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Abstract

We present a systematic approach for achieving

fairness in a binary classification setting. While

we focus on two well-known quantitative defini-

tions of fairness, our approach encompasses many

other previously studied definitions as special

cases. The key idea is to reduce fair classification

to a sequence of cost-sensitive classification

problems, whose solutions yield a randomized

classifier with the lowest (empirical) error subject

to the desired constraints. We introduce two

reductions that work for any representation of the

cost-sensitive classifier and compare favorably

to prior baselines on a variety of data sets, while

overcoming several of their disadvantages.

1. Introduction

Over the past few years, the media have paid considerable

attention to machine learning systems and their ability to

inadvertently discriminate against minorities, historically

disadvantaged populations, and other protected groups when

allocating resources (e.g., loans) or opportunities (e.g., jobs).

In response to this scrutiny—and driven by ongoing debates

and collaborations with lawyers, policy-makers, social sci-

entists, and others (e.g., Barocas & Selbst, 2016)—machine

learning researchers have begun to turn their attention to the

topic of “fairness in machine learning,” and, in particular, to

the design of fair classification and regression algorithms.

In this paper we study the task of binary classification sub-

ject to fairness constraints with respect to a pre-defined pro-

tected attribute, such as race or sex. Previous work in this

area can be divided into two broad groups of approaches.

The first group of approaches incorporate specific quanti-

tative definitions of fairness into existing machine learning
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methods, often by relaxing the desired definitions of fair-

ness, and only enforcing weaker constraints, such as lack of

correlation (e.g., Woodworth et al., 2017; Zafar et al., 2017;

Johnson et al., 2016; Kamishima et al., 2011; Donini et al.,

2018). The resulting fairness guarantees typically only hold

under strong distributional assumptions, and the approaches

are tied to specific families of classifiers, such as SVMs.

The second group of approaches eliminate the restriction

to specific classifier families and treat the underlying clas-

sification method as a “black box,” while implementing

a wrapper that either works by pre-processing the data or

post-processing the classifier’s predictions (e.g., Kamiran

& Calders, 2012; Feldman et al., 2015; Hardt et al., 2016;

Calmon et al., 2017). Existing pre-processing approaches

are specific to particular definitions of fairness and typically

seek to come up with a single transformed data set that will

work across all learning algorithms, which, in practice, leads

to classifiers that still exhibit substantial unfairness (see our

evaluation in Section 4). In contrast, post-processing allows

a wider range of fairness definitions and results in provable

fairness guarantees. However, it is not guaranteed to find the

most accurate fair classifier, and requires test-time access to

the protected attribute, which might not be available.

We present a general-purpose approach that has the key

advantage of this second group of approaches—i.e., the

underlying classification method is treated as a black

box—but without the noted disadvantages. Our approach

encompasses a wide range of fairness definitions, is

guaranteed to yield the most accurate fair classifier, and

does not require test-time access to the protected attribute.

Specifically, our approach allows any definition of fairness

that can be formalized via linear inequalities on conditional

moments, such as demographic parity or equalized

odds (see Section 2.1). We show how binary classification

subject to these constraints can be reduced to a sequence

of cost-sensitive classification problems. We require only

black-box access to a cost-sensitive classification algorithm,

which does not need to have any knowledge of the desired

definition of fairness or protected attribute. We show that

the solutions to our sequence of cost-sensitive classification

problems yield a randomized classifier with the lowest

(empirical) error subject to the desired fairness constraints.

Corbett-Davies et al. (2017) and Menon & Williamson
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(2018) begin with a similar goal to ours, but they analyze

the Bayes optimal classifier under fairness constraints in the

limit of infinite data. In contrast, our focus is algorithmic,

our approach applies to any classifier family, and we obtain

finite-sample guarantees. Dwork et al. (2018) also begin

with a similar goal to ours. Their approach partitions the

training examples into subsets according to protected at-

tribute values and then leverages transfer learning to jointly

learn from these separate data sets. Our approach avoids par-

titioning the data and assumes access only to a classification

algorithm rather than a transfer learning algorithm.

A preliminary version of this paper appeared at the FAT/ML

workshop (Agarwal et al., 2017), and led to extensions with

more general optimization objectives (Alabi et al., 2018)

and combinatorial protected attributes (Kearns et al., 2018).

In the next section, we formalize our problem. While we

focus on two well-known quantitative definitions of fairness,

our approach also encompasses many other previously stud-

ied definitions of fairness as special cases. In Section 3, we

describe our reductions approach to fair classification and

its guarantees in detail. The experimental study in Section 4

shows that our reductions compare favorably to three base-

lines, while overcoming some of their disadvantages and

also offering the flexibility of picking a suitable accuracy–

fairness tradeoff. Our results demonstrate the utility of

having a general-purpose approach for combining machine

learning methods and quantitative fairness definitions.

