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Abstract

A semihypergroup is defined by dropping the requirement of an iden-
tity or involution from the definition of a hypergroup. Dunkl [Du73]
called it a hypergroup (without involution) while Jewett [Je75] referred
to it as a semiconvo. In this paper, we generalize some basic algebraic
results from semigroups to semihypergroups. Among other things, we
define a Rees convolution product for a topological semihypergroup S

and prove that if X,Y are non-empty sets and H is a hypergroup, then
with the Rees convolution product, X × H × Y is a completely simple
semihypergroup which has all its idempotent elements in its center. We
also prove that in every locally compact semihypergroup, S, if B is a
Borel subset of S then for any x ∈ S, the sets Bx− and x−B are also
Borel subsets of S.
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1 Introduction

In contrast with topological semigroups, an algebraic operation is not defined

on a topological semihypergroup S, rather the convolution of measures is used

to induce an algebraic operation on S. We are therefore logically faced with the

question: how much algebraic structure could be inherited from the algebra of

measures of a topological semihypergroup? We address this question by first
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defining the corresponding algebraic concepts, on semihypergroups, verifying

that our definitions remain consistent with the classical semigroup definitions.

Among other things, we define the notion of ideals, simple and completely

simple semihypegroups, as well as a Rees convolution product for topological

semihypergroups. Along the line we give basics results, essential in doing

harmonic analysis and Probability on semihypergroups. Typical results are:

1. Let X and Y be non-empty sets and H be a locally compact topological

hypergroup, then with the Rees convolution product, X × H × Y is a

completely simple semihypergroup.

2. Let B be a Borel subset of a locally compact topological semihypergroup

S. Then for any x ∈ S, the sets Bx− and x−B are also Borel subsets of

S

Also we use simple finite-element semihypergroups to illustrate striking

contrast between semihypergroups and semigroups. For instance a semigroup

which is left and right simple is a group but we have an example of simple

two-element semihypergroup which is not a hypergroup. We show that if a

two-element semihypergroup is not commutative then it must be a semigroup.

All undefined terms used in this work in connection with topological semi-

hypergroups can be found in Jewett [Je75] or Youmbi [Yn05].

2 Preliminaries

Let S be a locally compact Hausdorff space; C(S), the space of complex contin-

uous functions on S; Cb(S) the space of bounded elements of C(S); C0(S) the

space of elements of Cb(S) which tends to 0 at ∞; Cc(S) the space of elements

of C0(S) with compact support; C+
c (S) the space of nonnegative elements of

Cc(S); M(S) denotes the set of finite regular Borel measures;M+(S) the set

of non-negative measures; M1(S) denote the set of probability measures; If

μ ∈ M(S) then Supp(μ) = {x ∈ S : if V is any open set containing x then

μ(V ) > 0}; An unspecified topology on M+(S) is the cone topology.

2.1 Definition

A nonempty locally compact Hausdorff space S will be called a semihypergroup

if the following conditions are satisfied:

(SH1) (M(S), +, ∗) is a Banach algebra.

(SH2) For all x, y ∈ S, δx ∗ δy is a probability measure with compact support.
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(SH3) The mapping (x, y) �→ δx ∗ δy of S × S into M1(S), where S × S has

the product topology and M1(S) has the weak topology, is continuous.

(SH4) The mapping(x, y) �→ Supp(δx ∗ δy) of S × S into C(S) is continu-

ous, where C(S) is the space of compact subsets of S endowed with the

Michael topology, that is the topology generated by the subbasis of all

CU (V ) = {C ∈ C(S) : C ∩ U �= ∅ and C ⊂ V } where U and V are open

subsets of S.

If in addition,

SH5 there exists e ∈ S such that δx ∗ δe = δe ∗ δx = δx ∀x ∈ S, and

SH6 There exists a topological involution (a homeomorphism) from S onto

S such that (x−)− = x ∀x ∈ S, with (δx ∗ δy)
− = δy− ∗ δx− and e ∈

Supp(δx ∗ δy) if and only if x = y− where for any Borel set B, μ−(B) =

μ({x− : x ∈ B}).
(S, ∗) will be called a hypergroup.

Remarks

(i) If δx ∗ δy = δy ∗ δx for all x, y ∈ S we say that (S, ∗) is a commutative

semihypergroup.

(ii) The convolution ∗ on M(S) is defined by

μ ∗ ν(f) =

∫
S

fdμ ∗ ν =

∫
S

μ(dx)

∫
S

ν(dy)

∫
S

fdδx ∗ δy.

for all f ∈ Cb(S).

2.2 Examples

1. If (S, .) is a topological semigroup, where S is a locally compact Haus-

dorff space, then with convolution defined by δx ∗ δy = δxy, (S, ∗) is a

semihypergroup. Also if a semihypergroup is such that the convolution

of two point masses is a point mass, then it is a semigroup.

