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This paper reconsiders the task of MRD-based word sense disambiguation, in extending the basic
Lesk algorithm to investigate the impact on WSD performance of different tokenisation schemes
and methods of definition extension. In experimentation over the Hinoki Sensebank and the
Japanese Senseval-2 dictionary task, we demonstrate that sense-sensitive definition extension over

hyponyms, hypernyms and synonyms, combined with definition extension and word tokenisation
leads to WSD accuracy above both unsupervised and supervised baselines. In doing so, we demon-
strate the utility of ontology induction and establish new opportunities for the development of
baseline unsupervised WSD methods.

Categories and Subject Descriptors: I.2.7 [Natural Language Processing]: Text Analysis;
Language Parsing and Understanding

General Terms: Artificial Intelligence

1. INTRODUCTION

The work presented in this paper is aimed at developing and extending machine
readable dictionary (MRD) based word sense disambiguation (WSD) techniques.
The goal of WSD is to link ambiguous occurrences of the words in specific contexts
to their meanings, as defined in a predefined sense inventory. For instance, given
the following input:

(1) おとなしい
otonashī
quiet

犬
inu
dog

を
o
ACC

飼い
kai
keep

たい
tai
want to

“(I) want to keep a quiet dog”
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we aim to identify each content word (namely the first, second and fourth words:
otonashī, inu and ka(u),1 respectively) as occurring with the sense corresponding
to the provided English glosses. In the case of the second word (犬 [inu]), e.g., the
dictionary lists two senses for the word, corresponding to the English “dog” and
“spy”, respectively.2 We need to disambiguate the word to the first sense (“dog”)
in the given input. Similarly, we would identify the range of senses for all other
content words (namely the first and fourth words), and disambiguate each relative
to the context provided.

The relevance of MRDs to the task of WSD is that we build our method solely
off information available in this pre-existing resource, namely using the textual
definitions of each sense, and potentially ontological links in the dictionary. MRD-
based WSD methods have the advantage that they are easily adaptable to any given
MRD, and don’t require any external data or additional sense annotations. That
is, they provide the means to perform rapid development of WSD capabilities for
languages or domains where sense-annotated data is not readily available.

There is a variety of reasons why we may wish to build a WSD system. For
example, WSD has been shown to enhance parsing accuracy [Fujita et al. 2007;
Agirre et al. 2008], so it could be for purely utilitarian reasons. Alternatively, we
may require explicit word sense predictions, e.g. in a a language understanding
task [Bond et al. 2004] or crosslingual word glossing task [Yap and Baldwin 2007],
presenting context-sensitive glosses of words in running text. For language under-
standing, there would be particular emphasis on predicting the most-likely sense
for each word with high accuracy, whereas with word glossing, we could instead
focus on filtering out implausible senses and possibly retain multiple senses in the
case that there is no standout single most-likely sense.

The construction of WSD systems has been the goal of many research initiatives
(see for instance Ide and Véronis [1998] and Agirre and Edmonds [2006]). A broad
interest in WSD and derivative tasks, and the need for standardised evaluation
platforms, led to the establishment of the Senseval and SemEval initiatives.3 Two
key evaluation tasks (across multiple languages) in each of the four iterations of
Senseval/SemEval to date have been an all words and lexical sample task.
The all words task requires that all (content) words in a sample text be disam-
biguated, and the lexical sample task requires that, for a small set of words and
selection of sentences containing that word for each, only the word of interest be
disambiguated, all relative to a predefined sense inventory.

WSD systems are generally classified according to the type of tasks they are
able to perform. The most relevant factors are the coverage of the system (e.g.
all words vs. lexical sample, à la the Senseval tasks), and the granularity of
the senses they are able to distinguish (e.g. homographs vs. fine-grained senses).
The appropriate coverage and granularity of a system is determined relative to the
final application of the WSD and the availability of data. For instance, for most

1The base form of the verb kai.
2An alternative view of this second sense would be to consider it a metaphoric extension of the
basic “dog” sense, and lump the two senses together. We present it as a distinct sense here as

that is how it is categorised in Lexeed, and hence in Hinoki.
3http://www.senseval.org
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applications, such as the cross-lingual glossing example above, we would require
full coverage of the text, but the granularity could be reasonably coarse.

WSD systems can be further classified according to the knowledge sources they
use to build their models. A top-level distinction is made between supervised
and unsupervised systems. The former rely on training instances that have been
hand-tagged in order to build their classification models, while the latter build their
classifiers relying on other types of knowledge, such as lexical databases or untagged
corpora. The Senseval/SemEval evaluation tracks have shown that supervised sys-
tems perform better when training data is available, but they do not scale well
to all words in context. Estimations of the effort required to build training data
of reasonable size for all words (and all languages) are pessimistic [Mihalcea and
Chklovski 2003]. This is known as the knowledge acquisition bottleneck, and is the
main motivation behind research on unsupervised techniques.

While sense-annotated data is hard to come by, in recent years rich lexical re-
sources have become increasingly available for a variety of languages. These knowl-
edge sources are designed to be applied in language technology (LT) applications,
and are often reusable for different tasks. In this paper, we aim to exploit an exist-
ing lexical resource to build an all-words Japanese word-sense disambiguator, that
in turn can be applied to applications such as word glossing, or alternatively inter-
faced with downstream processing such as parse selection. The resource in question
is the Hinoki Sensebank [Tanaka et al. 2006; Bond et al. 2006] and consists of the
28,000 most familiar words of Japanese, each of which is annotated with one or more
basic senses from the Lexeed dictionary [Kasahara et al. 2004]. The senses take the
form of a dictionary definition composed from only the 28,000 words contained in
the dictionary, each of which is further manually sense annotated according to the
Lexeed sense inventory. Hinoki also has a semi-automatically constructed ontology
[Nichols et al. 2005]. This combination of features makes it an ideal resource for
developing and evaluating WSD systems.