2. Problem Formulation

We consider a binary classification setting where the training

examples consist of triples (X,A, Y ), where X ∈ X is a fea-

ture vector, A ∈ A is a protected attribute, and Y ∈ {0, 1}
is a label. The feature vector X can either contain the pro-

tected attribute A as one of the features or contain other fea-

tures that are arbitrarily indicative of A. For example, if the

classification task is to predict whether or not someone will

default on a loan, each training example might correspond

to a person, where X represents their demographics, income

level, past payment history, and loan amount; A represents

their race; and Y represents whether or not they defaulted on

that loan. Note that X might contain their race as one of the

features or, for example, contain their zipcode—a feature

that is often correlated with race. Our goal is to learn an ac-

curate classifier h : X→ {0, 1} from some set (i.e., family)

of classifiers H, such as linear threshold rules, decision trees,

or neural nets, while satisfying some definition of fairness.

Note that the classifiers in H do not explicitly depend on A.

2.1. Fairness Definitions

We focus on two well-known quantitative definitions of

fairness that have been considered in previous work on

fair classification; however, our approach also encompasses

many other previously studied definitions of fairness as

special cases, as we explain at the end of this section.

The first definition—demographic (or statistical) parity—

can be thought of as a stronger version of the US Equal

Employment Opportunity Commission’s “four-fifths rule,”

which requires that the “selection rate for any race, sex, or

ethnic group [must be at least] four-fifths (4/5) (or eighty

percent) of the rate for the group with the highest rate.”1

Definition 1 (Demographic parity—DP). A classifier h
satisfies demographic parity under a distribution over

(X,A, Y ) if its prediction h(X) is statistically indepen-

dent of the protected attribute A—that is, if P[h(X) = ŷ |
A = a] = P[h(X) = ŷ] for all a, ŷ. Because ŷ ∈ {0, 1},
this is equivalent to E[h(X) |A = a] = E[h(X)] for all a.

The second definition—equalized odds—was recently pro-

posed by Hardt et al. (2016) to remedy two previously noted

flaws with demographic parity (Dwork et al., 2012). First,

demographic parity permits a classifier which accurately

classifies data points with one value A = a, such as the

value a with the most data, but makes random predictions

for data points with A 6= a as long as the probabilities of

h(X) = 1 match. Second, demographic parity rules out

perfect classifiers whenever Y is correlated with A. In

contrast, equalized odds suffers from neither of these flaws.

Definition 2 (Equalized odds—EO). A classifier h satis-

fies equalized odds under a distribution over (X,A, Y )
if its prediction h(X) is conditionally independent of

the protected attribute A given the label Y —that is, if

P[h(X) = ŷ | A = a, Y = y] = P[h(X) = ŷ | Y = y] for

all a, y, and ŷ. Because ŷ ∈ {0, 1}, this is equivalent to

E[h(X) |A = a, Y = y] = E[h(X) | Y = y] for all a, y.

We now show how each definition can be viewed as a special

case of a general set of linear constraints of the form

Mµ(h) ≤ c, (1)

where matrix M ∈ R
|K|×|J| and vector c ∈ R

|K| describe

the linear constraints, each indexed by k ∈ K, and µ(h) ∈
R

|J| is a vector of conditional moments of the form

µj(h) = E
[
gj(X,A, Y, h(X))

∣∣ Ej

]
for j ∈ J,

where gj : X×A× {0, 1} × {0, 1} → [0, 1] and Ej is

an event defined with respect to (X,A, Y ). Crucially, gj
depends on h, while Ej cannot depend on h in any way.

Example 1 (DP). In a binary classification setting, demo-

graphic parity can be expressed as a set of |A| equality

constraints, each of the form E[h(X) |A = a] = E[h(X)].
Letting J = A ∪ {⋆}, gj(X,A, Y, h(X)) = h(X) for all j,

1See the Uniform Guidelines on Employment Selection Proce-
dures, 29 C.F.R. §1607.4(D) (2015).
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Ea = {A = a}, and E⋆ = {True}, where {True} refers to

the event encompassing all points in the sample space, each

equality constraint can be expressed as µa(h) = µ⋆(h).
2

Finally, because each such constraint can be equivalently

expressed as a pair of inequality constraints of the form

µa(h)− µ⋆(h) ≤ 0

−µa(h) + µ⋆(h) ≤ 0,

demographic parity can be expressed as equation (1), where

K = A×{+,−}, M(a,+),a′ = 1{a′ = a}, M(a,+),⋆ = −1,

M(a,−),a′ = −1{a′ = a}, M(a,−),⋆ = 1, and c = 0.

Expressing each equality constraint as a pair of inequality

constraints allows us to control the extent to which each

constraint is enforced by positing ck > 0 for some (or all) k.