2. Let S = {x, y} with the discrete topology. Then S is a locally compact

space we can define the convolution of point masses by

δx ∗ δx = aδx + bδy

δy ∗ δy = b′δx + a′δy
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δx ∗ δy = pδx + p′δy

δy ∗ δx = qδx + q′δy

where a, b, a′, b′, p, p′, q, q′ are non-negative real numbers such that a +

b = a′ + b′ = p + p′ = q + q′ = 1 (for the convolution product of two

point masses to be a probability measure) and bb′ = pp′ = qq′ (for the

convolution product to be associative). Then (S, ∗) is a semihypergroup.

We observe here that every commutative two-element semihypergroup

is a semigroup. For if either b or b′ is non-zero, the semihypergroup

is commutative. Now let us assume that b and b′ are both zero. Then,

associativity of convolution implies that pp′ = qq′ = 0 so that the semihy-

pergroup is actually a semigroup since one of p, p′ is zero and one of q, q′

is zero. Thus we most have δx∗δx = δx, δy∗δy = δy, δx∗δy = δy, δy∗δx = δx

which is a non commutative semigroup.

3. Let S = {e, a, b}. Let e be the identity element and let us define

δa ∗ δa =
1

2
δa +

1

2
δb

δb ∗ δb = δa

δa ∗ δb = δb ∗ δa =
1

2
δe +

1

2
δb

Then (S, ∗) is a semihypergroup and if we defined an involution by a′ = b

and b′ = a we have

(δa ∗ δa)
′ =

1

2
δa′ +

1

2
δb′ =

1

2
δb +

1

2
δa

But

δa′ ∗ δa′ = δb ∗ δb = δa �= 1

2
δa +

1

2
δb.

Although e ∈ Supp(δa ∗ δb) this involution does not satisfy the condi-

tion (δa ∗ δb)
′ = δb′ ∗ δa′ , this semihypergroup is almost (though not) a

hypergroup and it is called a regular semihypergroup [On93].

4. Let H = {e, x, y} and let e be the identity element, the identity function

is considered as the involution, and a commutative convolution is defined

on H by

δx ∗ δx = aδe + bδx + cδy

δy ∗ δy = a′δe + c′δx + b′δy

δx ∗ δy = δy ∗ δx = qδx + q′δy

Then (H, ∗) is a hypergroup provided a+ b+ c = a′ + b′ + c′ = q + q′ = 1

(for the convolution of two point masses to be a probability measure,

and a′c = aq (for associativity of convolution).
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2.3 Definition

1. An element e ∈ S is called a left (right) identity element of S if δe∗δx = δx

( δx ∗δe = δx) for every x ∈ S. An element e is called a two sided identity

of S or simply an identity of S, if it is both a left and right identity. The

identity, when it exists, is unique.

2. An element z ∈ S is called a left(right) zero element of S if δz ∗ δx = δz

(δx ∗ δz = δz) for all x ∈ S. If z is both left and right zero, we simply call

it the zero of S. A semihypergroup has at most one zero.

3. An element a ∈ S is called an idempotent element of S if δa ∗ δa = δa

Remark

The only idempotent element in a hypergroup is the identity element. For

if there is an idempotent element, its point mass would be an idempotent

measure and its support a singleton.

2.4 Definition

Let (S, ∗) be a semihypergroup.

1. If x ∈ S and A, B are subsets of S we define

Ax =
⋃
y∈A

Supp(δy ∗ δx)

xA =
⋃
y∈A

Supp(δx ∗ δy)

A ∗ B =
⋃

x∈A,y∈B

Supp(δx ∗ δy)

Remark

A closed nonempty subset F of S can be verified to be a subsemihypergroup

of S if and only if F ∗ F ⊂ F

2.5 Proposition [Je75]

Let S be a semihypergroup and A, B, C ⊂ S. Then

i. Ā ∗ B̄ ⊂ A ∗ B .

ii. If A and B are compact then A ∗ B is compact
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iii. Convolution is a continuous operation on C(S)

iv. If A and B are compact and U is an open set containing A ∗B, then there

exist open sets V and W such that A ⊂ V , B ⊂ W and V ∗ W ⊂ U

v. (A ∗ B) ∗ C = A ∗ (B ∗ C)

C(S) with * so defined is a topological semigroup.

Remark [Je75]

1. If {xβ} is a net in a hypergroup S, then the expression xβ → ∞ means

that xβ ∈ S − A eventually for each compact subset A of S.

2. If {Aβ} is a net in C(S), then the expression Aβ → {∞} means that

Aβ ⊂ S − A eventually for each compact subset A of S.

Note that Aβ → ∞ and Aβ → {∞} have different meanings.