Through the Hinoki Sensebank, we investigate a number of areas of general inter-
est to the WSD community. First, we test extensions to the Lesk algorithm [Lesk
1986; Banerjee and Pedersen 2003], focusing specifically on the impact of the scor-
ing metric, the segment representation, and expansion via ontological semantics
on WSD performance. These results are significant in porting the extended Lesk
method to a language other than English, with the intention of improving the accu-
racy of unsupervised MRD-based WSD; this is particularly relevant for languages
that do not have sense-disambiguated corpora. Second, we propose further exten-
sions of the Lesk algorithm that make use of disambiguated definitions. In this,
we shed light on the relative benefits we can expect from hand-tagging dictionary
definitions, i.e. in introducing “semi-supervision” to the disambiguation task (c.f.
Niu et al. [2005] and Pham et al. [2005]). These results are equally of interest for
English, as the Extended WordNet [Harabagiu et al. 1999] provides an analogous
resource with (semi-automatically) sense-annotated and parsed definitions which
could be combined with this algorithm.

In the remainder of this paper, we first summarise related work in unsupervised
WSD in Section 2. Then we describe the basic method, resources, and charac-
teristics of the Japanese language required to understand our work in Section 3.
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The extensions to the Lesk method are described in Section 4. Next, we present
the evaluation of the different techniques in Section 5, and finally we discuss our
conclusions in Sections 6 and 7.

2. RELATED WORK

As pointed out above, our work focuses on unsupervised and semi-supervised meth-
ods that target all words and parts of speech (POS) in context. We blur the su-
pervised/unsupervised boundary somewhat in combining the basic unsupervised
methods with hand-tagged definitions from Hinoki, in order to measure the im-
provement we can expect from sense-tagged dictionary data. Having said this,
it is important to recognise that our method differs from conventional supervised
methods in that it doesn’t hinge on the availability of annotated training examples
for every sense in the sense inventory. Hand-tagged definition are less costly to
produce than sense-annotated open text because: (1) the effects of discourse are
limited, (2) the syntax is relatively simple, (3) there is significant semantic priming
relative to the word being defined, and (4) there is generally explicit meta-tagging
of the domain in technical definitions. In our experiments, we will make clear when
sense-annotated data is being used.

Unsupervised methods often draw on a range of knowledge sources to build their
models. Primarily the following types of lexical resources have been used for WSD:
MRDs, lexical ontologies, and untagged corpora (monolingual corpora, second lan-
guage corpora, and parallel corpora). Although early approaches focused on ex-
ploiting a single resource [Lesk 1986], recent trends show the benefits of combining
different knowledge sources, such as multiple preprocessors [Stevenson 2003], or hi-
erarchical relations from an ontology and untagged corpora [McCarthy et al. 2007].
In this summary, we will focus on a few representative systems that make use of
different resources, noting that this is an area of very active research which we
cannot do true justice to within the confines of this paper.

The Lesk method [Lesk 1986] is an MRD-based system that relies on counting
the overlap between the words in the target context and the dictionary definitions
of the senses.4 In spite of its simplicity, it has been shown to be a hard baseline
for unsupervised methods in Senseval [Kilgarriff and Rosenzweig 2000; Mihalcea
et al. 2004; Pradhan et al. 2007]. Banerjee and Pedersen [2003] extended the
Lesk method for WordNet-based WSD tasks, to include hierarchical data from the
WordNet ontology [Fellbaum 1998] via an implicit representation of word context.
They observed that the hierarchical relations significantly enhance the basic model.
Both these methods will be described extensively in Section 3, as our approach is
based on them.

A recent approach that combines ontological relations and untagged corpora was
presented by McCarthy et al. [2007], who implemented an algorithm to automati-
cally rank word senses in relation to a corpus. They relied on a thesaurus automat-
ically created using the method of Lin [1998], and then overlaid WordNet similarity
scores onto this thesaurus in order to create the ranking. The last step was to
assign to each test instance the sense of the highest-scoring sense in the ranking.

4See Mihalcea [2006] for a general overview of the Lesk method and various extensions people
have made to it.
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POS Noun Verb Adj Adv

# Word Senses 2.86 3.65 3.58 3.08
% Monosemous 62.9 34.0 48.3 46.4
Agreement (Token) 0.803 0.772 0.770 0.648

Agreement (Type) 0.851 0.844 0.810 0.833

Table I. Average polysemy, relative occurrence of monosemous words, and sense-tagging agreement
in Hinoki

There are other techniques that exploit untagged data in order to build sense-
tagged data automatically. One such approach was first presented by Leacock
et al. [1998], and follows these basic steps: (i) select a set of monosemous words
that are related to the different senses of the target word, (ii) query the web to
obtain examples for each relative, (iii) create a collection of training examples for
each sense, and (iv) use a machine learning algorithm trained on the acquired
collections to tag the test instances. This method has been used to bootstrap large
sense-tagged corpora [Mihalcea 2002; Agirre and Martinez 2004].

Bootstrapping techniques consist of algorithms that learn from a few instances of
labeled data (seeds) and a big set of unlabelled examples. In his widely-cited work,
Yarowsky [1995] applied an iterative bootstrapping process to induce a classifier
based on decision lists. With a minimal set of seed examples, disambiguation
results comparable to supervised methods were obtained, although this was over
a limited set of coarse-grained binary sense distinctions; this work has not been
extended to fine-grained senses.

Parallel corpora have also been used to avoid the need for hand-tagged data. Re-
cently, Chan and Ng [2005] built a classifier from English–Chinese parallel corpora.
They considered English words which correspond to the same Chinese translation
to have the same sense, and thus obtained sense-disambiguated data without man-
ual annotation. Others who have used parallel corpora for WSD include Dagan and
Itai [1994] and Diab and Resnik [2002]. However, large-scale parallel corpora are
expensive to build, tend to have limited coverage, and only exist for a very small
number of language pairs.

