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A reduction of order two for infinite-order Lagrangians
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and Departament Fisica Teorica, Universitat de Barcelona, Diagonal, 645, 08028 Barcelona, Spain
(Received 11 April 1986)

Given a Lagrangian system depending on the position derivatives of any order, and assuming that
certain conditions are satisfied, a second-order differential system is obtained such that its solutions
also satisfy the Fuler equations derived from the original Lagrangian. A generalization of the
singular Lagrangian formalism permits a reduction of order keeping the canonical formalism in
sight. Finally, the general results obtained in the first part of the paper are applied to Wheeler-
Feynman electrodynamics for two charged point particles up to order 1/c*.

I. INTRODUCTION

There are in the literature several attempts to derive a
Lagrangian function—or a Hamiltonian—for action-at-a-
distance electrodynamics, including relativistic corrections
up to a certain order of approximation. Historically, the
first of these attempts is due to Darwin,! who obtained
the first-order relativistic corrections to a pure Coulomb
Lagrangian (i.e., one containing terms up to 1/¢?).

Almost 40 years later, Golubenkov and Smorodinski’
pushed Darwin’s method further, and obtained a Lagrang-
ian function for the second post-Coulomb approximation
(i.e., containing all terms up to 1/¢*). Their study was re-
stricted to the special case of two equal charges because,
in that case, radiation effects were not expected to contri-
bute until the next order of approximation, namely, 1/c°.
However, the Lagrangian they obtained was acceleration
dependent. But, since accelerations only occurred in the
highest-order terms, they substituted them by means of
the Coulomb force law—the lowest order in the approxi-
mation method they were working in—so obtaining a fi-
nal Lagrangian function which only depended on posi-
tions and velocities.

However, as has been known for many years, the Euler
equations derived from the latter Lagrangian neither
reproduce the correct equations of motion for two equal
charges in classical electrodynamics nor are relativistic in-
variant up to the order of approximation considered. It is
also well known that these objections do not apply to the
Darwin Lagrangian. It is therefore apparent that these
troubles genuinely arise in the second post-Coulomb ap-
proximation. This has become clear, with the no-
interaction theorems™* for approximated Lagrangians.

It seems that the failure of the Lagrangian function in
Ref. 2 comes from the fact that the accelerations have
been removed by substituting the Coulomb law straight
into the Lagrangian. Although there is no objection to
this substitution from the viewpoint of the approximation
scheme used, it actually breaks down some basic assump-
tions of the Lagrangian formalism. Indeed, substitution
implies the introduction of some constraints that modify
the very nature of the variational principle underlying the
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Lagrangian formalism, so converting it into a “condi-
tioned” variational principle. The usual Euler method to
derive the equations of motion no longer holds after the
constraints have been substituted, and some Lagrange
multipliers, giving account of the constraints, would have
to be introduced.

It is also worthwhile to mention here an attempt by
Kerner’® to obtain a Hamiltonian formalism for Wheeler-
Feynman electrodynamics.® Although the final aim is not
achieved in that paper, it contains several remarkable re-
sults. One of them is the “translation” of the path-
dependent Lagrangian of Wheeler and Feynman into an
infinite-order Lagrangian, i.e., one depending on the posi-
tions and their derivatives of any order. A Hamiltonian is
then derived by merely using a generalization of Ostro-
gradski transformation.” Nevertheless, this Hamiltonian
turns out to be useless for practical purposes because of
the infinitely many dimensions of the phase space.
Indeed, to determine the future evolution of the system,
infinitely many initial data are needed. Moreover, canoni-
cal quantization would be meaningless, as it would involve
wave functions depending not only on position, but on the
higher-order derivatives also.

This drawback was not new at that time; other dynami-
cal systems were known whose description involved an in-
finite number of degrees of freedom (e.g., purely retarded
electrodynamics, and Wheeler-Feynman electrodynamics
itself). The way out proposed by Kerner is similar to one
pointed out by Bhabha:® namely, the requirement must be
added that the motions of particles become free when the
coupling constant goes to zero.

Within the too-broad solution of the infinite-order sys-
tem, that apparently innocuous condition picks out a fam-
ily of motions that only depends on the initial position
and velocities, being thus ascribable to second-order dif-
ferential systems.

A similar result also holds if, on one hand, the inverse
speed of light is taken instead of the coupling constant,
and, on the other, the motion derived from the Coulomb
law is substituted for free motions.

In the infinite-order Lagrangian obtained by Kerner’
for Wheeler-Feynman electrodynamics written as a power
series of 1/c, it clearly appears that accelerations do not
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occur in terms lower than 1/¢* and, generally, that the
nth derivatives of coordinates come multiplied by 1/¢**
at least. (Odd-order terms vanish for Wheeler-Feynman
electrodynamics and other time-symmetric interactions.)