The next proposition is stated without proof in [Je75]. For the sake com-

pletion, we give here a detailed proof.

2.6 Proposition

If H is a hypergroup and A, B, C are subsets of H , then

i. e ∈ A− ∗B if and only if A∩B �= ∅; also e ∈ A∗B− if and only if A∩B �= ∅

ii. (A∗B)∩C �= ∅ if and only if B∩(A−∗C) �= ∅ if and only if A∩(C∗B−) �= ∅

iii. If B is open, then A ∗ B is open and Ā ∗ B = A ∗ B

iv. If A is compact and B is closed, then A ∗ B is closed.

Proof

i. Suppose e ∈ A− ∗ B. Then there exists x ∈ A and y ∈ B such that

e ∈ Supp(δx− ∗ δy) which implies x = y ( from SH6), so A∩B �= ∅. Now

if A ∩ B �= ∅ then there exists x ∈ A ∩ B, and so e ∈ Supp(δx− ∗ δx).

Therefore, e ∈ A− ∗ B

ii. (A∗B)∩C �= ∅ if and only if e ∈ (A∗B)−∗C if and only if e ∈ B−∗(A−∗C)

if and only if B∩(A−∗C) �= ∅ if and only if e ∈ B∗(C−∗A) = (B∗C−)∗A

if and only if A ∩ (C ∗ B−) �= ∅
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iii. Suppose B is open. Let a ∈ A , then x ∈ {a} ∗B if and only if B ∩ {a−} ∗
{x} �= ∅ ( from ii above). Since the map x �−→ {a−} ∗ {x} is continuous

( from SH4), the set CB(H) is an open set in the Michael topology which

contains {a−} ∗ {x} ( because B ∩ {a−} ∗ {x} �= ∅ and {a−} ∗ {x} ⊂ H)

so its inverse image by the continuous function x �−→ {a−}∗{x} is open,

which is, {y ∈ H : {a−} ∗ {y} ∩ B �= ∅} = {a} ∗ B. Thus {a} ∗ B is an

open subset of H .

iv. Let (xn) be a sequence of elements of A ∗ B converging to an element

x ∈ S. Then there are sequences (an) ⊂ A and (bn) ⊂ B such that

xn ∈ {an} ∗ {bn} for each n. This is equivalent to bn ∈ {a−
n } ∗ {xn}

for each n (from (ii) above see also the remark (i) below). Since A

is compact, the sequence (an) has a convergent subsequence say, (ak)

such that bk ∈ {a−
k } ∗ {xn} for each k. Furthermore (a−

k ) and (xk) are

relatively compact ( as convergent sequences). So (bk) has a convergent

subsequence converging to a point b ∈ B (since B is closed). Now from

SH4 if ak −→ a ∈ A then {a−
k }∗{xk} −→ {a−}∗{x}. So b ∈ {a−}∗{x} (

since bk ∈ {a−
k }∗{x} for all k). And again from (ii) above b ∈ {a−}∗{x}

if and only if x ∈ {a} ∗ {b} ⊂ A ∗ B. Thus A ∗ B is closed.

2.7 Definition

1. A homomorphism of semihypergroups is defined via measure al-

gebra as follows: Let S and T be two semihypergroups. A mapping φ

from S into T is called a semihypergroup homomorphism if and only if

φ : (M1(S), ∗) −→ (M1(T ), •) is a semigroup homomorphism. That is,

φ(μ ∗ ν) = φ(μ) • φ(ν), ∀μ, ν ∈ M1(S), such that φ(δx) is a point mass

in M1(T ), ∀x ∈ S. If in addition φ is one to one and onto, it is referred

to as an isomorphism.

2. Product of semihypergroups. Let (S, ∗), (T, •) be two semihyper-

groups. The set S × T with the product topology is a locally compact

space, and this can be made into a semihypergroup by defining

δ(x,y) ◦ δ(s,t) = δx ∗ δs ⊗ δy • δt

where (x, y), (s, t) ∈ S×T and δ(x,y)◦δ(s,t) is a product measure on S×T .

2.8 Definition

Let S be a locally compact semihypergroup. The center of S is defined by

Z(S) = {x ∈ S : Supp(δx ∗ δy) is a singleton, for all y ∈ S}
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2.9 Remark

For a hypergroup H the center is the maximum subgroup defined by Jewett

as Z(H) = {x ∈ H : δx ∗ δx− = δx− ∗ δx = δe}. To see this, suppose that

δx ∗ δx− = δx− ∗ δx = δe and let y ∈ H be arbitrarily chosen, and assume

that a, b ∈ Supp(δx ∗ δy); then since a ∈ {x} ∗ {y}, from [Je75](lemma 4.1B)

{x} ∗ {y} ∩ {a} �= ∅ which is equivalent to y ∈ {x−} ∗ {a}; similarly, y ∈
{x−}∗{b} which means that {x−}∗{a}∩{x−}∗{b} �= ∅ and this is equivalent

to {a} ∩ {x} ∗ {x−} ∗ {b} �= ∅ and since δx ∗ δx− = δx− ∗ δx = δe it follows that

{a} ∩ {b} �= ∅ that is a = b so that Supp(δx ∗ δy) is a singleton, for all y ∈ H .