3. BACKGROUND

As background to our work, we first describe the lexical resources we used in our
experiments, then outline aspects of Japanese relevant to this work, and finally
present the basic and extended Lesk algorithms that are at the core of our approach.

3.1 The Hinoki Sensebank

All our experimentation is based on the Hinoki Sensebank [Tanaka et al. 2006].
The Hinoki Sensebank consists of sense annotations based on the Hinoki dictionary,
which contains 28,000 high-familiarity Japanese words with 46,000 different senses
[Kasahara et al. 2004]. The Hinoki dictionary is based on Kindaichi and Ikeda
[1988], a standard monolingual dictionary of Japanese which has been repurposed
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Index 犬 inu

Pos noun Lexical-Type noun-lex

Familiarity 6.53 [1–7] Frequency 67 Entropy 0.03

Sense 1

0.99

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Definition 犬 1 科 の 食肉 1 動物 1 。
A carnivorous animal of the canidae family .

家畜 1 として 古く 1 から 飼わ 1 れ 、 飼い主 1 に 忠実 1 。
Kept domestically from ancient times; loyal to their owners.

Example 犬 1 を 飼っ1 て いる 家 3 が 多い 1 。
There are many households that keep dogs.

Hypernym 動物 1 dōbutsu “animal”

Sem. Class 〈537:beast〉 (⊂ 〈535:animal〉)
WordNet dog1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Sense 2

0.01

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

Definition 警察 1 など の 回し者 1 。 スパイ 1 。
A secret agent for the police, etc. A spy.

Example 警察 1 の 犬 2 だけ に は 成り 4 たく ない 。
I want to turn into anything but a police spy.

Hypernym 回し者 1 mawashimono “secret agent”

Synonym スパイ 1 supai “spy”

Sem. Class 〈317:spy〉 (⊂ 〈317:spy〉)
WordNet spy1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Fig. 1. First two senses for the word 犬 [inu] “dog” (with English glosses)5

for WSD.
The sense granularity of Hinoki is relatively coarse for most words, with the

possible exception of light verbs, making it well suited to open-domain applica-
tions. The definition sentences for each sense were rewritten to use only the closed
vocabulary of 28,000 words in the Hinoki lexicon (in addition to some function
words). Additionally, an example sentence was manually constructed to exemplify
each of the 46,000 senses, once again using the closed vocabulary of the Hinoki
dictionary. Both the definition sentences and example sentences were then manu-
ally sense-annotated by 5 native speakers of Japanese, from which a majority sense
was extracted. There were 199,268 ambiguous tokens in the definition sentences.
The average annotation rate was 1,799 tokens/day; disambiguating the definition
sentences took 111 person days/annotator. Table I details the average polysemy
and relative occurrence of monosemous words of different POS type in Hinoki, as
well as inter-annotator agreement statistics [Bond et al. 2006].

We give a (slightly shortened) example of the entry for犬 [inu] “dog” in Figure 1.
The sense ID of each content word is indicated by a subscript, where the sense IDs
have been ranked by their frequency in the Hinoki (and ID 1 thus indicates the

5犬 1 inu is also the hypernym for the following words: 愛犬 1 [aikeN ] “pet dog”, 飼犬 1 [kaiinu]

“pet dog”, カメ 2 [kame] “European dog”, 狂犬 1 [kyōken] “mad dog”, 番犬 1 [baNkeN ] “guard
dog”, . . .
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first sense for that word). In the case of 犬 [inu], there are two senses; of the 67
occurrences of 犬 [inu] in the Hinoki Sensebank, 99% (66/67) correspond to sense
ID 1, and only 1% (1/67) to sense ID 2. The semantic class links to Goitaikei
[Ikehara et al. 1997], and the WordNet ID to version 2.0 of WordNet [Fellbaum
1998]; neither of these resources are used in this research.

Subsequent to the development of the Hinoki Sensebank, an ontology was semi-
automatically induced by parsing the first definition sentence for each sense [Bond
et al. 2004; Nichols et al. 2005]. Hypernyms were determined by identifying the
highest scoping content predicate (i.e. the genus). Other relation types such as
synonymy and domain were also induced based on trigger patterns in the definition
sentences. Because each word is sense tagged, the induced ontological relations link
senses rather than just words.

For example, for 犬 1 “inu”, the hypernym is 動物 1 [dōbutsu] “animal”, as this
was the highest scoping real predicate in the first sentence of the definition: “A
carnivorous animal of the canidae family”. 犬 1 “inu” itself is the hypernym for
many other word senses. We treat hypernymy and hyponymy as transitive equiv-
alents, resulting in those senses which are identified as having 犬 1 “inu” as their
hypernym (e.g. 愛犬 1 [aikeN ] “pet dog” and 番犬 1 [baNkeN ] “guard dog”), are
equivalently hyponyms of 犬 1.

In犬 2 “inu”,スパイ 1 [supai ] “spy” is the only content predicate in the definition,
and we therefore take it to be a synonym. This entry has no direct hyponyms.

In the version of the Hinoki Sensebank used in this research, there are 50,562
hypernym links, 765 hyponym links, 1,854 domain links, 682 meronym links and
14,287 synonym links (including abbreviations and nicknames).

The Hinoki Sensebank also contains annotated newspaper text, as well as syn-
tactic and structural semantic annotations [Tanaka et al. 2006; Bond et al. 2006],
although we do not use them in these experiments.

3.2 Peculiarities of Japanese

While the basic method we propose is language independent, all our experiments
are targeted exclusively at Japanese. As such, there are a number of features of
Japanese which impinge on our experiments, as outlined below.