Example 2 (EO). In a binary classification set-

ting, equalized odds can be expressed as a set

of 2 |A| equality constraints, each of the form

E[h(X) | A = a, Y = y] = E[h(X) | Y = y]. Letting

J = (A ∪ {⋆}) × {0, 1}, gj(X,A, Y, h(X)) = h(X) for

all j, E(a,y) = {A = a, Y = y}, and E(⋆,y) = {Y = y},
each equality constraint can be equivalently expressed as

µ(a,y)(h)− µ(⋆,y)(h) ≤ 0

−µ(a,y)(h) + µ(⋆,y)(h) ≤ 0.

As a result, equalized odds can be expressed

as equation (1), where K = A× Y× {+,−},
M(a,y,+),(a′,y′) = 1{a′= a, y′= y}, M(a,y,+),(⋆,y′) = −1,

M(a,y,−),(a′,y′) = −1{a′= a, y′= y}, M(a,y,−),(⋆,y′) = 1,

and c = 0. Again, we can posit ck > 0 for some (or all) k
to allow small violations of some (or all) of the constraints.

Although we omit the details, we note that many other pre-

viously studied definitions of fairness can also be expressed

as equation (1). For example, equality of opportunity (Hardt

et al., 2016) (also known as balance for the positive class;

Kleinberg et al., 2017), balance for the negative class (Klein-

berg et al., 2017), error-rate balance (Chouldechova,

2017), overall accuracy equality (Berk et al., 2017), and

treatment equality (Berk et al., 2017) can all be expressed

as equation (1); in contrast, calibration (Kleinberg et al.,

2017) and predictive parity (Chouldechova, 2017) cannot

because to do so would require the event Ej to depend on

h. We note that our approach can also be used to satisfy

multiple definitions of fairness, though if these definitions

are mutually contradictory, e.g., as described by Kleinberg

et al. (2017), then our guarantees become vacuous.

2.2. Fair Classification

In a standard (binary) classification setting, the goal is to

learn the classifier h ∈ H with the minimum classification

2Note that µ⋆(h) = E[h(X) | True] = E[h(X)].

error: err(h) := P[h(X) 6= Y ]. However, because our

goal is to learn the most accurate classifier while satisfying

fairness constraints, as formalized above, we instead seek to

find the solution to the constrained optimization problem3

min
h∈H

err(h) subject to Mµ(h) ≤ c. (2)

Furthermore, rather than just considering classifiers in the

set H, we can enlarge the space of possible classifiers by

considering randomized classifiers that can be obtained via

a distribution over H. By considering randomized classi-

fiers, we can achieve better accuracy–fairness tradeoffs than

would otherwise be possible. A randomized classifier Q
makes a prediction by first sampling a classifier h ∈ H

from Q and then using h to make the prediction. The result-

ing classification error is err(Q) =
∑

h∈H
Q(h) err(h) and

the conditional moments are µ(Q) =
∑

h∈H
Q(h)µ(h)

(see Appendix A for the derivation). Thus we seek to solve

min
Q∈∆

err(Q) subject to Mµ(Q) ≤ c, (3)

where ∆ is the set of all distributions over H.

In practice, we do not know the true distribution over

(X,A, Y ) and only have access to a data set of training ex-

amples {(Xi, Ai, Yi)}ni=1. We therefore replace err(Q) and

µ(Q) in equation (3) with their empirical versions êrr(Q)
and µ̂(Q). Because of the sampling error in µ̂(Q), we

also allow errors in satisfying the constraints by setting

ĉk = ck + εk for all k, where εk ≥ 0. After these modifica-

tions, we need to solve the empirical version of equation (3):

min
Q∈∆

êrr(Q) subject to Mµ̂(Q) ≤ ĉ. (4)

3. Reductions Approach

We now show how the problem (4) can be reduced to a se-

quence of cost-sensitive classification problems. We further

show that the solutions to our sequence of cost-sensitive clas-

sification problems yield a randomized classifier with the

lowest (empirical) error subject to the desired constraints.

3.1. Cost-sensitive Classification

We assume access to a cost-sensitive classification algorithm

for the set H. The input to such an algorithm is a data set

of training examples {(Xi, C
0
i , C

1
i )}ni=1, where C0

i and C1
i

denote the losses—costs in this setting—for predicting the

labels 0 or 1, respectively, for Xi. The algorithm outputs

argmin
h∈H

n∑

i=1

h(Xi)C
1
i + (1− h(Xi))C

0
i . (5)

3We consider misclassification error for concreteness, but all
the results in this paper apply to any error of the form err(h) =
E[gerr(X,A, Y, h(X))], where gerr(·, ·, ·, ·) ∈ [0, 1].
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This abstraction allows us to specify different costs for dif-

ferent training examples, which is essential for incorporat-

ing fairness constraints. Moreover, efficient cost-sensitive

classification algorithms are readily available for several

common classifier representations (e.g., Beygelzimer et al.,

2005; Langford & Beygelzimer, 2005; Fan et al., 1999). In

particular, equation (5) is equivalent to a weighted classi-

fication problem, where the input consists of labeled ex-

amples {(Xi, Yi,Wi)}ni=1 with Yi ∈ {0, 1} and Wi ≥ 0,

and the goal is to minimize the weighted classification er-

ror
∑n

i=1 Wi 1{h(Xi) 6= Yi}. This is equivalent to equa-

tion (5) if we set Wi = |C0
i − C1

i | and Yi = 1{C0
i ≥ C1

i }.