This general rule, which also holds for the infinite-
order Lagrangians obtained in Ref. 9 from a wide family
of Fokker-type action principles, will be one of the corner-
stones of the methods developed in the present work.

From a mathematical viewpoint, an infinite-order La-
grangian is a rather obscure object, especially because
such things as the convergence of the series involved is
not well established at all. However, as far as we can
understand from the literature, the expansions in powers
of some € (either 1/¢ or the coupling constant) have only
an algebraic meaning in the kind of problems we are con-
sidering. Topological issues, such as convergence of the
infinite sums, are usually left aside at this level.

Therefore, in order to avoid these obscurities, an
infinite-order Lagrangian will be replaced by a hierarchy
of Lagrangians “approximated to (¢” *),” which we shall
write as L, +O(e"*!), n €N, each L, being a polynomial
of degree n in the variable ¢, its coefficients being some
functions of coordinates, velocities, and higher-order
derivatives. These L,, n €N are said to form a hierarchy
because any two contiguous terms are related by
L,,+1=L,.+O(6"“)‘ i.e., they are equal modulo terms
€"*1. Hereafter, * {)proximated to order "+ will mean

equal modulo €'’ that is, equal, provided that terms
multiplied by €, r >n +1, are neglected. The word “ap-
proximated” will not presume that some difference or er-
ror is small. It is commonly used in the literature with
precisely the meaning stated above.

Since n is arbitrary, this hierarchical approach allows
us to deal with the same amount of information as the
infinite-order approach. Furthermore, advantage is
gained in two senses. First, we can avoid the unpleasant
feature that, in the infinite order formalism, the configu-
ration space and the phase space are actually isomorphic.
And second, some algebraic properties of the “equality
modulo €”*!” will enable us to cast the order-reduction
process onto the singular Lagrangian formalism.®

The latter will be most significant, since it will permit
reduction of the order of the equations of motion (e.g.,
substitute the Coulomb law for the accelerations) without
“forgetting” the Hamiltonian structure underlying the La-
grangian formalism we have started from. The canonical
structure will be supplied by some Dirac brackets'®!!
which we shall define according to the constraints in-
volved in the order-reduction process.

The present paper is organized as follows. Section II is
devoted to some general points concerning higher-order
Lagrangian systems: all those results can be found in Ref.
7, but, for the sake of notation, we spend some space in
summanzmg them. In Sec. IIT a special set of Lagrang-
ians approximated to order € *! is considered. Although
these Lagrangians are of order n, they are also singular,
and the Lagrangian primary and secondary constraints
enable us to remove all derivatives higher than accelera-
tions from the equations of motion. The Hamiltonian
counterpart of this development provides a canonical
structure for the reduced equations of motion (the
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second-order ones), which is given by the corresponding
Dirac brackets.

II. SOME GENERAL RESULTS CONCERNING
LAGRANGIAN SYSTEMS OF ANY ORDER

A. Euler equations

A Lagrangian function of order n is one depending on
the coordinates and their derivatives up to nth order. It
can be written as

a,Bv,...=1,

where q“), s >1 is the sth time derivative of ¢,. Oc-
casionally, qao means ¢,.

Associated to this Lagrangian function, we have the ac-
tion principle

L=L(t;qa’q(ﬂ”’~- -1q(v”))v LN,

2@
) L(t; qa,qg),...,qi,"))dt (D

whxch 1s posed in the configuration space, spanned by
G g g ’, to which the points P and Q belong.

The solutmns of the variational problem (1) are also the
solutions of Euler equations

oL
3]
a

ZLJALl= 2 1)kD* =0, (2)

where D is the total time derivative, that is,

r+])
. (3)
3qa

Thus, Eq. (2) is a 2nth-order differential system, and all
derivatives of 2nth order can be expressed in terms of

those of lower order if, and only if, the Hessian matrix
H,p=03L/3q"3q} ) is regular, i.e., has rank N.

D——-+ 2

B. Hamiltonian formalism

The Hamiltonian formalism is made up from the La-
grangian by means of the Ostrogradski transformation.
The conjugate momentum II Lja corresponding to the con-

figuration space variable ¢, is defined by
n—j—~1
aL
= i (—D)IW j=0,1,...,n—1,
1=0 U

a=1,...,N. 4)

A glance at the dependence of I1;, on the hlgher -order
derivatives shows that it depends on q "=7=D"at most,
and in a very simple way. Indeed, we have that

Hja=nja(q’q(“ .,q(Zn——j—l);t)

=q5" 7 VHup+Kjalg, ... ,¢ " D0) . (5)

Hence, the Ostrogradski transformation can be inverted
if, and only if, the Hessian matrix H op is regular. In such
a case, the actual inversion of the transformation (5) im-
plies a finite iterative procedure. Indeed, starting with
j=n-—1, one obtains ¢™(g,q'",...,¢" V0, _u;1);
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then substitutes it into the expression for j=n —2, one ob-
tains ¢ +1q, ...,q"" VI, _,,lI, _5;1), and so on.