Conversely suppose an element x is such that Supp(δx∗δy) is a singleton, for

all y ∈ H then Supp(δx ∗ δx−)is a singleton and since by definition it contains

e we have δx ∗ δx− = δe.

2.10 Example

i. Every semigroup is a semihypergroup and its center is the entire semigroup.

Also every group is a hypergroup which is the maximum subgroup( equiv-

alently the center) of itself.

ii. If H is a hypergroup, then e ∈ H so the center of a hypergroup is nonempty.

When Z(H) = {e}, the center is said to be trivial.

iii. Let S = {x, y} with convolution defined by

δx ∗ δx = δy

δy ∗ δy =
1

4
δx +

3

4
δy

δx ∗ δy = δy ∗ δx =
1

2
δx +

1

2
δy

from the definition of two-element semihypergroups above Example 2.2,

S is a semihypergroup with a void center.

iv. Consider the segment [0, 1] with convolution defined by

δr ∗ δs =
1

2
δ|r−s| +

1

2
δ1−|1−r−s|

for all r, s ∈ [0, 1] Zeuner [Ze89] proved that ([0, 1], ∗) is a hypergroup

with a nontrivial center {0, 1}.
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2.11 Definition

1. A subsemihypergroup L (R) of a semihypergroup S is called a left (right)

ideal of S if S ∗ L ⊂ L (R ∗ S ⊂ R); I is called an ideal of S if and only

if it is both a right and left ideal.

2. S is called left (right) simple if it contains no proper left (right) ideal.

S is said to be simple if it contains no proper ideal. A left (right) ideal

is said to be a principal left (right) ideal if it is of the form {a} ∪ Sa (

{a} ∪ aS)for some a ∈ S (Recall that we write Sa to mean S ∗ {a}).

3. ∀a, b ∈ S we say that the equation xa = b is solvable if and only if there

exists x0 ∈ S such that b ∈ Supp(δx0 ∗ δa)

2.12 Proposition

A semihypergroup S is left (right) simple if and only if ∀a, b ∈ S the equation

xa = b (ax = b) is solvable.

Proof:

First, assume S is left simple. Then ∀a ∈ S, Sa is a left ideal of S and

since S is left simple S = Sa and it follows that ∀b ∈ S, ∃x0 ∈ S such that

b ∈ Supp(δx0 ∗δa) so xa = b is solvable. Now assume that xa = b is solvable for

all a, b ∈ S, and L is a left ideal of S. Then given a ∈ L, Sa ⊂ L. Also given

b ∈ S the equation xa = b is solvable so ∃x0 ∈ S such that b ∈ Supp(δx0 ∗ δa)

which is a subset of Sa, so S ⊂ Sa ⊂ L therefore S = L and so S is left simple.

We can also make a similar argument for right ideals.

2.13 Remark

i. Every left (right) ideal contains a left (right) ideal of the form Sa (aS) for

some a ∈ S. For if L is a left ideal then for any a ∈ L, Sa is a left ideal

contained in L. A similar statement holds for right ideals.

ii. A semihypergroup can be left and right simple without being a hypergroup.

An example is the following semihypergroup. Let S = {x, y} with con-

volution defined by

δx ∗ δx = δy

δy ∗ δy =
1

4
δx +

3

4
δy

δx ∗ δy = δy ∗ δx =
1

2
δx +

1

2
δy
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From example 2.10(iii) S so defined is a semihypergroup with no proper

ideal but is not a hypergroup since it has no identity element.

2.14 Definition

1. An idempotent element in a semihypergroup S is said to be a primi-

tive idempotent element if it is in the center of the semihypergroup

and is minimal with respect to the partial order ≤ on E(S) (the set of

idempotent elements of S), defined by

e ≤ f ⇐⇒ δe ∗ δf = δf ∗ δe = δe

2. A completely simple semihypergroup is a simple semihypergroup

which contains a primitive idempotent element.

2.15 Remark

The order defined on E(S) uses convolution of point masses to compare idem-

potent elements of S. Note that if a is a primitive idempotent of S, δa is not

necessarily a primitive idempotent in M1(S), according to the definition of

primitive idempotents in the semigroup (with respect to convolution)M1(S).

