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Abstract The most popular way to introduce the notion of
topology into the structural analysis of the topology optimiza-
tion problem is through the Solid Isotropic Material with Pe-
nalization (SIMP) method. The fundamental principle behind
its use requires a density design variable dependent material
constitutive law that penalizes intermediate density material
in combination with an active volume constraint. Here, the
SIMP method with filtering is reevaluated, and an alternative
topology optimization problem formulation, called the SINH
(pronounced “cinch”) method, is developed that exploits this
principle. The main advantages of the SINH method are that
the optimization problem is consistently defined, the topol-
ogy description is unambiguous, and the method leads to
predominantly solid–void designs.

Keywords Topology optimization · Restriction methods ·
Filter · SIMP method · SINH method

1 Introduction

We are interested in topology optimization formulations that
lead to solid–void structural designs, well behaved, prefer-
ably well posed by mathematical proof, and unambiguous
optimization problem definitions, simple algorithm imple-
mentation, and computational efficiency. Perhaps the most
popular and competitive methods in terms of these goals are
topology optimization formulations that combine the Solid
Isotropic Material with Penalization (SIMP) scheme with fil-
ter techniques to yield a well-behaved optimization problem.
For a detailed historical perspective of the SIMP method,
refer to Rozvany (2001).

The discrete and penalized, continuous solid–void struc-
tural topology problems are ill posed (e.g., see Haber et al.
1996), so the density design field variation is restricted here.
A variety of restriction methods have been developed, e.g., by
perimeter control (Haber et al. 1996), explicit density slope
constraints (Petersson and Sigmund 1998), adaptive density
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design variable bounds that impose density slope constraints
(Zhou et al. 2001), regularized density control (Borrvall and
Petersson 2001), MOLE method (Poulsen 2003), or by blur-
ring filters (Sigmund 1994). For a good comparison between
various restriction methods, refer to Borrvall (2001). The
most prevalent approach in the literature is to filter the sen-
sitivities (Sigmund 1994). Alternatively, the design can be
directly filtered (Bruns and Tortorelli, 2001). There are ad-
vantages and disadvantages in both approaches. Our goal is
to remedy the drawbacks of both filter approaches and pro-
pose a new formulation that incorporates the advantages of
both.

In section 2, structural topology optimization is briefly
reviewed, and density measures are introduced. The SIMP
method is reevaluated in terms of these measures in sec-
tion 3, and the SINH method is formulated in section 4.

2 Topology optimization

The topology optimization problem is stated as

minimize �0(d) (1)

subject to �i (d) ≤ 0 (2)

d j ≤ dj ≤ d j (3)

where �0 is the objective function, �i (for i = 1, nc) are the
inequality or equality constraints and d j (for j = 1, nd) are
the design variables that are bounded above and below by d j
and d j .

The structural response is solved via the finite element
method (e.g., Bathe 1996), and when the design domain is
discretized by linear elastic continuum finite elements, the
finite element equation reduces to

K U = P (4)

where K is the stiffness matrix, P is the external force vector,
and U is the displacement vector.

Although the density design variables can be assigned
to nodes, and the field is subsequently interpolated appro-
priately, a density design variable di is assigned to every
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element i here that ranges between its small lower bound
di ≈ 0, e.g., di = 10−6, and upper bound di = 1. A first
density measure η1i is computed for every finite element i
and is defined as a function of the density design variable field
d, i.e., η1i = η̂1i (d). In a manner consistent with the density
design variable range, the density measure η1 ranges from
a small value to one representing void and solid material,
respectively, and therefore the variation in the first density
measure field η1 depicts the topology of the structure. We
assume that the solid material constitutive behavior can be
adequately modeled by

σ = CE (5)

where σ , E, andC are the stress, strain, and elasticity tensors,
respectively. The material density is introduced into the struc-
tural analysis by the elasticity tensor Ci for every element i
via

Ci (d) = η̂1i (d) Ĉi (6)

where Ĉ is the elasticity tensor of the solid construction ma-
terial, and the elasticity tensorC is used in the computations.
A small, positive, nonzero lower bound di , and therefore the
lower bound on η1i , ensures that the stiffness matrix K re-
mains nonsingular throughout the optimization history.