As usual, the phase space is spanned by the
configuration-space variables qa,qu”, . ,q},""”, plus
their conjugate momenta Il ,I1g, ..., 1,_),. In terms
of these variables, the time evolution is ruled by the fol-
lowing first-order ordinary differential system on 2nN
variables:

X.JAEN, J. LLOSA, AND A. MOLINA 34
=M 1o+ —5(t:q,-..,¢"),
dt J 1t aqg) q q

j=0,...,n—1, (60

where the right-hand side of (6b) is obtained by inverting
the Ostrogradski transformation, and (6¢) is obtained by
differentiating Eq. (4). It must be understood also that, in

49y wan =0 s 6 Eq. (6c) IT_;, means zero (indeed, if we take j=—1 in
BV L i A L (6a)  Eq. (4), the right-hand side turns out to be . ,[L], which
(a1} vanishes for the solutions of the dynamical system).
dqq =g'™( (m~1Lpp  .p) (6b) As can be easily proven, Egs. (6) can be derived from
dt  da'd---d ie=bil the Hamiltonian function:
|
n—2
H=—L(t;9,¢'",...,g" Y,q™ g, ...,q" "V, _;t)+ 3 Mgl tV +11,_109"(q, . .. ,g" 711, i) . (7)

Sum over repeated greek indices will be always under-
stood.

The elementary Poisson brackets corresponding to this
Hamiltonian formalism are

{qzzk)snjﬁ} =8a56§‘: {q(ak)’qg)} = { Hkmnjﬁ} =0, ®)
k,j=0,1,...,n—1; a,f=1,...,N,; the Hamilton equa-
tion of motion can be written as

af _ Sf

i ={f,H}+ 3t 9)

where f(t;¢,¢'", ..., ¢V, . ..
tion on the extended phase space.

, I, _) is any func-

III. LAGRANGIAN SYSTEMS APPROXIMATED
TO O(e*tY)

We deal hereafter with certain Lagrangian functions
that depend polynomially on a given parameter €, and can
be written as

N n
L=3 3 muqq' ¥+ 3 eVilgq", ... .q¢")
a=1

s =0

+0(*th), (10)

where m,, a=1,...,N, are some given constants stand-
ing for different “masses™ associated with the several de-
grees of freedom. We shall also assume that the matrices
v,/ qu,f’ag) are regular.

In what follows, terms containing powers higher than
€" will be neglected, and put into the abbreviated form
O(e" ') which we shall write on the right-hand side of
our equations. To state the latter in a more algebraical
language, the domain of our fundamental quantities will
not be the field R of real numbers, but the quotient ring
R[e]/(e"*1) (ie., polynomials in one variable € with real
coefficients, modulo €**!). As a consequence of this as-
sumption, those solutions of the equations of motion that
are ill behaved in the limit e—0 are excluded from the
very beginning. Indeed, according to the choice of our

i=0

f

fundamental quantities, the solution corresponding to a
given set of initial data (ID) is assumed to be shaped ac-
cording to the general form

4o(t;ID,€)= 3, €q4(t;ID)+O0(e"+) .

s=0

As another consequence of this choice, we must keep in
mind that R [e]/(e"*!) is a ring containing divisors of
zero (e.g., any multiple of €), and that these elements are
not invertible. Such a simple fact will enable us to cast
the order-reduction process into the singular Lagrangian
formalism.'°

Since the symbol O(e**!) has the algebraic meaning
stated above, the results that follow hold regardless of the
size € might be. Nonetheless, it is necessary to consider
the size of € in most practical applications, where it must
be estimated whether the terms included in O(e"*!) can
be neglected without distorting too much the final results.

In spite of the restrictions on the functions ¥V, the La-
grangian (10) is general enough to encompass the La-
grangians obtained in Ref. 9 from certain Fokker-type rel-
ativistic action principles.

According to (2), the Euler equations derived from the
Lagrangian (10) are

—mag + > €44q, ...
s=0

,g =0t (1)

with

s aVS
Ag= 3 (DY

> (~Dr o 12

As can be immediately seen, the Lagrangian (10) is a
singular one. Indeed, writing Eq. (11) in such a way that
the highest-order derivatives appear explicitly, we have

%V,
T+ falg, .