With this definition every completely simple semigroup is a completely sim-

ple semihypergroup. In the semigroup theory completely simple semigroups

are characterized by a product called the Rees Product. We introduce here a

similar product for semihypergroups which we call a Rees Convolution Prod-

uct.

3 Rees Convolution Product

Let (H, ∗) be a hypergroup with center Z and X,Y be two nonempty sets. Let

φ : Y ×X −→ Z be a mapping . Let us define a convolution on point masses

of X × H × Y by

δ(x,h,y) • δ(x′,h′,y′) = δx ⊗ (δh ∗ δφ(y,x′) ∗ δh′) ⊗ δy′

This product will be referred to as the Rees convolution product.

3.1 Proposition

If H is a hypergroup, and X and Y are two nonempty locally compact Haus-

dorff spaces, then the space X × H × Y is a semihypergroup with the Rees

convolution product, as defined above.
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Proof:

Let K = X × H × Y and (x, h, y), (x′, h′, y′) be two points in K. Then

[δ(x,h,y) • δ(x′,h′,y′)](K) =

[δx ⊗ (δh ∗ δφ(y,x′) ∗ δh′) ⊗ δy′ ](K) =

δx(X)[δh ∗ δφ(y,x′) ∗ δh′(H)]δy′(Y ) = 1

Since δh ∗ δφ(y,x′) is a probability measure with compact support in H ,

δh∗δφ(y,x′)∗δh′ is a probability measure with compact support in H and it follows

that δx ⊗ (δh ∗ δφ(y,x′) ∗ δ′h)⊗ δy′ is a probability measure with compact support

in K. Next we have to show that • is associative. Let (x, h, y), (x′, h′, y′) and

(x′′, h′′, y′′) be three arbitrary elements of K then

[δ(x,h,y) • δ(x′,h′,y′)] • δ(x′′,h′′,y′′) =

[δx ⊗ (δh ∗ δφ(y,x′) ∗ δh′) ⊗ δy′ ] • δ(x′′,h′′,y′′) =

δx ⊗ ((δh ∗ δφ(y,x′) ∗ δh′) ∗ δφ(y′,x′′) ∗ δh′′) ⊗ δy′′

And

δ(x,h,y) • [δ(x′,h′,y′) • δ(x′′,h′′,y′′)] = δ(x,h,y) • [δx′ ⊗ δh′ ∗ δφ(y′,x′′) ∗ δh′′ ⊗ δy′′ =

δx ⊗ (δh ∗ δφ(y,x′) ∗ (δh′ ∗ δφ(y′,x′′) ∗ δh′′)) ⊗ δy′′

now we can easily see that

[δ(x,h,y) • δ(x′,h′,y′)] • δ(x′′,h′′,y′′) = δ(x,h,y) • [δ(x′,h′,y′) • δ(x′′,h′′,y′′)]

This shows that (K, •) is a semihypergroup.

Up to this point we have considered φ : Y × X −→ H and have not used

the fact that φ maps Y × X into Z, the center of H . We will require this in

what follows.

3.2 Proposition

An element (x, h, y) ∈ K is an idempotent element if and only if h = φ(y, x)−.

Furthermore, idempotent elements of K are in its center.

Proof:

Let (x, h, y) be an idempotent element of K. Then, we have :

δ(x,h,y) • δ(x,h,y) = δx ⊗ δh ∗ δφ(y,x) ∗ δh ⊗ δy = δx ⊗ δh ⊗ δy
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That is,

δh ∗ δφ(y,x) ∗ δh = δh

Multiplying both sides of the equality above by δφ(y,x) on the left, we have

(δφ(y,x) ∗ δh) ∗ (δφ(y,x) ∗ δh) = δφ(y,x) ∗ δh

This shows that (δφ(y,x) ∗ δh) is an idempotent element of the hypergroup H

and so is the point mass at the identity of H , therefore, h = φ(y, x)−.

We note here that if we did not assume that φ(y, x) was in the center of

H this result will still hold as (δφ(y,x) ∗ δh) will be considered an idempotent

probability measure and so its support is a subhypergroup (JE 10.2E) of H

containing the identity so that h = φ(y, x)−, by axiom SH6 in the definition

of a hypergroup.

Next we need to show that ∀x ∈ X and y ∈ Y , (x, φ(y, x)−, y) is an

idempotent element of K for

δ(x,φ(y,x)−,y) • δ(x,φ(y,x)−,y) =

δx ⊗ δφ(y,x)− ∗ δφ(y,x) ∗ δφ(y,x)− ⊗ δy =

δx ⊗ δφ(y,x)− ⊗ δy = δ(x,φ(y,x)−,y)

since δφ(y,x)− is in the center of H(this is the first time we have used the center

property of Z), let (x, φ(y, x)−, y) and (x′, h′, y′) be two arbitrary elements of

K. Then,

δ(x,φ(y,x)−,y) • δ(x′,h′,y′) =

δx ⊗ δφ(y,x)− ∗ δφ(y,x′) ∗ δh′ ⊗ δy′

Notice that by the center property of Z, δφ(y,x)− ∗ δφ(y,x′) ∗ δh′ is a point mass.