First, Japanese is made up of 3 basic alphabets: hiragana, katakana (both syllabic
in nature) and kanji (logographic in nature).6

Second, Japanese is a non-segmenting language, i.e. there is no explicit ortho-
graphic representation of word boundaries. The native rendering of (1), e.g., isおと
なしい犬を飼いたい. Fortunately, various packages exist to automatically segment
Japanese strings into words and also POS tag and lemmatise the words. All the
Hinoki data has been pre-segmented using ChaSen [Matsumoto et al. 2003], and we
make use of this in our experiments. It is also possible, however, to sidestep seg-
mentation altogether and represent the string via its component characters, under
the expectation that the predominance of logographic kanji characters will provide
a form of semantic “smoothing”.

Third, Japanese has relatively free word order, or strictly speaking, word order
within phrases is largely fixed but the relative ordering of phrases governed by

6Modern Japanese also standardly incorporates Arabic numerals and the Latin alphabet.
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Algorithm 1 Generalised Lesk algorithm
for each word wi ∈ context w = w1w2...wn do

for each sense si,j and definition di,j do
score(si,j) = similarity(w,di,j)

end for
s∗i = arg maxj score(si,j)

end for

a given predicate is relatively free. For the purposes of WSD, this motivates a
representation of context which captures local word order but abstracts away from
phrase order.

3.3 Basic Lesk

The original Lesk algorithm [Lesk 1986] performs WSD by calculating the relative
word overlap between the context of usage of a target word, and the dictionary
definition7 of each of its senses in a given MRD. The sense with the highest overlap
is then selected as the most plausible hypothesis. This general method can be
formalised according to Algorithm 1, which also forms the basis of our proposed
method.

To see the basic Lesk algorithm in action, let us take (1) as input. Assuming
a POS tagging and lemmatisation step,8 the context of 犬 “dog” in (1) would be
represented as the following bag of lemmatised content words (see Section 4.2 for
details):

(1’) { おとなしい ,飼う }

Further assuming the following (multi-sentence) definition for the first sense of 犬
(i.e. “dog”):

(2) 犬
inu
canidae

科
ka
family

の
no
GEN

食肉
shokuniku
carnivore

動物
dōbutsu
animal

。
.
.

家畜
kachiku
domestic

として
toshite
as

古く
furuku
ancient times

から
kara
from

飼わ
kawa
keep

れ
re
PASS

、
,
,

飼い主
kainushi
owner

に
ni
DAT

忠実
chūjitsu
loyal

。
.
.

“A carnivorous animal of the canidae family. Kept domestically from ancient
times; loyal to their owners.”

we would generate the following bag of (content) lemmas:

(2’) { 犬 ,食肉 ,動物 ,家畜 ,古い ,飼う ,飼い主 ,忠実 }

Similarly, given the following definition for the second sense of 犬(i.e. “spy”):

7In Lesk [1986] and Banerjee and Pedersen [2003], these definitions are referred to as “glosses”.

In this paper, we reserve the word “gloss” to refer to the word translations for a target word.
8Both based on ChaSen [Matsumoto et al. 2003].

ACM Journal Name, Vol. V, No. N, Month 20YY.
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(3) 警察
keisatsu
police

など
nado
etcetera

の
no
GEN

回し者
mawashimono
secret agent

。
.
.

スパイ
supai
spy

。
.
.

“A secret agent for the police, etc. A spy.”

we would generate the following bag of (content) lemmas:

(3’) { 警察 ,回し者 ,スパイ }

In the original Lesk algorithm, the similarity calculation in Algorithm 1 takes
the form of a simple set intersection operation and determination of the cardinality
of the resulting set. In our example, the algorithm would correctly predict that
(1) contains an instance of the first sense of inu due to the definition containing
one lemma in common with the context (namely 飼う “keep”), as compared to the
second sense where there are no overlapping lemmas.

3.4 Extended Lesk

An obvious weakness of the original Lesk algorithm is that it requires that the exact
words used in the definitions be included in each usage of the target word. To re-
dress this shortcoming, Banerjee and Pedersen [2003] extended the basic algorithm
for WordNet-based WSD tasks to include ontological semantics, i.e. expanding the
method to compare not only the definition of a given word sense, but also the
definitions of word senses ontologically related to it (e.g. through hypernymy, hy-
ponymy or meronymy).9 Further, they modified the original algorithm to compare
the definitions of each sense of each word within n words of the target word, rather
than comparing the words in the context of the target word directly with the def-
inition of each target word sense. To return to our example from above, given (1)
and the target word inu, the Banerjee and Pedersen [2003] algorithm would iden-
tify otonashī and kau as context words of the target word, and identify all senses
of each of the context words in Hinoki. It would further identify directly related
senses of each sense of both inu and the context words (i.e. senses which are di-
rectly linked by a single edge). Finally, for each each sense of inu, it would take first
the expanded set of that sense and all ontologically-linked senses, and second the
expanded set of all senses of context words and their ontologically-linked senses,
and perform a comparison of the definitions in the pairwise cross-product of the
two sets, returning the combined sum of all such comparisons.

Formally, Banerjee and Pedersen [2003] formulate their similarity calculation as
follows for a given word sense pairing (A,B):

similarity(A,B) =
∑

〈Ri,Rj〉∈RELPAIRS

score(Ri(A), Rj(B)) (4)

where score is calculated as the square of the word length of the longest common
sub-string in the definitions of Ri(A) and Rj(B), and RELPAIRS is a set of re-
lation pairs, e.g., {〈def , def 〉, 〈hype, def 〉, 〈def , hype〉}. Note here that the method

9In earlier work [Baldwin et al. 2008], we experimented with a predecessor method, also proposed

by Banerjee and Pedersen [2002], and hence present slightly different results to those presented in
this paper.
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doesn’t perform explicit comparison of the target word context with the (extended)
word definition, but instead compares the (extended) word definition with the (ex-
tended) definitions of context words. In this research, we define RELPAIRS to be
{〈def , def 〉, 〈hype, hype〉, 〈hypo, hypo〉}, indicating that we compare the definitions
of the two senses, the definitions of the hypernyms of the two senses (each of which
is a set in itself), and the definitions of the hyponyms of the two senses (each of
which is, again, a set in itself).