(Zn)en
g5 3q¢

qg g De)=0(e"th)  (13)

and, since € is a divisor of zero, the “Hessian matrix”
€3V, /3¢ "3q} cannot be inverted within R [€]/(e"*!).
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In the usual singular Lagrangian formalism, primary
constraints would be generated by the inner product of
Eq. (13) by the null vectors of the Hessian matrix. In the
present case, things are a little bit simpler, because every
vector that is a multiple of € is a null vector of

€"3*V, /33’3, The primary constraints are therefore

Gfg(Q;--v (Zn—l)e)_o(€n+1)

which, according to (11) and (12), can be written as

n—1
—mog P+ S €4glg,...,.¢ %) =0T . (14

5=0

Since the matrix 3%V, /aq"”aq};" has been assumed to be
regular, there are no more primary constraints.

Other constraints, the secondary ones, are obtained by
repeatedly differentiating (14) with respect to time. The
iterative algorithm generating secondary constraints is
developed in Appendix A. From (A10) we have that a
minimal set of constraints is

[
“maqﬁ;)+ 2 6-thzrs(Q)q(”)-_--0(6'"—H) s
s =0

r=2,...,2n—1, (15

where the functions B,(q,q'") are obtained from
Agjlg, ... ,q'%), as is specified in Appendix A.

To cast the equations of motion into a Hamiltonian for-
malism, we perform the Ostrogradski transformation

H]a_maq(1)80+ej+lq>ja(q’ L ’q(ln—-j—l))
+0(e" ) (16)
with
n—j—1 av,
1 s+j+t
Qja= i 632( D)—”:fm . an
s=0 1 =0
The canonical Hamiltonian is
n—1
H=—L+ 3 MgtV 1ot . (18)
k=0

Translated into this formalism,'? the constraints (15) read

n—

{f’g}*=[f’g}+

1
kil=la,p=1

+Y ka8 {f X ka) (8,018} —
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wraqu)_*I—Bar(q’q(l))=0(€n+l) y
ma
r=2,...,n—1, (19a)
Xja=Tja—€+1¢;0(g,¢'")=0(" 1),
j=1...,n—=1, (19b)
wlaEqixn“ —€¢Oa(q’ ]_ n+1 ) (190)
where
n
Bar(q’q )= 2 ars(q,q(”) s (20)
B (Tg,q,4" ) =Tg,—€doyla,q") 21)

and ¢;,(q, q'!) is obtained by substltutmg ( 15) into the
g8, r>2, occurring in ®,,(g,¢"", ..., g~/ ),

These constraints defme a submanifold I,y [labeled by
the coordinates (g,,g' B ) or, equivalently, (g4,1gg)] of the
phase space &snn  (coordinated by gq,,... ,qf, )
g, ..., 1,_1,). The motions take place in this subman-
ifold F2Na whlch will be called reduced phase space.

As is proven in Appendix B, the set of constraints (19)
is second class; i.e., the matrix D of their mutual Poisson
brackets is regular. Hence, according to the general
theory of constrainted Hamiltonian systems, the equations
of motion are given by'°

af _ «, Of
= LHR) S (22)

where f(q4,I1op,0); Hg is the reduced Hamiltonian, which
is obtained by substituting the constraints into the canoni-
cal Hamiltonian (18); and { , }* are the Dirac brackets.

To define the latter, the inverse matrix D ~! is needed.
Writing it as (see Appendix B)

X Y

_]__
b~'= -YT z

(23)

the Dirac brackets between any two functions f ang g de-
fined on T, are given by!°

N
az [X ka,i8{f Xka} (8:X18) + Z ra,18{ fr0ka} {8,018}

{gyxka}{f’wlﬂ} )] ’ (24)

where, as is usual in this formalism, the functions f and g appearing on the right-hand side of (24) must be understood
as whatever two functions f and g extending, respectively, f and g into &,y,.

For the sake of convenience, and since ¢’ can be obtained as a function of g1y, from (19c), we take g, and
I g=1lyg as fundamental variables on I',. In terms of them, the elementary Dirac brackets are

{th’qﬁ}‘=AaBa {qavnﬁ}*‘_"saﬂ'*"ﬂaﬂr {nmnﬂ}*:AaB ’ (25)
where
1
Agp= — Z 10,5+ 0, (26a)
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- anI 1 Bdm
2 2 [m m la,lv aq m el+l Ylv la +0(€n+1) (26b)
=1 v 4 a
_ ni‘ 2 X v€k+l+2 ad’ku 9¢y, + 1 aBpk dB,, Yo e a¢ku 0B, a¢k;l. 9B,
= , - _
Pl e 4. dgp " mum, """ 3g, dgp 3. 35 B4p 4q
+0(e"*h) . (26¢)

Although relative to the Poisson brackets the coordinates
g, and momenta Ilg were part of a canonical set of vari-
ables on &,y,, they do not necessarily keep this property
after having undergone the complete order-reduction pro-
cess.

