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Abstract. A cluster is the union of a finite number of cubes from the standard 
partition of n-dimensional Euclidean space into unit cubes. If there is lattice tiling 
by translates of a cluster, then must there be a lattice tiling by translates of the 
cluster in which the translation vectors have only integer coordinates ? In this article 
we prove that if the interior of the cluster is connected and the dimension is at most 
three, then the answer is affirmative. 

Let el . . . .  , en be the coordinate unit vectors in n-dimensional Euclidean space 
R n and let 0 be the origin of  this coordinate system. Take a finite set o f  vectors 
T such that  0 e T and each element of  T has only integer coordinates. The union 
of  translates by the vectors of  T of  a unit cube whose edges are parallel to 
e~ . . . .  , en we will denote by 5`0. For the set of  translates of  5"o by the elements 
of  the vector set L we will use the notation (5`o, L). I f  the elements of  (5`o, L) 
cover R n and have no common interiors, then we will speak of  a tiling. We will 
also speak of  lattice and integer (rational) tiling depending on whether L is a 
lattice or each element of  L has only integer (rational) coordinates, respectively. 

When the dus te r  5`0 is a so-called (k, n) cross or semicross, that is, when 
T = {ie~: l i l_< k, 1 <-j -< n} or T = { ie~: 0--< i --- k, 1 - - j -<  n}, the existence of  the cor- 
responding tiling (5`0, L) has been investigated in a series of  papers (see [3]). 
This is the motivation of  the investigation in which there is no restriction on 5`0. 
The following known facts about  the existence of  (5`o, L )  will be needed. 

I f  there is a lattice tiling (5`o, L), then there exists a rational lattice tiling 
(5`0, L') (see [4]). 

If  there is a tiling (5`0, L) then there exists an integer tiling (5`0, L') (see [1]). 
The next statement would be a common generalization. I f  there is a lattice 

tiling (5`o, L) then there is an integer lattice tiling (5`0, L'). But this is not true 
for n _> 2 as the following example shows. Let T be {0, 2e~}; the corresponding 
5`0 consists of  two disconnected n-dimensional unit cubes. I f  L is a lattice spanned 
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by the vectors 4el, el-t-½e2, e2, e 3 , . . . ,  en, then (gro, L) is a lattice tiling and if 
(~ro, L') had been an integer lattice tiling, then e~ would have been an element 
of  L' and this is a contradiction since 2el cannot be in L'. 

The previous example is due to Hickerson and in connection with this in [2] 
he asked whether this phenomenon could occur for connected sets, such as crosses 
and semicrosses. The next theorem provides a partial answer. 

Theorem. I f  the interior o f  ~r o is a connected set and there is an n-dimensional 
lattice tiling ( g~o, L) where n <-3, then there is an integer lattice tiling ( ~o, L'). 

Proof. We define an equivalence relation on (~ro, L). If  ~rA, 3 se (g ro ,  L) and 
the ith coordinate of  A-B is an integer, then ~A and ~rs are in the same equivalence 
class. A property of  these equivalence classes will play an important role in this 
proof. Namely, each equivalence class can be translated freely in (~0, L) in the 
direction of e~ as a rigid body. In other words, the union of the elements of an 
equivalence class is an infinite prism in the direction of  e~. The proof can be 
found in [4], Theorem 5. 

If  a subset (~ro, K)  of  (fro, L) can be translated freely in (gr0, L) in the 
direction of  ej as a rigid body, then we will call (fro, K)  an i-prism. If each proper 
part of an/ -pr ism is not an/-prism, then we will call it an irreducible i-prism. 

Note that if (fro, K) is an irreducible i-prism, then the ith coordinates of 
elements of  K differ by integers. 

Obviously, according to the latticity of  (gro, L) the irreducible /-prism are 
translates of  each other so we will investigate that copy which contains the point 0. 

(i) I f  (~ro, K)  is an irreducible i-prism and O~ K, then K is a lattice. 
Indeed, let a and b be elements of K. To prove that a - b e K, note that the 

vector a - b translates (~-o, L) onto itself and prisms go into prisms. Since the 
intersection of  nondisjoint prisms is a prism as well, the irreducible prism are 
either disjoint or identical. Obviously, ~rAe(~ro, K)r~(gro, K + a - b )  so 
(gro, K)  = (~ro, K + a - b ) ,  that is, a - b e  IC 

I f  (gro, K)  is an irreducible /-prism and grA~ (gro, K) ,  then there has to be 
an element of  (~o, K)  which blocks grA against a translation in the direction of  
e~ since otherwise (~ro, K ) \ ~ A  would have been an i-prism. Continuing in this 
way and using the fact that the interior of  ~Yo is connected we obtain: 

(ii) I f  ( ~'o, K )  is an irreducible i-prism and ~rA, ~rB ~ ( ~ro, K) ,  then there exists 
a polygon from A to B lying in the strict interior of the union of  elements of (~ro, K) .  