The usual structural problem is to determine the stiffest
structural design or equivalently least compliant structural
design where the compliance is defined by

�0(d) = U(d)T P (7)

where the structural displacement response U is implicitly
design-dependent through (4) and (6), and we assume here
that the external load P is design-independent. We define the
effective volume v, corresponding to the design domain Vo,
as

v(d) =
∫

Vo

η̂2(d)dv (8)

where the second density measure η2i for every element i is
defined as a function of the density design variables d, i.e.,
η2 = η̂2(d). The effective volume v is constrained by it upper
bound v̄ defined as a fraction of the maximal volume

∫
Vo

dv,
i.e.

�1(d) = v(d) − v̄. (9)

Analytical sensitivities, i.e., D�0
Dd (d) and D�i

Dd (d), are cal-
culated here by the adjoint method, and the Method of Mov-
ing Asymptotes (MMA) (Svanberg 1987) is used to solve the
large-scale optimization problem.

Filters can be introduced to remedy the ill-posed topology
optimization problem. In the most common approach devel-
oped and thoroughly demonstrated by Sigmund and cowork-
ers (Sigmund 1994, 1997; Buhl et al. 2000; Pedersen et al.
2001; Bendsøe and Sigmund 2003), all response sensitivities
except for the volume sensitivity are smoothed by a blurring
filter that acts within a mesh-independent filter radius. The

modified objective sensitivities D�̃0
Ddi

for every element i are

computed by

D�̃0

Ddi
(d) = 1

ωi di

∑
j

ω j (si j ) d j
D�0

Dd j
(d) (10)

for
ωi =

∑
j

ω j (si j ) (11)

where ω j is the filter kernel that is based on the distance si j ,
i.e.,

si j = ((x j − xi )
2 + (y j − yi )

2)
1
2 , (12)

of the surrounding element j centroids (x j , y j ) within a fixed
mesh-independent radius r of the element i centroid (xi , yi ).
For example, a Gaussian-weighted kernel is computed as

ω j (si j ) =




exp(− s2
i j

2( r
3 )2

)

2π( r
3 )

for si j ≤ r

0 for si j > r

(13)

where only those elements for which si j ≤ r affect the sen-
sitivities of element i . In accordance with the formulation
of the SIMP method that typically appears in the literature,
the first and second density measures for every element i are
defined by
η̂1i (d) = d p

i and (14)

η̂2i (d) = di . (15)
A less-cited, second approach is based on filtering the

density design variable field d and evaluating all response
sensitivities in a consistent manner (Bruns and Tortorelli,
2001). The filtered density design variable field � is com-
puted for every element i as

φi = φ̂i (d) =
∑

j

ω j (si j )

ωi
dj (16)

where where ωi and si j are computed by (11) and (12),
respectively, and ω j is computed by (14) for a Gaussian-
weighted kernel. Unlike the previous approach, the first and
second density measures for every element i are defined by

η̂1i (d) = φ̂
p
i (d) (17)

η̂2i (d) = φ̂i (d) (18)
in a SIMP-like manner.

The advantages of filtering the sensitivities are that the de-
sign can be directly interpreted from the density design field,
i.e., through η̂1i (d) in (15), and relatively quick computa-
tion. The main disadvantage is that the approach is heuristic
because the sensitivities are not consistent with the primal
analysis. Therefore, the optimization problem is not well
posed in a rigorous sense. However, the approach leads to
practical, useful topology designs and a well-behaved opti-
mization problem. The advantage of filtering the design is
that the optimization problem is consistent and regularized
(Bourdin 2001). However, since the design is defined by the
density measure field through the filtered density design field,
i.e., by (18), the main disadvantage of the approach is that the
topologies are somewhat less distinct or more diffuse com-
pared to the first approach.
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3 SIMP method