4. PROPOSED ALGORITHM

The basis of our algorithm is an amalgam of the original Lesk algorithm and the
extended algorithm of Banerjee and Pedersen [2003]: (1) like the original algorithm,
we compare the context of the target word directly with definitions, unlike Banerjee
and Pedersen who only ever compare definition sentences; and (2) like Banerjee
and Pedersen we extend the original algorithm by looking beyond the definitions of
the individual senses to include the definitions of ontologically-related senses, but
our approach for doing this is to take the union of multisets associated with each
definition rather than combine pairwise comparisons of individual definitions.

Below, we outline the specifics of the proposed algorithm, in terms of the scor-
ing mechanism, tokenisation strategy, and different strategies for expanding the
definitions.

4.1 Scoring Mechanism

In Algorithm 1, similarity provides the means to score a given pairing of context w
and definition di,j . In the original Lesk algorithm, similarity was simply the number
of words in common between the two, which Banerjee and Pedersen [2003] modified
by squaring the size of the longest overlapping sub-string. While squaring is well
motivated in terms of preferring longer substring matches, longer definitions are
preferred as they are a priori more likely to generate longer matches; the calculation
of the longest substring is also computational expensive. We thus adopt a cheaper
scoring mechanism which is normalised relative to the length of w and di,j , but
ignores the original order of the segments. Namely, we use the Dice coefficient,
defined for sets A and B as follows:

simDICE(A,B) =
2 |A ∩ B|
|A| + |B|

(5)

4.2 Tokenisation

As mentioned in Section 3.2, Japanese is a non-segmenting language which makes
heavy use of logographic characters. As such, as an alternative to segmentation via
a word splitter such as ChaSen and using words (or lemmas) as our segment unit,
we can simply tokenise strings into their component characters and use characters
as our segments. Note that independent of the choice of segment granularity, we re-
quire word splitting in order to identify the words in a string to look up senses for in
our dictionary; that is, we are not doing away with the need for word segmentation
in adopting a character indexing strategy, we are simply modifying the underly-
ing string representation which our similarity mechanism is applied to. Character
and word tokenisation have been compared in the context of Japanese information
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retrieval [Fujii and Croft 1993] and translation retrieval [Baldwin 2001], and in
both of these tasks, characters have been found to be the superior representation in
certain contexts. It is thus interesting to investigate whether these findings carry
across to WSD.

4.3 Expanded Definitions

The main direction in which Banerjee and Pedersen [2003] successfully extended
the Lesk algorithm was in including ontologically-linked definitions (e.g. hyponyms
and hypernyms). In the method of Banerjee and Pedersen, the expansion takes the
form of carrying out multiple comparisons of different pairings of definitions and
summing the individual scores together. Our approach is instead to use ontological
links to first expand the definition for each word sense, and carry out a single
comparison of the expanded definition with the context string of the target word.
In information retrieval terms, therefore, our method equates to query expansion.

We experiment with a number of approaches to expansion. First, we expand the
definition sentences to in turn include the definitions of each word contained in that
definition. In the case of the first sense of inu, for example, in (2), we expand the
definition to include the definitions for each word in the definition which is also
defined in the Hinoki Sensebank, namely 犬 [inu], 食肉 [shokuniku], 動物 [dōbutsu],
and so on.10 As all of the definitions are sense-tagged, this expansion can occur
either in a sense-sensitive manner, expanding the definition to include only the
definitions of the sense instantiated in the definition, or a sense-insensitive manner,
expanding the definition to include all senses of each word.

Second (and orthogonally), we follow Banerjee and Pedersen [2003] in expanding
the definitions to include words from the definitions for the synonyms, hypernyms
and/or hyponyms of a given sense of the target word.11 For example, when we
combine the first sense of inu (Fig 1) with its hypernym dōbutsu (Fig 2), we add
the set of content words in dōbutsu1’s definition { 生物 ,大きな ,区分 } to those of
inu1 { 犬 ,食肉 ,動物 ,家畜 ,古い ,飼う ,飼い主 ,忠実 } to give the set: { 犬 ,食
肉 ,動物 ,家畜 ,古い ,飼う ,飼い主 ,忠実 ,生物 ,大きな ,区分 }. We then use this
set to match against the context of the word being disambiguated. As with the
expansion of definitions via the definitions of their component words, this ontology-
based expansion can take place in either a sense-sensitive manner (i.e. expanding out
only the synonyms, hyponyms and hypernyms of a given sense) or sense-insensitive
manner (i.e. expanding out all synonyms, hyponyms and hypernyms for all senses
of a given word). Note that we use only one level of lexical relations, i.e. only direct
hyponyms and hypernyms.

10Note that in this case the definition includes the target word (inu), meaning that we duplicate
all segments in the definition.
11Note that Banerjee and Pedersen [2003] did not experiment with synonyms, as WordNet provides
definitions at the synset level, i.e. for a cluster of synonyms, such that synonym-to-synonym
definition comparison will always result in a full string match. They did, however, make use of the

richer set of ontological relations provided in WordNet, including meronymy, holonymy, also-see,
and attribute, all of which we ignore.
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Index 動物 dōbutsu

Pos noun Lexical-Type noun-lex

Sense 1
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Definition 生物 1 の ２ つ の 大きな 1 区分 1 の １ つ 。
One of the two major divisions of living things.