3.2. Reduction

To derive our fair classification algorithm, we rewrite equa-

tion (4) as a saddle point problem. We begin by introducing

a Lagrange multiplier λk ≥ 0 for each of the |K| constraints,

summarized as λ ∈ R
|K|
+ , and form the Lagrangian

L(Q,λ) = êrr(Q) + λ⊤
(
Mµ̂(Q)− ĉ

)
.

Thus, equation (4) is equivalent to

min
Q∈∆

max
λ∈R

|K|
+

L(Q,λ). (6)

For computational and statistical reasons, we impose an

additional constraint on the ℓ1 norm of λ and seek to simul-

taneously find the solution to the constrained version of (6)

as well as its dual, obtained by switching min and max:

min
Q∈∆

max
λ∈R

|K|
+

, ‖λ‖1≤B

L(Q,λ), (P)

max
λ∈R

|K|
+

, ‖λ‖1≤B

min
Q∈∆

L(Q,λ). (D)

Because L is linear in Q and λ and the domains of Q and

λ are convex and compact, both problems have solutions

(which we denote by Q† and λ†) and the minimum value of

(P) and the maximum value of (D) are equal and coincide

with L(Q†,λ†). Thus, (Q†,λ†) is the saddle point of L
(Corollary 37.6.2 and Lemma 36.2 of Rockafellar, 1970).

We find the saddle point by using the standard scheme of

Freund & Schapire (1996), developed for the equivalent

problem of solving for an equilibrium in a zero-sum game.

From game-theoretic perspective, the saddle point can be

viewed as an equilibrium of a game between two players:

the Q-player choosing Q and the λ-player choosing λ. The

Lagrangian L(Q,λ) specifies how much the Q-player has to

pay to the λ-player after they make their choices. At the sad-

dle point, neither player wants to deviate from their choice.

Our algorithm finds an approximate equilibrium in which

neither player can gain more than ν by changing their choice

Algorithm 1 Exp. gradient reduction for fair classification

Input: training examples {(Xi, Yi, Ai)}ni=1

fairness constraints specified by gj , Ej , M, ĉ

bound B, accuracy ν, learning rate η
Set θ1 = 0 ∈ R

|K|

for t = 1, 2, . . . do

Set λt,k = B exp{θk}
1+

∑
k′∈K

exp{θ
k′}

for all k ∈ K

ht ← BESTh(λt)

Q̂t ← 1
t

∑t
t′=1 ht′ , L← L

(
Q̂t, BESTλ(Q̂t)

)

λ̂t ← 1
t

∑t
t′=1 λt′ , L← L

(
BESTh(λ̂t), λ̂t

)

νt ← max
{
L(Q̂t, λ̂t)− L, L− L(Q̂t, λ̂t)

}

if νt ≤ ν then

Return (Q̂t, λ̂t)
end if

Set θt+1 = θt + η (Mµ̂(ht)− ĉ)
end for

(where ν > 0 is an input to the algorithm). Such an approx-

imate equilibrium corresponds to a ν-approximate saddle

point of the Lagrangian, which is a pair (Q̂, λ̂), where

L(Q̂, λ̂) ≤ L(Q, λ̂) + ν for all Q ∈ ∆,

L(Q̂, λ̂) ≥ L(Q̂,λ)− ν for all λ ∈ R
|K|
+ , ‖λ‖1 ≤ B.

We proceed iteratively by running a no-regret algorithm for

the λ-player, while executing the best response of the Q-

player. Following Freund & Schapire (1996), the average

play of both players converges to the saddle point. We run

the exponentiated gradient algorithm (Kivinen & Warmuth,

1997) for the λ-player and terminate as soon as the subop-

timality of the average play falls below the pre-specified

accuracy ν. The best response of the Q-player can always

be chosen to put all of the mass on one of the candidate

classifiers h ∈ H, and can be implemented by a single call

to a cost-sensitive classification algorithm for the set H.

Algorithm 1 fully implements this scheme, except for the

functions BESTλ and BESTh, which correspond to the best-

response algorithms of the two players. (We need the best

response of the λ-player to evaluate whether the subopti-

mality of the current average play has fallen below ν.) The

two best response functions can be calculated as follows.

BESTλ(Q): the best response of the λ-player. The best

response of the λ-player for a given Q is any maximizer of

L(Q,λ) over all valid λs. In our setting, it can always be

chosen to be either 0 or put all of the mass on the most vio-

lated constraint. Letting γ̂(Q) := Mµ̂(Q) and letting ek de-

note the kth vector of the standard basis, BESTλ(Q) returns
{
0 if γ̂(Q) ≤ ĉ,

Bek∗ otherwise, where k∗ = argmaxk[γ̂k(Q)− ĉk].
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BESTh(λ): the best response of the Q-player. Here, the

best response minimizes L(Q,λ) over all Qs in the simplex.