The most popular way to introduce the notion of topology
into the structural analysis is through the Solid Isotropic Ma-
terial with Penalization (SIMP) method or its variant forms.
The SIMP approach was first considered by Bendsøe (1989)
and developed independently by Zhou and Rozvany (1991).
For a detailed history of the SIMP method, refer to Rozvany
(2001). The term “SIMP” was proposed by Rozvany et al.
(1992), and the method is also referred to as the power law or
penalized, proportional stiffness model, and in the past, it has
been referred to as an artificial interpolation or fictitious ma-
terial model. Bendsøe and Sigmund (1999) have shown that
composite materials from intermediate densities are physi-
cally realizable, and therefore the method is not artificial nor
fictitious from a design point of view. However, this issue
may not be particularly useful for designers who are inter-
ested in solid–void topology designs. Therefore, we desire a
method that leads primarily to solid–void designs.

The fundamental principle of the SIMP method is that
the load capacity of the structure is progressively taxed more
for the intermediate densities than solid and void densities,
e.g., as penalty parameter p > 1 is increased, for an equal
effective volume v. The synergy between the penalization
of intermediate densities and the resource constraint leads to
solid–void structural designs. Although this seemingly trivial
interaction has been acknowledged from its inception (Bend-
søe 1989), it is sometimes overlooked. The recent work by
Martínez (2005) punctuates this interaction.

As is commonly illustrated in the literature, the interpo-
lation scheme of the traditional SIMP method is depicted
in Fig. 1a, and to emphasize the role of volume constraint,
its interpolation is also presented. To generalize its role, the
density function ρ is either defined directly by its correspond-
ing density design variable d or by the filtered density design
variable field φ, i.e., ρ = ρ̂(d) = d or ρ = ρ̂(d) = φ, respec-
tively. Therefore, Fig. 1a depicts the interpolation scheme for
the traditional SIMP-power law method where the first η1 and
second η2 density measures are defined by

η1 = η̂1(ρ) = ρ p and (19)

η2 = η̂2(ρ) = ρ. (20)

As the penalty parameter p is increased in Fig. 1, the
structural stiffness is progressively penalized, and for a given
volume, the intermediate density material is structurally less
effective. Therefore, the topology optimization algorithm
will redistribute, i.e., within the constraints of the mesh dis-
cretization, the material of given volume more effectively.
Penalty parameter p is generally increased via a continua-
tion method (Rozvany et al. 1994) from lower bound p to
upper bound p in increments 	p after convergence at each
step to hopefully avoid premature convergence to local min-
ima. However, a global optimum cannot be guaranteed, as
noted by Stolpe and Svanberg (2001a).

We define the SIMP method by its underlying princi-
ple rather than the particular interpolation scheme. There are
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Fig. 1 a SIMP method with power law first density measure η1 =
η̂1(ρ) = ρ p where penalty parameter (1)p = 1.6, (2)p = 2.2, (3)p =
2.8, (4)p = 3.4, and (5)p = 4 and (6) linear second density
measure η2 = η̂2(ρ) = ρ. b SIMP method with hyperbolic sine first

density measure η1 = η̂1(ρ) = sinh(p ρ)

sinh(p)
where penalty parameter

(1)p = 1.1, (2)p = 2.1, (3)p = 3.1, (4)p = 4.1, and (5)p = 5.1 and
(6) linear second density measure η2 = η̂2(ρ) = ρ.

several interpolation scheme variants that improve the SIMP
method with a power law, e.g., the rational function of the Ra-
tional Approximation of Material Properties (RAMP) (Stolpe
and Svanberg 2001b) or more implementation-intensive,
spline-based interpolation schemes (Pedersen 2002). The
SIMP method with hyperbolic sine first density measure η1,
i.e.