Example 動物 1 は 植物 1 と 違い 1 自由 1 に 動け 1 る 。
Animals, unlike plants, can move freely.
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Fig. 2. Simplified first sense for the word 動物 [dōbutsu] “animal” (with English
glosses)

4.4 Other Extensions

We also experimented with a number of other extensions to the proposed method,
but found them to have relatively little impact so don’t present detailed results
here. These extensions included:

—POS-based filtering of the tokens for word-based tokenisation (e.g. treating verbal
and demonstrative instances of the word ある [aru] as distinct tokens); this was
found to have very little impact on results, due to very few POS-differentiated
homographs in Japanese

—Stop word filtering, using the same set of stop words as was used in Nichols et al.
[2005]; this led to very slight increments in accuracy across the board (of the
order of 0.001)

—Different n-gram orders for both words and characters; this was found to improve
results very marginally for character-based tokenisation in isolated cases, but
generally drove results down

—Different scoring metrics (e.g. cosine similarity and simple set overlap), but the
Dice coefficient was found to be the best overall.

5. EVALUATION

We evaluate our various extensions over two datasets: (1) the example sentences
in the Hinoki Sensebank, and (2) the Senseval-2 Japanese dictionary task [Shirai
2002].

Each sense in the Hinoki Sensebank has one example sentence, and therefore we
are guaranteed to have at least one token instance of every sense in the sensebank.
As stated above, all content words in the example sentences were sense annotated
[Tanaka et al. 2006].

The Senseval-2 Japanese dictionary task is a lexical sample task, which used
the Iwanami Kokugo Jiten as its original sense inventory. We include this dataset for
calibration purposes, in comparing our method with previously published results
on Japanese WSD. As we do not have access to an ontology or sense-annotated
definitions for the Iwanami Kokugo Jiten, however, we are not able to run our
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method over it directly. Instead, we used a re-annotated version of the Senseval-2
data based on Hinoki senses. Similarly to the example sentences, the Senseval-2
data was 5-way manually sense annotated, and sense-arbitrated according to the
majority annotation. Naturally, the sense granularity of Hinoki is not identical to
that for the Iwanami Kokugo Jiten, and hence the sense distribution of our re-
annotated data diverges from that for the original data. Fortunately, all target
words in the Senseval-2 task were common enough that Hinoki had full coverage
over them.

All results below are reported in terms of simple accuracy.
For the two datasets, we use two baselines: a random baseline and the first-sense

baseline. The former assigns one of the candidate senses randomly, and the latter
always picks sense ID 1 for each word (i.e. the word sense with the most token
occurrences within the Hinoki definitions). As such, random sense assignment is an
unsupervised baseline, while first-sense assignment is a supervised baseline. We will
use these values as a reference for our algorithm. Note that the (supervised) first-
sense baseline has been shown to be hard to beat for unsupervised systems [Kilgarriff
2004; McCarthy et al. 2007], for example for 犬 [inu], the first sense baseline has
an accuracy of 99% over the 67 occurrences of 犬 in the sensebank (both definition
and example sentences).

As a benchmark MRD-based WSD method, we reimplemented the original Baner-
jee and Pedersen [2003] method to work over the Hinoki data. As mentioned above,
our reimplementation is slightly different to that applied to the English WordNet
data, in terms of the selection of ontological relations we use.

5.1 Hinoki Example Sentences

The goal of these experiments is to tag all the words that occur in the example
sentences in the Hinoki Sensebank.

In our first sub-experiment, we experiment with the two tokenisation strategies
(characters [Char] vs. words [Word]) and the optional use of extended definitions
(without ontological relations, and at the word rather than sense level). The results
are presented in the top portion of Table II.

The first finding is that characters are in all cases superior to words as our
segment granularity. This is a somewhat surprising result, given that the median
word length is 2 characters, based on which it would not appear that words would
generate excessive data sparseness.

Extended definitions are also shown to be superior to simple definitions, although
the relative increment in making use of large amounts of sense annotations is lesser
than that of characters vs. words.

Note that at this point, our best-performing method is just above the unsuper-
vised (random) baseline, but well below the supervised (first sense) baseline.

Having found that extended definitions improve results to a small degree, we
next experiment with the inclusion of various ontological relations to expand the
original definitions. Here, we persevere with the use of word and characters, and
experiment with the addition of synonyms, hypernyms and/or hyponyms, with and
without the extended definitions (we don’t present results or all combinations of
lexical relations for reasons of space). We further test the impact of the sense
annotations, in rerunning our experiments with the ontology in a sense-insensitive
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Sense-sensitive Sense-insensitive
Word Char Word Char

unsupervised (random) baseline: 0.527

supervised (first-sense) baseline: 0.633

Banerjee and Pedersen [2003] 0.563

simple — — 0.469 0.524
+extdef — — 0.489 0.527
+syn 0.560 0.538 0.548 0.543

+hyper 0.559 0.539 0.548 0.537
+hypo 0.656 0.644 0.655 0.644
+hyper +hypo 0.648 0.641 0.629 0.630
+syn +hyper +hypo 0.650 0.633 0.627 0.623

+extdef +syn 0.577 0.560 0.551 0.543
+extdef +hyper 0.577 0.563 0.551 0.542
+extdef +hypo 0.653 0.646 0.649 0.644
+extdef +hyper +hypo 0.683 0.671 0.631 0.627

+extdef +syn +hyper +hypo 0.680 0.661 0.632 0.621

Table II. Accuracy using ontology-based definition extension (with/without word sense informa-
tion) and words (Word) or characters (Char) as our segment unit (best-performing method in
each column in boldface)

manner, i.e. by adding in the union of word-level hypernyms and/or hyponyms.
The results are described in the bottom portion of Table II.