In fact, as the referee has pointed out, we obtained new descriptions of  
irreducible i-prisms. For grA, ~rB e (gro, L), ~A and ~rB are in the same irreducible 
/-prism if and only if  there exist A = Ao, A 1 , . . . ,  Am = B such that ~rA, and grA,+, 
share part of  a face perpendicular to e~, 0 -  i <  n - 1. 

If  L is a lattice and L' is a sublattice of  L and there exists another sublattice 
L" such that L = L' + L" and L' r~ L" = {0}, then we will say L' is a direct summand 
of L. 

I f  gro has the property that for each lattice tiling (~o, L) for each irreducible 
prism (~ro, K)  with 0e  K, K is a direct summand of L, then we can complete 
the proof in the following way. 
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Let (3-o, K1) be an irreducible 1-prism with 0e  K1 and let K~ be the direct 
summand pair of K1. KI is spanned by vectors k'i = a~el + • • .  + a~ne~, 1 <-i <-t. 

Replace kl, . , k, by k* = k ~ - a ~ l e ~ , . ,  k * - k , - a , ~ e t ,  respectively. We get 
a new lattice LI = K I + K * .  The  system (3-0, L1) is a tiling. Indeed, since L~ = 
K I + K * ,  L =  K I + K ~ ,  (3"o, L) and (3"0, L~) consists of translates of (3.o, K~) and 
since K~ + x~k* + . . • + xtk* = K~ + xlk'~ + . • • + x ,k ' t - - (x lal l  + " " " + x~att)el, the 
1-prisms are translated only in the direction of e~. 

Note that the first coordinates of elements of  LI are integers. Repeat this 
procedure for the 2nd, 3rd . . . .  , nth coordinates. Finally, we get an integer lattice 
tiling by translates of 3"0. 

Take an n-dimensional lattice tiling (3-o, L) where n -< 3 and assume that the 
interior of 3-0 is connected. We shall prove that in this case (3"o, L) has the 
property which was assumed in the previous consideration. For the sake of 
simplicity we will restrict the proof to the three-dimensional case and 1-prisms. 
The next statement represents the most important step toward the complete proof. 

(iii) I f  n = 3 and L' is a one-dimensional sublattice o f  L then either each element 

o f  the system (3"o, L') belongs to the same irreducible 1.prism or no two belong to 

the same irreducible 1-prism. 

To prove (iii), assume the contrary: 3-0, 3.3, 3.~ e (3"o, L') and 3-o, 3"A are in 
the same irreducible 1-prism and 3-a belongs to another. If  O-~ is parallel to e~ 
then we are done. So we may assume that O-~ is not parallel to e~. Let L" be the 
lattice spanned by the vector O/~. According to (i) the elements of the system 
(3-0, L") belong to the same irreducible 1-prism. According to (ii) there is a 
polygon from O to A. Consequently, translating it by j - O - ~ , j e Z  we get an 
infinitely periodic polygon within the strict interior of an irreducible 1-prism. 
Since the system (3"B, L") is a translate of (3-0, L"), the elements of (3-a, L") 
belong to the same irreducible 1-prism which is different from the previous one 
and the translate of the polygon is in the strict interior of the new 1-prism. Project 
the polygons into a plane perpendicular to e~. We get two infinitely periodic 
polygons which are translates of each other into the direction of their common 
period. Hence there exists a smallest common strip which contains the polygons. 
The polygons intersect each other since both of  them connect and separate the 
borders of  the strip. The points of  a line which is parallel to e~ and pass through 
the points of  our polygons have to be covered by the same irreducible 1-prism. 
When we take a line through the common point of  the projection of  the polygons 
which is parallel to e~, we get two irreducible 1-prisms such that the strict interiors 
of their unions are not disjoint. This is a contradiction. 

Assume that (3"o, L) is a three-dimensional lattice tiling and the interior of  
3-0 is connected and L is spanned by 11,/2, and 13. By the last step apply (iii) to 
the lattices L', L", and L" spanned by l~,/2, and/3,  respectively; so we conclude 
that for each irreducible 1-prism (3"0, K) ,  K is a direct summand of  L which 
completes the proof. [] 

Acknowledgment 

The author would like to thank the referee for his valuable suggestions. 



36 S. Szab6 

References  

1. H. Everett and D. Hickerson, Packing and covering by translates of certain nonconvex bodies, 
Pro~ Amer. Math. Soc. 75 (1979), 87-91. 

2. D. Hickerson, Splittings of finite groups, Pacific J. Math. 107 (1983), 141-171. 
3. S. K. Stein, Tiling, packing and covering by clusters, Rocky Mountain J. Math. 16 (1986), 277-321. 
4. S. Szab6, On mosaics consisting of multidimensional crosses, Acta Math. Acad. Sci. Hungar. 39 

(1981), 191-203. 

Received July 11, 1985, and in revised form October 7, 1985. 