Because L is linear in Q, the minimizer can always be cho-

sen to put all of the mass on a single classifier h. We show

how to obtain the classifier constituting the best response

via a reduction to cost-sensitive classification. Letting pj :=

P̂[Ej ] be the empirical event probabilities, the Lagrangian

for Q which puts all of the mass on a single h is then

L(h,λ) = êrr(h) + λ⊤
(
Mµ̂(h)− ĉ

)

= Ê
[
1{h(X) 6= Y }

]
− λ⊤ĉ+

∑

k,j

Mk,jλkµ̂j(h)

= −λ⊤ĉ+ Ê
[
1{h(X) 6= Y }

]

+
∑

k,j

Mk,jλk

pj
Ê

[
gj
(
X,A,Y,h(X)

)
1{(X,A,Y ) ∈ Ej}

]
.

Assuming a data set of training examples {(Xi, Ai, Yi)}ni=1,

the minimization of L(h,λ) over h then corresponds to cost-

sensitive classification on {(Xi, C
0
i , C

1
i )}ni=1 with costs4

C0
i = 1{Yi 6= 0}

+
∑

k,j

Mk,jλk

pj
gj(Xi,Ai,Yi, 0)1{(Xi,Ai,Yi) ∈ Ej}

C1
i = 1{Yi 6= 1}

+
∑

k,j

Mk,jλk

pj
gj(Xi,Ai,Yi, 1)1{(Xi,Ai,Yi) ∈ Ej}.

Theorem 1. Letting ρ := maxh‖Mµ̂(h) − ĉ‖∞, Algo-

rithm 1 satisfies the inequality

νt ≤
B log(|K|+ 1)

ηt
+ ηρ2B.

Thus, for η = ν
2ρ2B

, Algorithm 1 will return a ν-approximate

saddle point of L in at most
4ρ2B2 log(|K|+1)

ν2 iterations.

This theorem, proved in Appendix B, bounds the subopti-

mality νt of the average play (Q̂t, λ̂t), which is equal to its

suboptimality as a saddle point. The right-hand side of the

bound is optimized by η =
√

log(|K|+ 1) / (ρ
√
t), lead-

ing to the bound νt ≤ 2ρB
√
log(|K|+ 1) / t. This bound

decreases with the number of iterations t and grows very

slowly with the number of constraints |K|. The quantity ρ
is a problem-specific constant that bounds how much any

single classifier h ∈ H can violate the desired set of fair-

ness constraints. Finally, B is the bound on the ℓ1-norm of

λ, which we introduced to enable this specific algorithmic

scheme. In general, larger values of B will bring the prob-

lem (P) closer to (6), and thus also to (4), but at the cost of

4For general error, err(h) = E[gerr(X,A, Y, h(X))], the costs
C0

i and C1

i contain, respectively, the terms gerr(Xi, Ai, Yi, 0) and
gerr(Xi, Ai, Yi, 1) instead of 1{Yi 6= 0} and 1{Yi 6= 1}.

needing more iterations to reach any given suboptimality. In

particular, as we derive in the theorem, achieving subopti-

mality ν may need up to 4ρ2B2 log(|K|+1) / ν2 iterations.

Example 3 (DP). Using the matrix M for demographic

parity as described in Section 2, the cost-sensitive reduction

for a vector of Lagrange multipliers λ uses costs

C0
i = 1{Yi 6= 0}, C1

i = 1{Yi 6= 1}+ λAi

pAi

−
∑

a∈A

λa,

where pa := P̂[A = a] and λa := λ(a,+) − λ(a,−), effec-

tively replacing two non-negative Lagrange multipliers by a

single multiplier, which can be either positive or negative.

Because ck = 0 for all k, ĉk = εk. Furthermore, because

all empirical moments are bounded in [0, 1], we can assume

εk ≤ 1, which yields the bound ρ ≤ 2. Thus, Algorithm 1

terminates in at most 16B2 log(2 |A|+ 1) / ν2 iterations.

Example 4 (EO). For equalized odds, the cost-sensitive

reduction for a vector of Lagrange multipliers λ uses costs

C0
i = 1{Yi 6= 0},

C1
i = 1{Yi 6= 1}+ λ(Ai,Yi)

p(Ai,Yi)
−
∑

a∈A

λ(a,Yi)

p(⋆,Yi)
,

where p(a,y) := P̂[A = a, Y = y], p(⋆,y) := P̂[Y = y], and

λ(a,y) := λ(a,y,+) − λ(a,y,−). If we again assume εk ≤ 1,

then we obtain the bound ρ ≤ 2. Thus, Algorithm 1 termi-

nates in at most 16B2 log(4 |A|+ 1) / ν2 iterations.