η1 = η̂1(ρ) = sinh(p ρ)

sinh(p)
(21)
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and linear second density measure η2, i.e., (20), is used
here and is depicted in Fig. 1b. This interpolation scheme
has a simple form (and sensitivity computation) similar to
the power law. Similar to the RAMP scheme, it is advanta-
geous that the density measure sensitivity Dη

Dd (ρ) does not
vanish as any ρ approaches zero for many problems, e.g.,
eigenfunction/vibration problems (Hansen 2005). Also, the
Hashin–Shtrikman upper and lower bounds can be satis-
fied for a wide range of penalty p > 3 approximately for
solid–void material with regard to Bendsøe and Sigmund
(1999), and consequently a microstructural geometry can be
realized (Sigmund 1995).

Next, the topology design of a cantilever beam depicted
in Fig. 2 is investigated. Unless otherwise noted, the fol-
lowing parameters are used for the topology optimization. A
dead load P = 0.001N is applied to the beam tip in a down-
ward, vertical direction. The 30mm × 20mm domain (with a
1mm thickness) is discretized by four-node 60 × 40 quadri-
lateral element mesh. The linear elastic material response is
computed with Young’s modulus E = 1N/mm2 and Pois-
son’s ratio ν = 0.3. The density design variables are initially
set to dj = 0.3, and their lower and upper bounds are set to
d j = 10−3 and d j = 1, respectively. The filter length r is set
to 1.0mm. Here, the penalty parameter p is increased from
p = 0.1 to p = 5.1 in steps of 	p = 0.1. The upper bound
on the total volume v is set to ∼40% of the maximal volume.
The objective is to design the stiffest structure by minimizing
its compliance, i.e., by (1) and (7). Refer to Table 1 for the ρ,
η1, η2, and filter approach definitions for several cases. For
case 1, checkerboard patterns appear in the topology plot of
Fig. 3a because no filter is implemented. Figure 3b,c depicts
the optimal topologies due to the filtered SIMP methods with
a hyperbolic sine first density measure.

Next, we qualitatively compare the topology designs due
to various topology optimization formulations with the SIMP
method. For each case, the first density measure η1 depicts
the topology of the structure since the first density measure is
used in the structural analyses, and the second density mea-
sure η2 is used to compute the volume. Refer to Table 1 for the
ρ, η1, η2, and filter approach definitions for several cases. For
case 1, checkerboard patterns appear in the topology plot of
Fig. 3a because no filter is implemented. Figure 3b,c depicts
the optimal topologies due to the well-established approaches

P

Design Domain

Fig. 2 Design domain of tip-loaded cantilever beam

Table 1 Topology optimization with SIMP method

Case ρ = ρ̂(d) η1 = η̂1(ρ) η2 = η̂2(ρ) Filter
approach

1 d sinh(pρ)

sinh(p)
ρ N/A

2 d sinh(pρ)

sinh(p)
ρ Filter

sensitivities

3 φ
sinh(pρ)

sinh(p)
ρ Filter design

N/A Not applicable, SIMP Solid Isotropic Material with Penalization

of filtering the sensitivities and of filtering the design, respec-
tively, with a hyperbolic sine first density measure.

4 SINH method

A related but fundamentally different problem is termed the
SINH (pronounced “cinch”) method. Unlike SIMP, SINH is
not an acronym; instead, it merely references the use of the
hyperbolic sine function here. In the same manner that the
SIMP method does not rely on the power law interpolation
scheme, the SINH method does not rely on a hyperbolic sine
interpolation scheme. The basis of the SINH method is that
intermediate density material is made less volumetrically ef-
fective than solid or void material.

