
 Open access Journal Article DOI:10.1109/MS.2011.1

A Refactoring Approach to Parallelism — Source link

Danny Dig

Institutions: University of Illinois at Urbana–Champaign

Published on: 01 Jan 2011 - IEEE Software (IEEE)

Topics: Code refactoring, Source lines of code, Software portability, Software development and Multi-core processor

Related papers:

 Refactoring: Improving the Design of Existing Code

 Refactoring sequential Java code for concurrency via concurrent libraries

 Refactoring object-oriented frameworks

 A survey of software refactoring

 Refactoring for reentrancy

Share this paper:

View more about this paper here: https://typeset.io/papers/a-refactoring-approach-to-parallelism-
25aao2116d

https://typeset.io/
https://www.doi.org/10.1109/MS.2011.1
https://typeset.io/papers/a-refactoring-approach-to-parallelism-25aao2116d
https://typeset.io/authors/danny-dig-1wmpaa6cvz
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/journals/ieee-software-2xp8dbta
https://typeset.io/topics/code-refactoring-3rrb2ht1
https://typeset.io/topics/source-lines-of-code-2a3onlzq
https://typeset.io/topics/software-portability-1rgtkq11
https://typeset.io/topics/software-development-1vxoqmyk
https://typeset.io/topics/multi-core-processor-39kaqw59
https://typeset.io/papers/refactoring-improving-the-design-of-existing-code-3ls0vii4ns
https://typeset.io/papers/refactoring-sequential-java-code-for-concurrency-via-497wz27aed
https://typeset.io/papers/refactoring-object-oriented-frameworks-nfg3kkz0le
https://typeset.io/papers/a-survey-of-software-refactoring-kgrdghit3u
https://typeset.io/papers/refactoring-for-reentrancy-ltx4ujdmm6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-refactoring-approach-to-parallelism-25aao2116d
https://twitter.com/intent/tweet?text=A%20Refactoring%20Approach%20to%20Parallelism&url=https://typeset.io/papers/a-refactoring-approach-to-parallelism-25aao2116d
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-refactoring-approach-to-parallelism-25aao2116d
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-refactoring-approach-to-parallelism-25aao2116d
https://typeset.io/papers/a-refactoring-approach-to-parallelism-25aao2116d

1

A Refactoring Approach to Parallelism
Danny Dig

Computer Science Department

University of Illinois at Urbana-Champaign

Email: dig@illinois.edu

Abstract—In the multicore era, a major programming task will
be to make programs more parallel. This is tedious because it
requires changing many lines of code, and it is error-prone and
non-trivial because programmers need to ensure non-interference
of parallel operations. Fortunately, refactoring tools can help
reduce the analysis and transformation burden.

We present our vision on how refactoring tools can improve
programmer productivity, program performance, and program
portability. We also present the current incarnation of this
vision: a toolset that supports several refactorings for (i) making
programs thread-safe, (ii) threading sequential programs for
throughput, and (iii) improving scalability of parallel programs.

Index Terms—refactoring, parallelism, concurrency.

I. INTRODUCTION

For decades, programmers relied on Moore’s Law to im-

prove the performance of their applications. With the advent

of multicores, programmers are forced to exploit parallelism

if they want to improve the performance of their applications,

or when they want to enable new applications and services

that were not possible before (e.g., enhanced user experience,

better quality of service).

One approach for parallelizing a program is to rewrite it

from scratch. However, the most common way is to parallelize

a program incrementally, one piece at a time. Each small

step can be seen as a behavior-preserving transformation,

i.e., a refactoring. Programmers prefer this approach because

it is safer: they prefer to maintain a working, deployable

version of the program. Also, the incremental approach is more

economical than rewriting.

However, the refactoring approach is still tedious because

it requires changing many lines of code, is error-prone and

is non-trivial because programmers need to ensure non-

interference of parallel operations. For example, we paral-

lelized several loops using Java’s ParallelArray data-structure;

this required an average of 10 changes per loop. We spent

even more time ensuring that the parallel iterations do not

update shared objects or files. Since the library assumes non-

interference of parallel operations, it does not protect the data

accesses, thus leading to data races.

To reduce the programmer’s burden when converting se-

quential to parallel programs, several tools have been pro-

posed. They come in two distinct flavors: (i) fully automatic

tools (e.g., automatic parallelizing compilers [1]–[4]) and

(ii) interactive tools (e.g., refactoring tools [5]–[12]). The

fundamental difference between these tools is the role of the

programmer.

Starting from a sequential program, a non-interactive tool

creates a parallel program automatically, without any help

from the programmer. When this works it gives great results.

Unfortunately, without programmer’s domain knowledge, the

compiler has limited applicability. To date, the only compiler

successes have been in programs involving dense matrix

operations and stencil computations. Even though compilers

have improved a lot, programmers still parallelize by hand

most of the code.

Interactive tools take a completely different approach: some-

times, less automation is better! They let the programmer be in

the driver’s seat. The programmer is the expert on the problem

domain, and so understands the domain concepts amenable

to parallelism. The programmer also understands the the

current sequential implementation: the program invariants that

must be preserved during parallelization, along with the data-

and control-flow relationships between parts of the program,

and the algorithms and data structures used in the current

implementation.