3.3. Error Analysis

Our ultimate goal, as formalized in equation (3), is to

minimize the classification error while satisfying fairness

constraints under a true but unknown distribution over

(X,A, Y ). In the process of deriving Algorithm 1, we in-

troduced three different sources of error. First, we replaced

the true classification error and true moments with their

empirical versions. Second, we introduced a bound B on

the magnitude of λ. Finally, we only run the optimization

algorithm for a fixed number of iterations, until it reaches

suboptimality level ν. The first source of error, due to the

use of empirical rather than true quantities, is unavoidable

and constitutes the underlying statistical error. The other two

sources of error, the bound B and the suboptimality level ν,

stem from the optimization algorithm and can be driven

arbitrarily small at the cost of additional iterations. In this

section, we show how the statistical error and the optimiza-

tion error affect the true accuracy and the fairness of the ran-

domized classifier returned by Algorithm 1—in other words,

how well Algorithm 1 solves our original problem (3).

To bound the statistical error, we use the Rademacher

complexity of the classifier family H, which we denote

by Rn(H), where n is the number of training examples.

We assume that Rn(H) ≤ Cn−α for some C ≥ 0 and
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α ≤ 1/2. We note that α = 1/2 in the vast majority

of classifier families, including norm-bounded linear

functions (see Theorem 1 of Kakade et al., 2009), neural

networks (see Theorem 18 of Bartlett & Mendelson, 2002),

and classifier families with bounded VC dimension (see

Lemma 4 and Theorem 6 of Bartlett & Mendelson, 2002).

Recall that in our empirical optimization problem we as-

sume that ĉk = ck + εk, where εk ≥ 0 are error bounds that

account for the discrepancy between µ(Q) and µ̂(Q). In

our analysis, we assume that these error bounds have been

set in accordance with the Rademacher complexity of H.

Assumption 1. There exists C,C ′ ≥ 0 and α ≤ 1/2
such that Rn(H) ≤ Cn−α and εk = C ′

∑
j∈J
|Mk,j |n−α

j ,

where nj is the number of data points that fall in Ej ,

nj :=
∣∣{i : (Xi, Ai, Yi) ∈ Ej

}∣∣.

The optimization error can be bounded via a careful analy-

sis of the Lagrangian and the optimality conditions of (P)

and (D). Combining the three different sources of error

yields the following bound, which we prove in Appendix C.

Theorem 2. Let Assumption 1 hold for C ′ ≥ 2C +
2 +

√
ln(4/δ) / 2, where δ > 0. Let (Q̂, λ̂) be any ν-

approximate saddle point of L, let Q⋆ minimize err(Q) sub-

ject to Mµ(Q) ≤ c, and let p⋆j = P[Ej ]. Then, with proba-

bility at least 1− (|J|+ 1)δ, the distribution Q̂ satisfies

err(Q̂) ≤ err(Q⋆) + 2ν + Õ(n−α),

γk(Q̂) ≤ ck +
1+2ν

B
+
∑

j∈J

|Mk,j | Õ(n−α
j ) for all k,

where Õ(·) suppresses polynomial dependence on ln(1/δ).
If np⋆j ≥ 8 log(2/δ) for all j, then, for all k,

γk(Q̂) ≤ ck +
1+2ν

B
+
∑

j∈J

|Mk,j | Õ
(
(np⋆j )

−α
)
.

In other words, the solution returned by Algorithm 1

achieves the lowest feasible classification error on the true

distribution up to the optimization error, which grows lin-

early with ν, and the statistical error, which grows as n−α.

Therefore, if we want to guarantee that the optimization er-

ror does not dominate the statistical error, we should set ν ∝
n−α. The fairness constraints on the true distribution are

satisfied up to the optimization error (1 + 2ν) /B and up to

the statistical error. Because the statistical error depends on

the moments, and the error in estimating the moments grows

as n−α
j ≥ n−α, we can set B ∝ nα to guarantee that the op-

timization error does not dominate the statistical error. Com-

bining this reasoning with the learning rate setting of Theo-

rem 1 yields the following theorem (proved in Appendix C).

Theorem 3. Let ρ := maxh‖Mµ̂(h)− ĉ‖∞. Let Assump-

tion 1 hold for C ′ ≥ 2C + 2 +
√
ln(4/δ) / 2, where δ > 0.

Let Q⋆ minimize err(Q) subject to Mµ(Q) ≤ c. Then

Algorithm 1 with ν ∝ n−α, B ∝ nα and η ∝ ρ−2n−2α ter-

minates in O(ρ2n4α ln |K|) iterations and returns Q̂, which

with probability at least 1− (|J|+ 1)δ satisfies

err(Q̂) ≤ err(Q⋆) + Õ(n−α),

γk(Q̂) ≤ ck +
∑

j∈J

|Mk,j | Õ(n−α
j ) for all k.