There has been some previous research that is related
to the SINH method developed here. Rietz (2001) defines
an optimization problem that mirrors the SINH method as
a substitute problem for the topology optimization problem
with the SIMP method through a change of variables. The
purpose of introducing the change of variables is merely as a
means to mathematically prove that the SIMP method yields
a discrete solution under some conditions. The change of
variables, i.e., y = x p therefore x = y

1
p , provides a conve-

nient way to associate the behavior of the SIMP method to
that of the SINH method, which he calls the SIMP- 1

p prob-
lem, and vice versa. However, he does not acknowledge nor
investigate the viability of the SIMP- 1

p problem in its own
right. Guedes and Taylor (1997) present a topology optimiza-
tion formulation in which the stiffness is linearly scaled by
the density design variables, i.e., η1i = di , and the volume
is computed by a linear scaling of the elemental density de-
sign variables by elemental weight wi , i.e., by η2i = wi di
for element i . Initially, wi = 1 until convergence, and then
wi is uniformly inflated for density design variable di val-
ues below a threshold density value after each convergence
of the optimization problem. In this way, low intermediate
density material, i.e., below the threshold value, is progres-
sively made less volumetrically effective via this continu-
ation method. They demonstrate that this form of filtering
over the entire optimization history yields predominantly
solid–void designs. However, they do not adequately address
numerical instability nor mesh dependency problems. Fur-
thermore, the method appears to be heuristic since the fil-
ter is design-dependent. Zhou and Rozvany (1991) and later
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Fig. 3 Topology plots of first density measures η1 for cases a 1, b 2,
and c 3 of Table 1 with 60 × 40 mesh discretizations

Cardoso and Fonseca (2003) present the complementary opti-
mization problem to the topology optimization problem with
the SIMP method that is reminiscent of the SINH method
presented here. However, the objective of minimal penal-
ized volume limits the problem formulation, and therefore,
this necessitates the reformulation to a topology optimization
problem with the SINH method to have general applicability
to more diverse problems. In summary, elements of the SINH
method appear in previous topology optimization work, but
they are combined here in a way that leads to a more general
and effective formulation.
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Fig. 4 SINH method with (1) linear first density measure η1 = η̂1(ρ) =
ρ and hyperbolic sine second density measure η2 = η̂2(ρ) = 1 −
sinh(p (1−ρ))

sinh(p)
where penalty parameter (2)p = 1.1, (3)p = 2.1, (4)p =

3.1, (5)p = 4.1, and (6)p = 5.1

Figure 4 depicts the interpolation scheme for the basic
SINH-hyperbolic sine method where the linear first η1 and
hyperbolic sine second η2 density measures are defined by

η1 = η̂1(ρ) = ρ and (22)

η2 = η̂2(ρ) = 1 − sinh(p (1 − ρ))

sinh(p)
. (23)

As the penalty parameter p is increased, the volume is pro-
gressively penalized, and therefore, the intermediate density
material is volumetrically less effective. Since intermediate
density material consumes more volume with respect to its
load-carrying capability than solid or void material, the topol-
ogy optimization algorithm will redistribute, i.e., within the
constraints of the mesh discretization, the intermediate den-
sity material of given volume more effectively.

One potential drawback of this approach is that the ef-
fective volume can inaccurately reflect the true volume, i.e.,
particularly at intermediate optimization iterations, since the
intermediate density volumes are penalized. However, this
should not be a concern because the design is predominantly
solid and void at the end of the optimization, and therefore
the effective volume will approximate the true volume. Also,
from a practical design point of view, the desired volume v
is generally an approximate, i.e., not rigidly assigned, design
goal. Furthermore, a linear first density measure does not sat-
isfy the Hashin–Shtrikman bounds, but this issue should not
be a concern because the final design is predominantly solid
and void (or it can be addressed in the hybrid SINH method).