Let us now have a glance at what some few lowest-
order terms in A, g, {},5, and A,p, look like. Using the
formulas (B16) of Appendix B, together with (19), (21),
and (26), we obtain

08 ap="80p="Qp="00p="Asp="Aug="A0p=0,

)
25 1 %15 _ ¥ | _ 1 %14
o™= amg aqu) aq};” ’ af me O4g ’
or
1 %15 8%1a 3
(9295)" = 2mam‘a 3 3qy’ Ol
aO
{qmnﬁ} —8a3+€2 1 JLI‘E'-}-O(G%, (28)
mgy aqﬁ
(I, Tg}* =0(e)
whence, as can be easily checked, it follows that
fia=qa~62;11~°¢1a(q,q“))+0(e3) (29)
a

and Ilg (@,B=1,...,N) form a set of canonical coordi-
nates and momenta on the reduced phase space I'yy, with
respect to the canonical structure defined by the Dirac
brackets (24).

IV. APPLICATION: WHEELER-FEYNMAN
ELECTRODYNAMICS FOR TWO POINT CHARGES
UPTO 1/¢*

According to what is proven in Refs. 5 and 9, the
Fokker-type Lagrangian of Wheeler-Feynman electro-

]

[(V] V2)+(V1 ﬂ)(V2 n)]

r

dynamics is equivalent to an infinite-order Lagrangian,
provided that some regularity conditions are satisfied by
the particle world lines.

In the case of two particles, the infinite-order Lagrang-
ian is

L=Ls— (30)
with
2
L= mgc[1—(1—v,2/c*)'"?] (31a)
a=1
and
« (=1) Vitva | o
U———'81€22 2“(25)’ {D;[ 1— c2 r ’
(31b)

where
V,=X;, a=12; r=x,—Xx,,

r=1|rj,

i va = lva ’ r
and D, differentiates with respect to time the dynamical
variables of particle a only.

As has been already discussed, dealing with this
infinite-order Lagrangian is equivalent to working within
a formalism approximated modulo €**!, with n arbitrary.
It can be easily checked that the Lagrangian L has the
special shape (10), provided we put e=1/c2. Hence, the
general framework developed in Sec. III applies to this
particular case. That is what we are going to do in this
section, approximating up to terms 1/c? i.e., modulo
0(e)=0(1/c").

The approximated Lagrangian is

L=Lo+—L,+—L,+0(1/c") (32)
[ (4

with
(33a)

(33b)
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and
1 2 6 ele2 A A A A
Ly=1 3 ma,°— 2 r[3(a;-a;)—(a;-fi)ay )] +2[(ay v ) v ) —(a; vy (vyi)]
a=1
+(a1’ﬁ)[vzz—‘(Vz'ﬁ)Z]+(az'ﬁ)[(vl‘ﬁ)"—l}12]
+‘:T[—-2(V1'V1)2+012022——Ulz(Vz‘ﬁ)z—vzz(Vx'ﬁV+3(V1'ﬁ)2(V2'ﬁ)2] , (33¢)
where

fi=

~ |m

At the lowest order of approximation we have the Coulomb law of motion

Mty =1y —s28, Mp=(—1P+], b=1,2
58 =75 2 0, 7= , b=1,2. (34)

According to (12) and (13), the Ostrogradski transformation is defined by

M, =m,v,+ —};d)od(x,,,vc,ad,ée JHO(1/6%), Ty = ®1o(%5,Ve,8)+0(1/c5) , (35)
c c

€ €e; {

D= —— r[3abn—(ab'-ﬁ)ﬁ]+m[—2(vb"ﬁ)vb'+vb'2ﬁ—-(vbvﬁ)”ﬁ]} » (36a)

€€ o
q)()b = %—mbvbzvb + ——i;-[v,,r+(v,,'-ﬁ)n]

€€,
8r

113
+ 2 —mpvptvy +

8 { [Ub'2+2(V1‘V2)+2(V1’ﬁ)(Vfﬁ)—'(Vb"ﬁ)z]Vb‘+[(Vb"ﬁ)2~—vbzlvb

+ [0 2(vp D) + 30y 2 vy -R) — 20y ANV, Vy) — 3(vy ) — 3(vp-B) (v, 1) R

€1€3

{r[3ébv—(éb'-ﬁ)ﬁ]+nb[ﬁvb — 5(ﬁ'Vb')]8b'

+7’b(ab"ﬁ)(vb _Vb‘)+7lb[3(ab”vb‘)"3(ab"vb)—(Vb ﬁ)(abﬁ)——3(v;,ﬁ)(abﬁ)]ﬁ} ’ (36b)

where b’ means “not b.” (Note that ®,, contains terms of order 1/c2.)