Example 5 (DP). If na denotes the number of training ex-

amples with Ai = a, then Assumption 1 states that we

should set ε(a,+) = ε(a,−) = C ′(n−α
a + n−α) and Theo-

rem 3 then shows that for a suitable setting of C ′, ν, B,

and η, Algorithm 1 will return a randomized classifier Q̂
with the lowest feasible classification error up to Õ(n−α)
while also approximately satisfying the fairness constraints

∣∣∣E[h(X) |A = a]− E[h(X)]
∣∣∣ ≤ Õ(n−α

a ) for all a,

where E is with respect to (X,A, Y ) as well as h ∼ Q̂.

Example 6 (EO). Similarly, if n(a,y) denotes the number

of examples with Ai = a and Yi = y and n(⋆,y) denotes the

number of examples with Yi = y, then Assumption 1 states

that we should set ε(a,y,+) = ε(a,y,−) = C ′(n−α
(a,y)+n−α

(⋆,y))

and Theorem 3 then shows that for a suitable setting of C ′, ν,

B, and η, Algorithm 1 will return a randomized classifier Q̂
with the lowest feasible classification error up to Õ(n−α)
while also approximately satisfying the fairness constraints

∣∣∣E[h(X) |A = a, Y = y]− E[h(X) | Y = y]
∣∣∣ ≤ Õ(n−α

(a,y))

for all a, y. Again, E includes randomness under the true

distribution over (X,A, Y ) as well as h ∼ Q̂.

3.4. Grid Search

In some situations, it is preferable to select a deterministic

classifier, even if that means a lower accuracy or a modest vi-

olation of the fairness constraints. A set of candidate classi-

fiers can be obtained from the saddle point (Q†,λ†). Specif-

ically, because Q† is a minimizer of L(Q,λ†) and L is

linear in Q, the distribution Q† puts non-zero mass only on

classifiers that are the Q-player’s best responses to λ†. If we

knew λ†, we could retrieve one such best response via the re-

duction to cost-sensitive learning introduced in Section 3.2.

We can compute λ† using Algorithm 1, but when the number

of constraints is very small, as is the case for demographic

parity or equalized odds with a binary protected attribute,

it is also reasonable to consider a grid of values λ, calculate

the best response for each value, and then select the value

with the desired tradeoff between accuracy and fairness.

Example 7 (DP). When the protected attribute is binary,

e.g., A ∈ {a, a′}, then the grid search can in fact be con-

ducted in a single dimension. The reduction formally takes
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two real-valued arguments λa and λa′ , and then adjusts the

costs for predicting h(Xi) = 1 by the amounts

δa =
λa

pa
− λa − λa′ and δa′ =

λa′

pa′

− λa − λa′ ,

respectively, on the training examples with Ai = a and

Ai = a′. These adjustments satisfy paδa + pa′δa′ = 0,

so instead of searching over λa and λa′ , we can carry out

the grid search over δa alone and apply the adjustment

δa′ = −paδa/pa′ to the protected attribute value a′.

With three attribute values, e.g., A ∈ {a, a′, a′′}, we sim-

ilarly have paδa + pa′δa′ + pa′′δa′′ = 0, so it suffices to

conduct grid search in two dimensions rather than three.

Example 8 (EO). If A ∈ {a, a′}, we obtain the adjustment

δ(a,y) =
λ(a,y)

p(a,y)
− λ(a,y) + λ(a′,y)

p(⋆,y)

for an example with protected attribute value a and label y,

and similarly for protected attribute value a′. In this case,

separately for each y, the adjustments satisfy

p(a,y)δ(a,y) + p(a′,y)δ(a′,y) = 0,

so it suffices to do the grid search over δ(a,0) and δ(a,1) and

set the parameters for a′ to δ(a′,y) = −p(a,y)δ(a,y)/p(a′,y).

4. Experimental Results

We now examine how our exponentiated-gradient reduc-

tion5 performs at the task of binary classification subject to

either demographic parity or equalized odds. We provide an

evaluation of our grid-search reduction in Appendix D.

We compared our reduction with the score-based post-

processing algorithm of Hardt et al. (2016), which takes as

its input any classifier, (i.e., a standard classifier without any

fairness constraints) and derives a monotone transformation

of the classifier’s output to remove any disparity with respect

to the training examples. This post-processing algorithm

works with both demographic parity and equalized odds, as

well as with binary and non-binary protected attributes.

For demographic parity, we also compared our reduction

with the reweighting and relabeling approaches of Kamiran

& Calders (2012). Reweighting can be applied to both

binary and non-binary protected attributes and operates by

changing importance weights on each example with the

goal of removing any statistical dependence between the

protected attribute and label.6 Relabeling was developed for

5https://github.com/Microsoft/fairlearn
6Although reweighting was developed for demographic parity,

the weights that it induces are achievable by our grid search, albeit
the grid search for equalized odds rather than demographic parity.

binary protected attributes. First, a classifier is trained on

the original data (without considering fairness). The training

examples close to the decision boundary are then relabeled

to remove all disparity while minimally affecting accuracy.