Again, the topology design of a cantilever beam depicted
in Fig. 2 is investigated. Refer to Table 2 for the ρ1, η1, ρ2, η2,
and filter approach definitions for several cases. For case 4,
checkerboard patterns appear in the topology plot of Fig. 5a
because no filter is implemented. Analogous to case 3, the
first and second density functions are filtered in case 5, and it
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Table 2 Topology optimization with basic SINH method

Case ρ1 = η1 = ρ2 = η2 = Filter
ρ̂1(d) η̂1(ρ1) ρ̂2(d) η̂2(ρ2) approach

4 d ρ1 d 1− N/A
sinh(p(1−ρ2))

sinh(p)

5 φ ρ1 φ 1− Filter
sinh(p(1−ρ2))

sinh(p)
design

6 d ρ1 φ 1− Filter
sinh(p(1−ρ2))

sinh(p)
design

N/A Not applicable

Table 3 Topology optimization with hybrid SINH method

Case ρ1 = η1 = ρ2 = η2 = Filter
ρ̂1(d) η̂1(ρ1) ρ̂2(d) η̂2(ρ2) approach

7 d sinh(p1ρ1)

sinh(p1)
φ 1− Filter

sinh(p2(1−ρ2))

sinh(p2)

design

8 φ
sinh(p1ρ1)

sinh(p1)
φ 1− Filter

sinh(p2(1−ρ2))

sinh(p2)

design

is noteworthy that this leads to a very similar blurred optimal
topology, cf. Figs. 3c, 5b. However, recall that case 3 is based
on the SIMP method and case 5 is based on the SINH method,
and furthermore the blurred topology of case 3 is due to the
filtered density design field. Consequently, we define the first
density measure η1 by density design field d directly in case
6, and its more clearly delineated optimal topology is shown
in Fig. 5c. The formulation of case 6 represents the basic
SINH method.

By combining the SINH method with a penalized first
density measure η1 in the same manner as the SIMP method,
we can conveniently further penalize intermediate density
material. Figure 6 depicts the interpolation scheme for a hy-
brid SINH method where the hyperbolic sine first η1 and
hyperbolic sine second η2 density measures are defined by

η1 = η̂1(ρ) = sinh(p1 ρ)

sinh(p1)
and (24)

η2 = η̂2(ρ) = 1 − sinh(p2 (1 − ρ))

sinh(p2)
. (25)

Refer to Table 3 for the ρ1, η1, ρ2, η2, and filter approach
definitions for select cases. Note that case 7 leads to a primar-
ily solid–void design in Fig. 7 that better approximates what
might be expected of the original integer topology design
problem than all of the previous formulations.

For the hybrid SINH method here, we increase the penalty
parameter p1 corresponding to the first density measure η1
from p

1
= 0.1 to p1 = 5.1 in small steps of 	p1 = 0.05 and

the penalty parameter p2 corresponding to the second density
measure η2 over the same range from p

2
= 0.1 to p2 = 5.1

in steps of 	p2 = 0.1 to avoid potential numerical instability
problems. Increasing the penalty parameter p of the first and
second density measures in unison over the same range does

Fig. 5 Topology plots of first density measures η1 for cases a 4, b 5,
and c 6 of Table 2 with 60 × 40 mesh discretizations

not pose problems for the discretization of Fig. 7, but in gen-
eral, if the stiffness, i.e., through η1, is penalized “too much”
compared to the volume, i.e., through η2, we may encounter
numerical instabilities denoted by checkerboard patterns or
prematurely converge to local minima. This suggests differ-
ent interpolation schemes for the density measures and/or
continuation strategies whereby the penalty parameters p1
and p2 for each density measure be increased independently
and/or over different ranges. Alternatively, if the first and sec-
ond density functions are consistently defined by the filtered
density design field in case 8 (in a manner that mirrors case
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Fig. 6 Hybrid SINH method with hyperbolic sine density measure η1 =
η̂1(ρ) = sinh(p1 ρ)

sinh(p1)
where penalty parameter (1)p1 = 1.1, (2)p1 = 2.1,

(3)p1 = 3.1, (4)p1 = 4.1, and (5)p1 = 5.1, and hyperbolic sine sec-

ond density measure η2 = η̂2(ρ) = 1 − sinh(p2 (1−ρ))

sinh(p2)
where penalty

parameter (6)p2 = 1.1, (7)p2 = 2.1, (8)p2 = 3.1, (9)p2 = 4.1, and
(10)p2 = 5.1

Fig. 7 Topology plot of first density measure η1 for case 7 of Table 3
with 60 × 40 mesh discretization

3), i.e., ρ1 = ρ2 = ρ = ρ̂(d) = φ, then the filter radius r of
ρ1 should be allowed to slowly decrease from a multiple of
an element characteristic length, e.g., an element width on
a regular mesh, to a size less than this characteristic length
to remove the filter effect and to better remedy this potential
problem.