As has become obvious along this section, the a-type indices labeling the N degrees of freedom in Secs. II-IV are now
written (ai), (bj), and so on; a,b,...=1,2; i,j,...=1,2,3. Furthermore, the spatial indices are, in most cases, hidden
under the vector notation.

The constraints defining the reduced phase space I';, are

1
Xig Enla - F¢la(xy")+0( 1/(«'6)’ WD =V, '_;:—Bal(n:x9v)+0( 1/c6) ’ (19’)
a
where
€€y ~ 24 AVZA e12e22 ~
¢la= g na[Z(va"n)va"‘Ua’ n+(va"n) n]+ 4ma‘r MNe0 , (37a)
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i €162 PRV
TMaVs Vq+ Z—r[va’+(va"n)n]

+=5 [%mava“va+ ;rz (Ve +2(v1 V) +2(v - BN vy ) — (v 8) 2]V, + (Ve B)— v, 2]V,

[0 (v B) + 30,2V 8) — 2(v; Vo ) (v ) — 3(v,-8)} — 3(v )y, 0)]1}
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R [2(vg —vg)—=5(v, - R)A+ (v, -0)i] \ ; (37b)
m,

which have been obtained by substituting (34) and its time derivative into (36).
Now, applying the results of Sec. III we obtain, for the elementary Dirac brackets,

ee (IMy-8)  (M,8) Im,;, Iy no,, I,
e B e L e e P LR
17782
(38a)
KXo Ty }* =805 805 +Map — o | L (2T 1, ) + 8, (T, B2 — T, 2) 4 [T, 2 — 310, -2) ]
aiy 2] a i a gmlmzrc4 ma a i aJ l] 1 ]
~ o ~ zexez A A 6
+2(Ha--n)(ﬂa'jn,»—-H,,';nj)}+ (8,»j—~2n,-nj) +0(1/C ), (38b)
(M, }*=0(1/c%) , (38¢)

which agree with previously known results: namely, the position coordinates x, can be taken as canonical ones in ap-
proximations up to the post-Coulomb order, but not in further ones.

Moreover, the nonvanishing 1/c* terms in the elementary Dirac brackets (38) agree with what could be expected from
the results of Ref. 4, concerning the noninteraction theorem for Lagrangians approximated to 1/¢".

Then, according to (29), we can readily change the variables x,, II,, which are not canonical relatively to the Dirac
brackets, into the new ones:

e1e; (I,) (M-8 -T2 eje; | .
—x, — n, ; o(1/¢%, (39a)
9a=%a 4m1m2c4ml my: @t 2my, + o+ ¢ a
po=1II, +0(1/c%), (39b)

which, besides being canonical as referred to the Dirac brackets, share with the former x’s and II’s, the good behavior
under the Euclidean group, do not select a single set of coordinates and momenta. Indeed, any new variables defined by

1 oF ), pympy— L OF 6
a ), Pa—Pa C aq ) (40)

q _qa+

with F [g%,q-Pa;ParPs>q(P1 X P2)], also satisfy both requirements (where q=q;—q;and g=|q]|).
Finally, according to (18), and in terms of the canonical coordinates and momenta (39), the reduced Hamiltonian is

Hy =H0+;1;H1 +C—I4H2+O(l/c6) , (41)
1 9132
0=— , (42a)
2 ; m, q
1 D, ¢ 1€2
Hi=—— ——L_———< ) +(p1-@)(py-q) (42b)
1 8§ma3 2qmim [(p1'P2)+(pr- Q)P Q)] ,
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1 Pa ee; 1 PP’ 3
H _——— — . 2, 2 a2 A2
2 16 a mas 4"11qu mym, 2 (pl p2) + 2(pl q) (p2 q)
+2_P_q_z_ (PaPe)  Pa@Pa@ 1 (PaG)
a m, m, m, 2 mg
2,2
3 ‘e 1 2 a2
16 mymyq? | < m, Pa”"+(pa @] | . (42c)

V. CONCLUSION

Starting from a Fokker-type Lagrangian, for a relativis-
tic system of directly interacting particles, and by means
of a 1/c expansion, an infinite-order Lagrangian can be
obtained.> The corresponding equations of motion are
of “infinite order,” and infinitely many initial data are
needed in order to determine the future evolution.