Adding in the ontology makes a considerable difference to our results, in line with
the findings of Banerjee and Pedersen [2003]. Hyponyms are better discriminators
than hypernyms (assuming a given word sense has a hyponym — the Hinoki ontol-
ogy is relatively flat), partly because while a given word sense will have (at most)
one hypernym, it often has multiple hyponyms (if any at all). Adding in hypernyms
or hyponyms, in fact, has a greater impact on results than simple extended defi-
nitions (+extdef), especially for the word-based representation. The best overall
results are produced for the combination of all ontological relations (i.e. extended
definitions, hypernyms and hyponyms), achieving an accuracy level above both the
unsupervised (random) and supervised (first-sense) baselines and the Banerjee and
Pedersen [2003] method.

Looking at the sense-insensitive results, simple hyponyms (without extended def-
initions) and word-based tokenisation produced the best results out of all the vari-
ants tried, at an accuracy of 0.655, once again above both baselines and the original
Banerjee and Pedersen [2003] method. This compares with an accuracy of 0.683
achieved for the best of the sense-sensitive methods, indicating that sense informa-
tion in the definitions enhances WSD performance. This reinforces our expectation
that richly annotated lexical resources improve performance, but also indicates
that in the absence of sense annotations in the lexical resource, our method is still
able to achieve highly competitive results. With richer information to work with,
character-based methods uniformly give worse results.

In Table III, we present a breakdown of the results over the four main word
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All Noun Verb Adj Adv

unsupervised (random) baseline: 0.527 0.641 0.252 0.415 0.564
supervised (first-sense) baseline: 0.633 0.718 0.407 0.547 0.628

Banerjee and Pedersen [2003] 0.563 0.672 0.290 0.440 0.540

Word

simple 0.469 0.620 0.145 0.294 0.388

+extdef 0.489 0.630 0.179 0.306 0.451
+syn 0.560 0.679 0.281 0.420 0.609
+hyper 0.559 0.679 0.281 0.384 0.609
+hypo 0.656 0.747 0.432 0.571 0.645

+hyper +hypo 0.648 0.739 0.423 0.553 0.653
+syn +hyper +hypo 0.650 0.743 0.419 0.615 0.665
+extdef +syn 0.577 0.717 0.282 0.315 0.590
+extdef +hyper 0.577 0.717 0.282 0.380 0.590

+extdef +hypo 0.653 0.741 0.434 0.584 0.664
+extdef +hyper +hypo 0.683 0.789 0.429 0.574 0.644
+extdef +syn +hyper +hypo 0.680 0.785 0.428 0.619 0.659

Char

simple 0.524 0.652 0.235 0.365 0.515

+extdef 0.527 0.641 0.263 0.402 0.575
+syn 0.538 0.666 0.263 0.301 0.575
+hyper 0.538 0.666 0.267 0.382 0.572
+hypo 0.644 0.729 0.431 0.573 0.639

+hyper +hypo 0.640 0.728 0.423 0.564 0.636
+syn +hyper +hypo 0.633 0.722 0.413 0.590 0.635
+extdef +syn 0.559 0.705 0.259 0.261 0.565

+extdef +hyper 0.563 0.709 0.262 0.360 0.567
+extdef +hypo 0.646 0.737 0.421 0.574 0.642
+extdef +hyper +hypo 0.671 0.776 0.421 0.564 0.632
+extdef +syn +hyper +hypo 0.660 0.763 0.414 0.594 0.649

Table III. Breakdown of results across word classes using ontology-based definition extension (with
word sense information) and word (Word) and character (Char) unigrams

classes (nouns, verbs, adjectives and adverbs), with sense-sensitive lexical relation
expansion. We observe a relatively consistent trend across the four word classes, in
terms of words generally outperforming characters when we introduce the lexical
relations, and the addition of extra lexical relations generally improving accuracy.
We also observe a marked imbalance in both the baseline accuracies and perfor-
mance levels across the different word classes. As commonly observed for all
words WSD tasks, verbs are the hardest POS to disambiguate and nouns the
easiest. This is in terms of both the baselines and the relative boost in accuracy
with our method (based on error rate reduction12). In all cases, the lexical relation
which produces the singular greatest increment in accuracy is hyponyms, although
the effect is considerably less pronounced for adverbs than the other three word
classes. Overall, more lexical relations generally lead to higher accuracy, but there
are subtle differences across the word classes in terms of exactly what combination
of lexical relations produces the best accuracy overall.

12For a method with accuracy a relative to a baseline with accuracy b, the error rate reduction is
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Sense-sensitive Sense-insensitive
Word Char Word Char

Unsupervised (random) baseline: 0.310

Supervised (first-sense) baseline: 0.577

Banerjee and Pedersen [2003] 0.700

simple — — 0.373 0.404
+extdef — — 0.362 0.420
+syn 0.696 0.689 0.691 0.685

+hyper 0.450 0.441 0.426 0.425
+hypo 0.577 0.568 0.610 0.616
+hyper +hypo 0.591 0.585 0.608 0.596
+syn +hyper +hypo 0.768 0.763 0.760 0.760

+extdef +syn 0.694 0.695 0.691 0.692
+extdef +hyper 0.484 0.451 0.432 0.371
+extdef +hypo 0.630 0.616 0.622 0.610
+extdef +hyper +hypo 0.624 0.624 0.602 0.593

+extdef +syn +hyper +hypo 0.776 0.764 0.765 0.761

Table IV. Accuracy over the Senseval-2 data

5.2 Senseval-2 Japanese Dictionary Task

In our second set of experiments we apply our proposed method to the Senseval-
2 Japanese dictionary task [Shirai 2002] in order to calibrate our results against
previously-published results for Japanese WSD. Recall that this is a lexical sam-
ple task, and that our evaluation is relative to Hinoki re-annotations of the same
dataset, although the relative polysemy for the original data and the re-annotated
version is largely the same [Tanaka et al. 2006]. The first sense baselines for the two
sets of annotations differ significantly, however, with an accuracy of 0.726 reported
for the original task, and 0.577 for the re-annotated Hinoki variant.