Thus, (x, φ(y, x)−, y) is in the center of K.

3.3 Theorem

If H is a hypergroup, and X and Y are two nonempty locally compact Haus-

dorff spaces, then the semihypergroup K = X × H × Y with the Rees convo-

lution product, as defined above, is completely simple.

Proof:

First, we need to show that K is simple. Let I be an ideal of K and let

(x, h, y) ∈ K be a point in K. We will show that (x, h, y) ∈ I which shows

that K = I. To do this, let (x1, h1, y1) be any point of I. Then the support

of the probability measure δ(x,h,y) • δ(x1,h1,y1) • δ(x,h,y) is a subset of I. We will

prove that the point (x, h, y) ∈ I.
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By definition of the convolution product on K

δ(x,h,y) • δ(x1,h1,y1) • δ(x,h,y) =

δx ⊗ δh ∗ δφ(y,x1) ∗ (δh1 ∗ δφ(y1,x) ∗ δh) ⊗ δy

And observe that

Supp(δ(x,h,y)•δ(x1,h1,y1)•δ(x,h,y)) = {x}×Supp(δh∗δφ(y,x1)∗(δh1∗δφ(y1,x)∗δh))×{y}

Thus whenever (x, h, y) ∈ K,{x}×Supp(δh∗δφ(y,x1)∗(δh1∗δφ(y1,x)∗δh)×{y} ⊂ I

Since δφ(y,x1) ∗ (δh1 ∗ δφ(y1,x)) = δk for some k ∈ H ,we have (x, k−, y) ∈ {x} ×
Supp(δk− ∗ δφ(y,x1) ∗ (δh1 ∗ δφ(y1,x)) ∗ δk−) × {y} ⊂ I for some k ∈ H . Now if

δk− ∗δφ(y,x) = δu, then (x, u−, y) ∈ K and (x, e, y) ∈ {(x, k−, y)}•{(x, u−, y)} ⊂
I. Now for any h ∈ H , (x, {φ(y, x)−} ∗ {h}, y) ∈ K and we have

(x, e, y) • (x, {φ(y, x)−} ∗ {h}, y) = (x, h, y) ∈ I.

This shows that I = K, and thus K is simple.

Next we need to show that K contains a primitive idempotent element.

Now suppose (x, φ(y, x)−, y) and (x′, φ(y′, x′)−, y′) are two idempotent elements

of K such that (x, φ(y, x)−, y) ≤ (x′, φ(y′, x′)−, y′) then

δ(x,φ(y,x)−,y) • δ(x′,φ(y′,x′)−,y′) = δ(x,φ(y,x)−,y)

which is equivalent to

δx ⊗ δφ(y,x)− ∗ δφ(y,x′) ∗ δφ(y′,x′)− ⊗ δ′y = δx ⊗ δφ(y,x)− ⊗ δy

so that y′ = y

And

δ(x′,φ(y′,x′)−,y′) • δ(x,φ(y,x)−,y) = δ(x,φ(y,x)−,y)

which is equivalent to

δx′ ⊗ δφ(y′,x′)− ∗ δφ(y′,x) ∗ δφ(y,x)− ⊗ δy = δx ⊗ δφ(y,x)− ⊗ δy

so that x′ = x. Combining these two results we see that (x, φ(y, x)−, y) =

(x′, φ(y′, x′)−, y′) That is (x′, φ(y′, x′)−, y′) is a minimal idempotent element.

And similarly we can show that (x, φ(y, x)−, y) is a minimal idempotent ele-

ment. So all idempotent elements of K are primitives, so K is a completely

simple semihypergroup.
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3.4 Theorem

Let (H, ∗) be a hypergroup and s, t two elements. Then {s} × H × {t}
with the Rees convolution product is a cell hypergroup with identity element

(s, φ(t, s)−, t) and the involution defined by (s, h, t)∨ = (s, h′, t) if and only if

δh′ = δφ(t,s)− ∗ δh− ∗ δφ(t,s)−

Proof:

First we need to show that (s, φ(t, s)−, t) is the identity of {s} × H × {t}
Let h ∈ H then

δ(s,φ(t,s)−,t) • δ(s,h,t) =

δs ⊗ δφ(t,s)− ∗ δφ(t,s) ∗ δh ⊗ δt =

δs ⊗ δh ⊗ δt

And since δφ(t,s)− ∗ δφ(t,s) is the identity in H this equality holds.