Several justifications can be found in the literature for
providing some supplementary criteria>®!® that permit
selection of some few “physically significant” solutions
among the whole set of solutions of the infinite-order sys-
tem. One among these criteria consists in requiring the
particle trajectories to depend analytically on some cou-
pling constant (i.e., the particles become free once the in-
teraction has been switched off). Another possible condi-
tion requires analytical dependence on 1/c¢, namely, the
solutions admit a nonrelativistic limit. Even another pos-
sibility consists in expanding in the ratio of the masses of
two particles.'*

Usually, and in most of physically interesting cases, the
solutions selected by any of these additional criteria, can
be parametrized by a Newton-type set of initial data
(namely, six times as many parameters as the number of
particles, for pointlike particle systems). They therefore
satisfy an ordinary second-order differential system,
which is said to be a reduction of order 2 of the original
infinite-order system.

It could then happen that some reductions or order 2,
for some physically interesting infinite-order systems were
actually significant, even beyond the purely esthetical
motivations that could drive our search for a Newtonian
set of equations of motion. This can be especially hoped
after the spontaneous predictivization of hereditary sys-
tems has been proven.”> The later consists in that retard-
ed difference-differential systems admit some reductions
of order 2 which act as attractors (i.e., special trajectories
to which other solutions converge asymptotically).

The introduction of supplementary conditions usually
affects the Hamiltonian framework associated with the
Lagrangian we have started from. This is basically the
reason why the results of Ref. 2 are not correct. The
main contribution of the present paper is that a method is
provided to introduce those supplementary conditions
keeping the canonical formalism in sight. It has been pos-
sible thanks to the concepts of singular Lagrangian system
and Dirac brackets. These are tools that had been used al-

ready in relativistic dynamics of directly interacting parti-
cles, although in a quite different context. The methods
developed here are especially useful in the framework of
1/¢ expansions, and this has been done in applying them
to the electrodynamics of Wheeler and Feynman for two
charged particles. Although in that specific case no prob-
lem arises, it can be easily seen that, when passing to a
case with more than two particles, the 1/c* term in the
Lagrangian (and in the Hamiltonian too) will exhibit a
part increasing with the distance between particles. It
could therefore seem as if the interaction did not admit
cluster decomposition. However, this seems to be due to a
limitation inherent to 1/¢ expansions rather than to the
interaction itself.!®

Owing to that unpleasant feature of 1/¢ expansions, it
would be desirable to develop an alternative treatment
based on coupling constant expansions. However, the
method here developed depends crucially on the following
property of the infinite-order Lagrangians considered: the
higher the order of the derivative, the higher is the least
order in the 1/c¢ expansion where it occurs. This property
does not hold in the framework of coupling constant ex-
pansions.

Moreover, it would be also desirable to deal with the
whole problem starting straight from Fokker-type La-
grangians, thus avoiding the intermediate step of infinite-
order Lagrangians, that are unpleasant from a mathemati-
cal viewpoint, and also irrelevant as far as the final reduc-
tion of order is concerned.
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APPENDIX A: THE SECONDARY CONSTRAINTS

Once the primary constraints are known, we must look
for the minimal set of constraints such that (i) it is stable
by time differentiation and (ii) it contains the primary
ones.

We thus start from the primary constraints:

2 1 &l (2s) +1
gl ___n_l__ze'AM(q---q ) le=0("t"), (A1)

a =0
where the highest-order derivatives are ¢'"~? and
g ~%, and occur in the A,,._;, term, thus being multi-
plied by €".
Multiplying (A1) by €” ~!, we have
gl = ! n+ly (A2)

which, differentiated r times with respect to time, and us-
ing (A2) itself everywhere that €” (52) occurs on the right-

hand side, leads to
1

a

We can then substitute (A3), with r=2n—4 and
r=2n -5, into (Al), so eliminating the dependence on
g™~ and ¢~ in the term A, ,_;.

After that, the hlghest-order derivatives are g and
g%, and occur in the terms A, ,_; and A, ,_, thus
being multlphed by e L.

Mutltiplying (A1) by e" 2 we have
e -lg? =
o

gt =—B,, 2000, +0(€ ) . (A3)

(2n —4)

L (Ao0(g)+edqi(g,qVgP)]er !

a

+0(e" ). (A4)

The ¢'¥ dependence on the right-hand side of (A4) can
be eliminated by using (A3) with » =0, so obtaining

e"“qff’=—’;L[Aao(q)+eza,<q,q“>)]e"—‘+0(e"+‘>
a

(A5)
which, after differentiating r times w1th respect to time,
and using (AS) itself wherever €"~!q}f’ occurs on the
right-hand side, yields

_ 1 _
€ lgZtn =— [Bari2009,9'")+€Bo,i21(g,9)]€"
o

+0(e" ). (A6)

Pushing forward the iterative algorithm, whose first two
steps have been displayed above, we finally arrive at the

set of constraints
n 1 n—1
9a — 2 esBa,r,:(Q7q(1)) e=0(e"*h),
my <5

r=2,...,2n—-1. (A7)
Owing to how this expression has been derived, it is obvi-
ous that the constraints (A7) are more restrictive than
(Al).
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The time derivative of (A7), with r =2n —1, is

n—1
€1g? —-"S €Boomi(g,qV) | =0 ) (AB)

a s=0

which, properly speaking, is not a constraint yet, because
q(nz") is not an independent variable on the initial-data
space.