Until now, the structural analyses have been performed
on a fixed finite element mesh discretization. To show that
the structural topology optimization problem is well behaved,
we show by experiment that the same optimal topology with
refinement of details results from mesh refinement. Figure 8
compares the topology plots with the basic and hybrid SINH
methods with mesh refinement.

Next, we show common design examples of topology op-
timization by using the SINH approach. The design domain
of a roller-supported beam vertically loaded along its lower

Fig. 8 Topology plot of first density measure η1 for case 6 of Table 2
with a 90 × 60 and b 120 × 80 mesh discretizations, and for case 7 of
Table 3 with c 90 × 60 and d 120 × 80 mesh discretizations
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Fig. 9 a Design domain and b topology plot of first density measure η1
of roller-supported beam

edge is depicted in Fig. 9a, and its clearly delineated optimal
topology is shown in Fig. 9b. Topology optimization with
the SINH method is equally applicable to compliant mecha-
nism design which requires nonlinear finite element analyses
(Bruns and Tortorelli 2001; Pedersen et al. 2001). The design
domain of inverter and gripper mechanisms are depicted in
Fig. 10a and b, respectively, and their optimal topologies us-
ing the element removal and reintroduction strategy of Bruns

and Tortorelli (2003) are shown in Fig. 10c and d, respec-
tively.

A potential advantage of the SINH method is that the
second density measure η2 need not be bounded above by
η2 ≤ 1, e.g., η2 = η̂2(ρ) = ρ + p sin(π ρ). This may be use-
ful for design problems where the SIMP method is not effec-
tive, i.e., design problems in which less structurally effective
intermediate density material performs better than solid or
void material.

5 Conclusion

Although structural topology optimization has matured as a
research field, this paper readdresses one of its fundamen-
tal issues, i.e., a methodology for introducing the notion of
topology into the structural analysis and consequently the
topology optimization problem. The SINH method addresses
the disadvantages of the current topology optimization for-
mulations that implement the popular SIMP method and filter
techniques while retaining their advantages. There are several
points worth noting:

1. The original topology original problem has been general-
ized by the independent definitions of the first and second
density measures, i.e., η1 and η2, respectively.

2. The method penalizes less volumetrically effective inter-
mediate density material.

Fig. 10 Design domain of a inverter mechanism
and b gripper mechanism. Topology plot of first
density measure η1 for c inverter mechanism and
d gripper mechanism
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3. The method is simple to implement and has quick compu-
tation because the filter is not integrated into the structural
analysis.

4. Compared to previous filtering techniques, the “regu-
larization” is moved from the structural analysis, i.e.,
through η1, to the resource constraint, i.e., through η2.

5. The method leads to a consistently defined optimization
problem, unambiguous topology description, and pre-
dominantly solid–void designs for structural problems.

6. The method offers the opportunity to conveniently
further penalize toward solid–void designs through its
hybrid formulation,

7. The method is applicable to other design problems, e.g.,
mechanism design.

8. Its extension to three-dimensional problems is trivial.

Here, we have concentrated on the performance and
shown that the SINH method is well behaved. Because the
formulation is a derivative of what constitutes a well-posed,
filter-based topology optimization problem (solution exis-
tence proofs provided by Bourdin 2001, where the design is
filtered in a similar manner, and by Guo and Gu 2004, where
the filter influence progressively decreases for lower densi-
ties) and we can demonstrate mesh-independent designs, we
conjecture, and leave for future work, that the SINH method
leads to a well-posed optimization problem.
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