Next we need to show that for all h ∈ H , (s, h, t)∨∨ = (s, h, t), and

(s, φ(t, s)−, t) ∈ Supp(δ(s,h,t) • δ(s,h′,t)) if and only if (s, h, t)∨ = (s, h′, t).
Suppose (s, h, t)∨ = (s, h′, t) where

δh′ = δφ(t,s)− ∗ δh− ∗ δφ(t,s)−

Suppose also that (s, h′, t)∨ = (s, h′′, t) where

δh′′ = δφ(t,s)− ∗ δh′− ∗ δφ(t,s)−

then

δh′− = δφ(t,s) ∗ δh ∗ δφ(t,s)

So that

δh′′ = δφ(t,s)− ∗ δφ(t,s) ∗ δh ∗ δφ(t,s) ∗ δφ(t,s)− = δh

So h = h′′ and therefore (s, h, t)∨∨ = (s, h, t)

Next suppose (s, φ(t, s)−, t) ∈ Supp(δ(s,h,t) • δ(s,h′,t), that is φ(t, s)− ∈ {h} ∗
{φ(t, s)} ∗ {h′} which is equivalent to h′ ∈ {φ(t, s)−} ∗ {h−} ∗ {φ(t, s)−} but

{φ(t, s)−} ∗ {h−} ∗ {φ(t, s)−} is a singleton as φ(t, s)− is in the center of H so

δh′ = δφ(t,s)− ∗ δh− ∗ δφ(t,s)− which shows that (s, h, t)∨ = (s, h′, t).
Now suppose (s, h, t)∨ = (s, h′, t) then δh′ = δφ(t,s)− ∗ δh− ∗ δφ(t,s)− which

implies that h′ ∈ φ(t, s)− ∗ {h−} ∗ {φ(t, s)−} which is equivalent to φ(t, s)− ∈
{h} ∗ {φ(t, s)} ∗ {h′} which shows that (s, φ(t, s)−, t) ∈ {s} × {h} ∗ {φ(t, s)} ∗
{h′} × {t} That is (s, φ(t, s)−, t) ∈ Supp(δ(s,h,t) • δ(s,h′,t)).

Next we need to show that
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(δ(s,h,t) • δ(s,g,t))
∨ = δ(s,g,t)∨ • δ(s,h,t)∨

Note that by the definition of involution on the {s} × H × {t}, if μ ∈ M(H)

then

(δs ⊗ μ ⊗ δt)
∨ = δs ⊗ δφ(t,s)− ∗ μ− ∗ δφ(t,s)− ⊗ δt

Now

(δ(s,h,t) • δ(s,g,t))
∨ = (δs ⊗ δh ∗ δφ(t,s) ∗ δg ⊗ δt)

∨ =

δs ⊗ δφ(t,s)− ∗ (δh ∗ δφ(t,s) ∗ δg)
−δφ(t,s)− ⊗ δt =

δs ⊗ δφ(t,s)− ∗ δ−g ∗ δφ(t,s)− ∗ δ−h ∗ δφ(t,s)− ⊗ δt =

δs ⊗ δφ(t,s)− ∗ δ−g ∗ δφ(t,s)− ∗ δφ(t,s) ∗ δφ(t,s)− ∗ δ−h ∗ δφ(t,s)− ⊗ δt =

δs ⊗ δg′ ∗ δφ(t,s) ∗ δh′ ⊗ δt =

δ(s,g,t)∨ • δ(s,h,t)∨

Which completes the proof.

4 Other sets products for topological semihy-

pergroups

4.1 Definition

Let S be a locally compact semihypergroup and B be a Borel subset of S.

Then

Bx− = {y ∈ S : Supp(δy ∗ δx) ∩ B �= ∅}
Similarly,

x−B = {y ∈ S : Supp(δx ∗ δy) ∩ B �= ∅}

4.2 Theorem

Let B be a Borel subset of a locally compact second countable semihypergroup

S. Then for any x ∈ S, the sets Bx− and x−B are also Borel subsets of S.

Proof We only prove that Bx− is Borel whenever B is Borel, the other

side follows in a similar way. To this end, first notice that if B is open, then

we have:

Supp(δy ∗ δx) ∩ B �= ∅
implies that δy ∗ δx(B) > 0. Since the map (x, y) �−→ δy ∗ δx is a continuous

map (with respect to weak topology in M1(S)) by axiom SH3, there is an open
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subset N(y) containing y such that for each y′ ∈ N(y), δy′ ∗ δx(B) > 0. This

means that

Supp(δy′ ∗ δx) ∩ B �= ∅
for each y′ ∈ N(y) so that N(y) ⊂ Bx−; consequently, Bx− is open whenever

B is open. Let us now suppose that B is a closed subset of S. Let x ∈ S and

y ∈ (Bx−)c. Then we have:

Supp(δy ∗ δx) ∩ B = ∅

so that Supp(δy ∗ δx), which is compact, is contained in the open set Bc. Since

by SH4, the map (x, y) �−→ δy ∗ δx is continuous with respect to the product

topology in the domain and the Michael topology for the compact subsets in

the range, the set

{y′ : Supp(δy′ ∗ δx) ⊂ Bc}
is an open set containing y; in other words, (Bx−)c is open, and this means

that Bx− is closed whenever B is closed.