But, using (A7) and (A8) to remove the accelerations
and higher-order derivatives from the equations of motion

(17), we obtain the new constraint

n
¢ =13 €B,,,(q,9")+0(E ) (A9)

a s=0

which, by dlfferentlatmg with respect to time, and using
itself wherever ¢ B occurs on the right-hand side, finally
yields

(A10)

€B,, 9,9 +0(e ),

r=2,...,

It is also obvious that the constraints (A10) are more
restrictive than (A7). Furthermore, they are stable under
time differentiation. Indeed, since qf,z") occurs multiplied
by € in the Euler equations (11), only B,,(g,q'") is sig-
nificant, and (A10) with r=2, .. .,n into the Euler equa-

tions (11) yields (A9) again, so proving the stability of the
constraints (A 10).

APPENDIX B: ARE THE CONSTRAINTS
(19) OF SECOND CLASS?

Let us consider the skew-symmetric 2N(n —1)
X2N(n —1) matrix
s T

D= 1T U (B1)

defined by the Poisson brackets between pairs of con-
straints. Its components 8, T, and U are three
N(N —1)xXN(n —1) matrices defined as

K] ka,rB= {Xkayxrﬂ} ’
T ka,rB~ ixkaxwrﬁ} 5 (B2)
U ka,rﬁ={wkmwrﬂ} »

and, according to (19) and (21), we have also that

S ka,rﬁ“

et ¢(rf)5k1 ektl ¢f‘f; 5,,+0(e" Y, (B3)
99y g

Bﬂr a‘i’ka
Tka 8= —Skrsaﬁ+ [akl a D +8r1 k—H'@' ]
+0(e"*th, (B4)
1 aBak aBﬂ,
U = — n+1
ka,rB mamg larl aqp Ok 9. +O0(€ ).
(B5)
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It hence follows from (B3)—(B5) that
T=—14M (B6)

and that the matrix elements in 8§, M, and U all vanish,
but those corresponding to rows and columns, respective-
ly, labeled (1a) and (15).

To determine the inverse matrix D ~!, we first expand
D as

D=3 €D+0(e" ). (B7)
s =0

Then, provided that D is regular, we can write (B7) as

D:OD 2 EsOD—lsD+0(en+l)
s =0

whose inverse is

D!'= 11+ 3 &N |°D-1+0(e" ) (B8)

s=1

N being obtained by means of the iterative law:
s—1
SN=—‘0D—ISD—-20D‘1,——SD’N. (B9)
r=1

We still have to prove that °D is regular. Aiming for this,
we write "D as

, rs rT
D=| .1yl (B10)
Then, according to (B3)—(B6), we have for r =0, that
0 0 1 aBﬂrO
$=0, "Myg,p=—""8k1—7 >»
ST mg T gy
(B11)
U o 5= 1 y 9Bako — 8y 9Bgro
’ mgmeg 9qp 0G4
Hence, the shape of °Dis
o 0 —1+°M
D=
1-°M7T oy
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and, since “M2=0, it follows immediately that
N (1+°MNH%U(1+°M) 1+°M7

Let us now have a glance at what the lowest order
terms in D ! look like, essentially aiming to obtain the
lower-order terms of the elementary Dirac brackets (25).
As usual we write D ~! as

. X Y
D= yT z (23)
and, according to (B12), we have that
%X=(1+°MN°U1+°M),
(B13)

Y—14+°MT; 9Z=0.

In order to obtain the elementary Dirac brackets (25) up
to the order €2, only °Z, 'Z, 2Z, and °Y are needed. There-
fore, we shall not care for other matrices (e.g., 'Y or 2X).

Working out (B8) up to €, and taking (B9) into ac-
count, we arrive at

D-'=D-1_¢e% —11pop -1
+&°D~''D°D ' 'D-°D~"?*D)’D ~'+0(€)

(B14)

whence, taking into account that 1§ =0, we obtain

1Z2=0, Z=1+"M)?8(1+°M 7). (B15)

Finally, the explicit expressions to be used in Sec. III
are

0 1 aB;sz
Y by 1= 8118y + ;17511—5(1—(;17 )
OZ ku,lvzlz ky,,[v=0 3 (B16)
9%, 3%,
2 v »
Zip1v=810n | —17 — ,
n 3 agyV

where use has been made of the fact that
aBaw(H,q,q(“)/aqg)=O, as follows immediately from
(19) and (21).
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