate form of

imitation learning where the system dynamics are deter-

ministic and trivial in simply passing on earlier predictions

made as inputs for future predictions. We use the dataset

of Taskar et al. (2003) which has been used extensively in

the literature to compare several structured prediction ap-

proaches. This dataset contains roughly 6600 words (for

a total of over 52000 characters) partitioned in 10 folds.

We consider the large dataset experiment which consists of

training on 9 folds and testing on 1 fold and repeating this

over all folds. Performance is measured in terms of the

character accuracy on the test folds.

We consider predicting the word by predicting each charac-

ter in sequence in a left to right order, using the previously

predicted character to help predict the next and a linear

SVM7, following the greedy SEARN approach in Daumé

III et al. (2009). Here we compare our method to SMILe,

as well as SEARN (using the same approximations used

in Daumé III et al. (2009)). We also compare these ap-

proaches to two baseline, a non-structured approach which

simply predicts each character independently and the su-

pervised training approach where training is conducted

with the previous character always correctly labeled. Again

we try all choice of α ∈ {0.1, 0.2, . . . , 1} for SEARN, and

report results for α = 0.1, α = 1 (pure policy iteration)

and the best α = 0.8, and run all approaches for 20 itera-

tions. Figure 5 shows the performance of each approach on

the test folds after each iteration as a function of training

data. The baseline result without structure achieves 82%

character accuracy by just using an SVM that predicts each

character independently. When adding the previous charac-

ter feature, but training with always the previous character

correctly labeled (supervised approach), performance in-

creases up to 83.6%. Using DAgger increases performance

further to 85.5%. Surprisingly, we observe SEARN with

α = 1, which is a pure policy iteration approach performs

very well on this experiment, similarly to the best α = 0.8

and DAgger. Because there is only a small part of the in-

put that is influenced by the current policy (the previous

7Each character is 8x16 binary pixels (128 input features); 26
binary features are used to encode the previously predicted let-
ter in the word. We train the multiclass SVM using the all-pairs
reduction to binary classification (Beygelzimer et al., 2005).

0 2 4 6 8 10 12 14 16 18 20
0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

Training Iteration

T
es

t
F

o
ld

s
C

h
ar

ac
te

r
A

cc
u

ra
cy

DAgger (β
i
=I(i=1))

SEARN (α=1)
SEARN (α=0.8)
SEARN (α=0.1)
SMILe (α=0.1)
Supervised
No Structure

Figure 5: Character accuracy as a function of iteration.

predicted character feature) this makes this approach not

as unstable as in general reinforcement/imitation learning

problems (as we saw in the previous experiment). SEARN

and SMILe with small α = 0.1 performs similarly but sig-

nificantly worse than DAgger. Note that we chose the sim-

plest (greedy, one-pass) decoding to illustrate the benefits

of the DAGGER approach with respect to existing reduc-

tions. Similar techniques can be applied to multi-pass or

beam-search decoding leading to results that are competi-

tive with the state-of-the-art.

6 FUTURE WORK

We show that by batching over iterations of interaction

with a system, no-regret methods, including the presented

DAGGER approach can provide a learning reduction with

strong performance guarantees in both imitation learning

and structured prediction. In future work, we will consider

more sophisticated strategies than simple greedy forward

decoding for structured prediction, as well as using base

classifiers that rely on Inverse Optimal Control (Abbeel and

Ng, 2004; Ratliff et al., 2006) techniques to learn a cost

function for a planner to aid prediction in imitation learn-

ing. Further we believe techniques similar to those pre-

sented, by leveraging a cost-to-go estimate, may provide

an understanding of the success of online methods for rein-

forcement learning and suggest a similar data-aggregation

method that can guarantee performance in such settings.

Acknowledgements

This work is supported by the ONR MURI grant N00014-

09-1-1052, Reasoning in Reduced Information Spaces, and

by the National Sciences and Engineering Research Coun-

cil of Canada (NSERC).

 635

Stéphane Ross, Geoffrey J. Gordon, J. Andrew Bagnell

References

P. Abbeel and A. Y. Ng. Apprenticeship learning via in-

verse reinforcement learning. In Proceedings of the 21st

International Conference on Machine Learning (ICML),

2004.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A

survey of robot learning from demonstration. Robotics

and Autonomous Systems, 2009.

A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and

B. Zadrozny. Error limiting reductions between classi-

fication tasks. In Proceedings of the 22nd International

Conference on Machine Learning (ICML), 2005.

L. Bottou. sgd code, 2009. URL http://www.leon.

bottou.org/projects/sgd.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the gen-

eralization ability of on-line learning algorithms. 2004.

S. Chernova and M. Veloso. Interactive policy learning

through confidence-based autonomy. 2009.

H. Daumé III, J. Langford, and D. Marcu. Search-based

structured prediction. Machine Learning, 2009.

E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarith-

mic regret algorithms for online convex optimization. In

Proceedings of the 19th annual conference on Computa-

tional Learning Theory (COLT), 2006.

M. Kääriäinen. Lower bounds for reductions, 2006.

Atomic Learning workshop.

S. Kakade and J. Langford. Approximately optimal ap-

proximate reinforcement learning. In Proceedings of

the 19th International Conference on Machine Learning

(ICML), 2002.

S. Kakade and S. Shalev-Shwartz. Mind the duality gap:

Logarithmic regret algorithms for online optimization.

In Advances in Neural Information Processing Systems

(NIPS), 2008.

S. Kakade and A. Tewari. On the generalization abil-

ity of online strongly convex programming algorithms.

In Advances in Neural Information Processing Systems

(NIPS), 2009.

N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt.

Boosting structured prediction for imitation learning.

In Advances in Neural Information Processing Systems

(NIPS), 2006.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. (Online) sub-

gradient methods for structured prediction. In Proceed-

ings of the International Conference on Artificial Intelli-

gence and Statistics (AISTATS), 2007.

S. Ross. Comparison of imitation learning approaches

on Super Tux Kart, 2010a. URL http://www.

youtube.com/watch?v=V00npNnWzSU.

S. Ross. Comparison of imitation learning approaches

on Super Mario Bros, 2010b. URL http://www.

youtube.com/watch?v=anOI0xZ3kGM.

S. Ross and J. A. Bagnell. Efficient reductions for imita-

tion learning. In Proceedings of the 13th International

Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2010.

S. Schaal. Is imitation learning the route to humanoid

robots? In Trends in Cognitive Sciences, 1999.

D. Silver, J. A. Bagnell, and A. Stentz. High performance

outdoor navigation from overhead data using imitation

learning. In Proceedings of Robotics Science and Sys-

tems (RSS), 2008.

B. Taskar, C. Guestrin, and D. Koller. Max margin markov

networks. In Advances in Neural Information Processing

Systems (NIPS), 2003.

J. Togelius and S. Karakovskiy. Mario AI Competition,

2009. URL http://julian.togelius.com/

mariocompetition2009.

http://www.leon.bottou.org/projects/sgd
http://www.leon.bottou.org/projects/sgd
http://www.youtube.com/watch?v=V00npNnWzSU
http://www.youtube.com/watch?v=V00npNnWzSU
http://www.youtube.com/watch?v=anOI0xZ3kGM
http://www.youtube.com/watch?v=anOI0xZ3kGM
http://julian.togelius.com/mariocompetition2009
http://julian.togelius.com/mariocompetition2009