Now let us define the class F by

F = {B : Bx− is Borel whenever B is Borel and x ∈ S}. Then F contains

all open and all closed subsets of S. Furthermore, if V is an open set and W is

a closed set, then since S is locally compact Hausdorff second countable, there

is a sequence {Fn} of closed sets such that V =
⋃∞

n=1 Fn.

[(V ∩ W )x−]c = {y : Supp(δy ∗ δx) ∩ (V ∩ W ) = ∅} =

{y : Supp(δy ∗ δx) ⊂ W c}
⋃

{y : Supp(δy ∗ δx) ∩ W ⊂ V c} =

{y : Supp(δy ∗ δx) ⊂ W c}
⋃

[

∞⋂
n=1

{y : Supp(δy ∗ δx) ∩ W ⊂ F c
n}] =

{y : Supp(δy∗δx) ⊂ W c}
⋃

[

∞⋂
n=1

{{y : Supp(δy∗δx) ⊂ F c
n∪W c}−{y : Supp(δy∗δx) ⊂ W c}}]

Now the mapping γ : S × S −→ C(S) : (y, x) �−→ Supp(δy ∗ δx) is continuous,

and since the sets CS(W c), CS(F c
n∪W c) are open sets (in the Michael topology,

γ−1(CS(W c)) = {y : Supp(δy ∗ δx) ⊂ W c} and γ−1(CS(F c
n ∪ W c)) = {y :

Supp(δy ∗ δx) ⊂ F c
n ∪ W c} are open, so are Borel sets. It follows that [(V ∩

W )x−]c is a Borel set. Therefore, (V ∩ W )x− is a Borel set.

This means that the algebra A (finite intersections and complements) gen-

erated by all open subsets of S is contained in F . It is also clear that

(

∞⋃
n=1

Bn)x− =

∞⋃
n=1

(Bnx−)
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whenever Bn ∈ F , n ≥ 1, and x ∈ S. This means that the monotone class

generated by A, which is a σ-algebra and which contains all Borel subsets of

S, is contained in F . Which completes the proof.

4.3 Proposition

Let S be a locally compact semihypergroup, B ⊂ S and x ∈ S. Then

B ⊂ (Bx)x−

Proof

(Bx)x− = {y ∈ S : Supp(δy ∗δx)∩Bx �= ∅} Since Bx =
⋃

b∈B Supp(δb∗δx),

If y ∈ B, then Supp(δy ∗ δx) ⊂ Bx; therefore, Supp(δy ∗ δx) ∩ Bx �= ∅ so

y ∈ (Bx)x−, which implies B ⊂ (Bx)x−

4.4 Proposition

Let S be a locally compact semihypergroup and C be a compact subset of S.

If B ⊂ S,

(B − Cx)x− ⊂ Bx− − C

Proof:

If y ∈ (B−Cx)x− then Supp(δy∗δx)∩(B−Cx) �= ∅ =⇒ Supp(δy∗δx)∩B �= ∅
and Supp(δy ∗ δx)∩ (Cx)c �= ∅ =⇒ y ∈ Bx− and Supp(δy ∗ δx) is not entirely in

Cx that is y /∈ C (for if y ∈ C then Supp(δy ∗ δx) ⊂ Cx) =⇒ y ∈ Bx−−C =⇒
(B − Cx)x− ⊂ (Bx− − C).

The next result was proved for hypergroups in [BH95]. The same result

holds for semihypergroups with the same proof which we reproduce here.

4.5 Proposition

Let S be a locally compact space and μ ∈ M1(S). Then ∀x ∈ S and compact

C ⊂ S

δx ∗ μ(C) ≤ μ(x−C)

Proof:

By definition,

x−C = {y ∈ S : Supp(δx ∗ δy) ∩ C �= ∅}

So y ∈ x−C if and only if Supp(δx ∗ δy) ∩ C �= ∅. Thus,

δx ∗ μ(C) =

∫
S

δx ∗ δy(C)μ(dy) =

∫
x−C

δx ∗ δy(C)μ(dy) ≤ μ(x−C)
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since δx ∗ δy(C) ≤ 1

Remark

As pointed out in [BH95] we cannot expect equality here even when S is

compact.
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