In Table IV, we present the results over the Senseval-2 data for the best-performing
systems from our earlier experiments. As before, we include results over both words
and characters, and with sense-sensitive and sense-insensitive ontology expansion.

Our results largely mirror those of Table II. The best methods surpass the
random and first sense baselines, as well as Banerjee and Pedersen [2003]. In this
case, the synonyms have the greatest impact out of the three lexical relations, but
again, the combination of all three lexical relations is the best overall performer.
There is less difference between word and character tokenisation than in our first
experiment, and the relative impact of sense annotations was if anything even less
pronounced than for the example sentence task.

We achieved our best accuracy with word tokenisation, extended definitions, all
lexical relations and sense-sensitivity, at an accuracy of 0.776. This represents an
error reduction rate of 47.0% over the first-sense baseline, and compares favourably
with an error rate reduction of 21.9% for the best of the WSD systems in the original

calculated according to: a−b
1−b

.
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Senseval-2 task, based on “mixed-grain” senses [Kurohashi and Shirai 2001]. It is
particularly impressive given that our method is semi-supervised while the Senseval-
2 system is a conventional supervised word sense disambiguator. Even when we take
away the sense-sensitivity, the error reduction rate drops back only fractionally to
44.4%.

In more recent work, Tanaka et al. [2007] use the Hinoki Sensebank to train a
supervised classifier, which uses both the ontological information and semantic de-
pendencies from a parser. The split into training and test is different from ours,
so the results are not directly comparable. The most comparable results are where
Tanaka et al. [2007] train on both definition and example sentences, and test on a
held-out set of example sentences. Here, the first sense baseline is 0.704 (compared
to 0.633 in our case, training on definition sentences and testing on example sen-
tences), and the supervised system achieved an accuracy of 0.788, easily surpassing
our best unsupervised results of 0.683 in terms of both raw accuracy and error rate
reduction (28.4% vs. 13.6%).

6. DISCUSSION

Over the Hinoki example sentence data, the use of the sense-tagged data to link
senses in the ontology gave the best result overall at an accuracy of 0.683. This was
using extended definitions, hypernym and hyponym links, and word tokenisation.
Without the sense information, the best result was 0.655 using only hyponym links.
As can be expected, more precise information leads to a higher precision. The ex-
tra information does not, however, come for free: the ontology was automatically
extracted, but underwent minor manual post-correction as errors were noticed, and
the sense-links were manually annotated. If we were interested solely in WSD, the
annotation could have been greatly reduced, as only the linked words (e.g. hyper-
nyms, hyponyms and synonyms) need to be disambiguated, accounting for roughly
one third of the total. Alternatively, the annotation could have been performed
automatically, as was done for the first version of Extended WordNet [Harabagiu
et al. 1999], or just the hypernyms disambiguated, as in Rigau et al. [1997]. In our
opinion, the 110 person/days (per annotator) to sense tag the definition sentences
was a small cost compared to the overall outlay to build the lexicon, and well jus-
tified. In the case of WordNet, all links are relative to synsets13 and hence sense
specified, so using WordNet links is equivalent to our sense-sensitive system.

Comparing our method to Banerjee and Pedersen [2003], not only did we achieve
higher accuracy over two separate datasets, but our method is computationally
cheaper, as we perform a single set intersection calculation rather than multiple
calculations of the length of the longest common subsequence between glosses. It is
important to point out that we did not attempt to optimise the parameterisation of
the Banerjee and Pedersen [2003] method over either of our datasets, in terms of the
combinations of lexical relations or size of the context window. In this sense, more
research could be carried out to thoroughly explore the impact of the parameter
setting on the accuracy of the method.

Of character and word tokenisation, word tokenisation was found to be slightly

13Strictly speaking, antonyms, e.g., are word- rather than sense-specific, but they are not used in
this research or the work of Banerjee and Pedersen.
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superior when combined with ontological expansion, but in the absence of an ontol-
ogy, character tokenisation consistently outperformed word tokenisation. Combin-
ing this with the finding that the inclusion of ontological relations boosted accuracy
considerably, the overall finding is that it is well worth inducing an ontology (e.g.
using the automatic method of Nichols et al. [2005]), and that even in the absence
of sense annotation, this will have the single greatest impact on the accuracy of
WSD based on our proposed method.

7. CONCLUSION

We proposed a new method for MRD-based word sense disambiguation based on
definition expansion via an ontology, building on the work of Lesk [1986] and Baner-
jee and Pedersen [2003]. In this, we experimented with character- and word-based
tokenisation, definition extension based on the words in the original definition sen-
tences, and a range of lexical relations. With the lexical relations, we experimented
with both sense-sensitive and sense-insensitive expansion, interpreting the lexical
relations as linking either word senses or words, respectively. In doing so, we mea-
sured the contribution of sense-tagged definitions to the overall disambiguation
performance. We evaluated our proposed method over two Japanese datasets: ex-
ample sentences from the Hinoki Sensebank, and a retagged version of the Senseval-
2 Japanese dictionary task. In making maximal use of the available lexical relations
and definition extension, we were able to surpass both unsupervised and supervised
baselines for the two datasets, and the method of Banerjee and Pedersen [2003]. We
also found that sensitising the lexical relations to word sense consistently improved
the accuracy of our method, and that the method performed best over nouns.

One of the strengths of our method is that it can be applied equally to all words
in running text, at an accuracy level higher than a first-sense baseline. This full-
coverage system opens the way to further enhancements, such as the contribution
of extra sense-tagged examples to the expansion, or the combination of different
WSD algorithms. In future work, we intend to integrate the WSD tool with other
Japanese text processing applications, such as a cross-lingual glossing tool for learn-
ers of Japanese text [Yap and Baldwin 2007] and parse selection for Japanese gram-
mars [Fujita et al. 2007].
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