The final classifier is then trained on the relabeled data.

As the base classifiers for our reductions, we used the

weighted classification implementations of logistic regres-

sion and gradient-boosted decision trees in scikit-learn (Pe-

dregosa et al., 2011). In addition to the three baselines

described above, we also compared our reductions to the

“unconstrained” classifiers trained to optimize accuracy only.

We used four data sets, randomly splitting each one into

training examples (75%) and test examples (25%):

• The adult income data set (Lichman, 2013) (48,842

examples). Here the task is to predict whether some-

one makes more than $50k per year, with gender as the

protected attribute. To examine the performance for

non-binary protected attributes, we also conducted an-

other experiment with the same data, using both gender

and race (binarized into white and non-white) as the

protected attribute. Relabeling, which requires binary

protected attributes, was therefore not applicable here.

• ProPublica’s COMPAS recidivism data (7,918 exam-

ples). The task is to predict recidivism from someone’s

criminal history, jail and prison time, demographics,

and COMPAS risk scores, with race as the protected

attribute (restricted to white and black defendants).

• Law School Admissions Council’s National Longitu-

dinal Bar Passage Study (Wightman, 1998) (20,649

examples). Here the task is to predict someone’s even-

tual passage of the bar exam, with race (restricted to

white and black only) as the protected attribute.

• The Dutch census data set (Dutch Central Bureau for

Statistics, 2001) (60,420 examples). Here the task is

to predict whether or not someone has a prestigious

occupation, with gender as the protected attribute.

While all the evaluated algorithms require access to the pro-

tected attribute A at training time, only the post-processing

algorithm requires access to A at test time. For a fair com-

parison, we included A in the feature vector X , so all algo-

rithms had access to it at both the training time and test time.

We used the test examples to measure the classification error

for each approach, as well as the violation of the desired fair-

ness constraints, i.e., maxa
∣∣E[h(X) |A = a]− E[h(X)]

∣∣
and maxa,y

∣∣E[h(X) | A = a, Y = y]− E[h(X) | Y = y]
∣∣

for demographic parity and equalized odds, respectively.

We ran our reduction across a wide range of tradeoffs be-

tween the classification error and fairness constraints. We

considered ε ∈ {0.001, . . . , 0.1} and for each value ran

Algorithm 1 with ĉk = ε across all k. As expected, the

returned randomized classifiers tracked the training Pareto

https://github.com/Microsoft/fairlearn
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Figure 1. Test classification error versus constraint violation with respect to DP (top two rows) and EO (bottom two rows). All data sets

have binary protected attributes except for adult4, which has four protected attribute values, so relabeling is not applicable there. For our

reduction approach we plot the convex envelope of the classifiers obtained on training data at various accuracy–fairness tradeoffs. We

show 95% confidence bands for the classification error of our reduction approach and 95% confidence intervals for the constraint violation

of post-processing. Our reduction approach dominates or matches the performance of the other approaches up to statistical uncertainty.

frontier (see Figure 2 in Appendix D). In Figure 1, we evalu-

ate these classifiers alongside the baselines on the test data.

For all the data sets, the range of classification errors

is much smaller than the range of constraint violations.

Almost all the approaches were able to substantially reduce

or remove disparity without much impact on classifier accu-

racy. One exception was the Dutch census data set, where

the classification error increased the most in relative terms.

Our reduction generally dominated or matched the baselines.

The relabeling approach frequently yielded solutions that

were not Pareto optimal. Reweighting yielded solutions

on the Pareto frontier, but often with substantial disparity.

As expected, post-processing yielded disparities that were

statistically indistinguishable from zero, but the resulting

classification error was sometimes higher than achieved by

our reduction under a statistically indistinguishable dispar-

ity. In addition, and unlike the post-processing algorithm,

our reduction can achieve any desired accuracy–fairness

tradeoff, allows a wider range of fairness definitions, and

does not require access to the protected attribute at test time.

Our grid-search reduction, evaluated in Appendix D,

sometimes failed to achieve the lowest disparities on

the training data, but its performance on the test data

very closely matched that of our exponentiated-gradient

reduction. However, if the protected attribute is non-binary,

then grid search is not feasible. For instance, for the version

of the adult income data set where the protected attribute

takes on four values, the grid search would need to span

three dimensions for demographic parity and six dimensions

for equalized odds, both of which are prohibitively costly.

5. Conclusion

We presented two reductions for achieving fairness in a

binary classification setting. Our reductions work for any

classifier representation, encompass many definitions of fair-

ness, satisfy provable guarantees, and work well in practice.

Our reductions optimize the tradeoff between accuracy and

any (single) definition of fairness given training-time access

to protected attributes. Achieving fairness when training-

time access to protected attributes is unavailable remains an

open problem for future research, as does the navigation of

tradeoffs between accuracy and multiple fairness definitions.
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