Thus, the interactive approach combines the strengths of

the programmer (domain knowledge, seeing the big picture)

and the computers (fast search, remember, and compute). The

programmer does the creative part: selects code and targets it

with a transformation. The tool does the tedious job: checks

the safety (this involves searching in many files, by traversing

through many functions and through aliased variables), and

modifies the program. When the tool cannot apply a trans-

formation, it provides information integrated within the visual

interface of an IDE (e.g., Eclipse, VisualStudio), thus allowing

a programmer to pinpoint the problematic code.

In the last decade of sequential programming, interactive

refactoring tools have revolutionized how programmers ap-

proach software design. Without refactoring tools, program-

mers often over-designed, because it was expensive to change

the design once it was implemented. Refactoring tools have

enabled programmers to continuously evolve the design of

large codebases, while preserving the existing behavior. Mod-

ern IDEs incorporate refactoring in their top menu, and often

compete on the basis of refactoring support.

In the next decade of parallel programming, we envision that

refactoring tools for retrofitting parallelism can be similarly

transformative. Our current refactoring toolset for improving

(i) thread-safety, (ii) throughput, and (iii) scalability seems to

indicate so. Empirical evaluation shows that our toolset is use-

ful: it reduces the burden of analyzing and modifying code, it

is fast enough to be used interactively, and it correctly applies

transformations that open-source developers overlooked.

2

Fig. 1. The process of using a refactoring tool to parallelize code.

Like any other performance optimizations (and unlike se-

quential refactorings), refactorings for parallelism are likely to

make the code more complex, more expensive to maintain, and

less portable. We present our vision on how refactoring tools,

along with smart IDEs and performance tools, can further im-

prove programmer productivity (by improving the readability

and maintenance of parallel code), program performance, and

program portability.

II. A VISION FOR REFACTORING TOOLS FOR

PARALLELISM

A refactoring toolset for parallelism has several points

of interaction with the programmer, shown in Fig. 1. The

programmer selects some code and a target refactoring, and

the tool analyzes the safety of the transformation. Ultimately,

it is the programmer’s responsibility to identify all shared data

or compute-intensive code and target it with the appropriate

refactorings. If some of the refactoring preconditions are not

met, the tool raises warnings and highlights the problematic

code. The programmer can decide to cancel the refactoring,

fix the code, then re-run the refactoring, or he can decide to

proceed against the warnings.

By default, the refactoring tool applies the changes only

when its analysis determines that it is safe to do so. However,

the programmer has the choice to ignore the warnings and

apply the changes anyway.

Our growing toolset [7]–[9] of refactorings for parallelism

uses the workflow described above (see more details in Sec-

tion III). The experience with replicating refactoring scenarios

performed by open-source developers shows that automation

is useful. It also shows that we need to go further.

In the past, refactoring has been traditionally associated with

improving the structure of the code, thus making the code more

readable and more reusable, even across different platforms.

With refactorings for parallelism, the new code is likely to be

less readable. Consider the refactoring for parallelizing a loop

shown in Fig. 2. The parallel code (on the right-hand side)

hides the intent of the original code, thus increasing the code

complexity and decreasing the productivity of programmers

who need to maintain it. Also, the new code is less portable,

since it is fine-tuned for a particular platform.

We envision smart IDEs that treat refactorings for perfor-

mance intelligently, thus improving both the readability and

portability of the parallel code. Also, refactoring tools will

need to work in tandem with other tools (e.g., compilers and

performance monitors) to achieve maximum performance.

A. Improving Programmer Productivity

When refactoring in the sequential domain, the programmer

would throw away the old code and keep the new code. When

refactoring for performance, it is desirable to keep both, and

be able to navigate back and forth between the two forms.

A smart IDE that treats refactorings as first-class program

transformations can automatically record these transformations

when they are applied by the programmer. Subsequently, these

transformations can serve as explicit documentation about how

a piece of code evolved, enhancing program understanding.

Advanced refactoring engines like Eclipse already provide the

recording capability.

The IDE can also provide two views of the same code: a

sequential and a parallel view. The programmer would use

the sequential view for program understanding, for fixing

bugs in the original program, or for adding new features.

The programmer would use the parallel view for performance

debugging. The code in the sequential view could be lightly

annotated to indicate that programmer has applied a perfor-

mance refactoring. For the example in Fig. 2, the refactoring

could leave an @Parallel annotation in front of each loop.

By asking the IDE to expand this annotation, the programmer

would view the parallel code.

B. Improving Code Portability

When programmers need to squeeze the last bit of perfor-

mance out of their programs, they often resort to transforma-

tions that are platform-specific. For example, transformations

take into account hardware characteristics like the number of

cores, the memory (size, shared vs. distributed), cache line

sizes, etc.

Currently, the platform-specific transformations are deeply

embedded within the code, thus making the code less portable.

To migrate to a new platform, the programmer needs to first

undo the platform-specific code, get the platform-independent

code, then apply new transformations.

Smart IDEs that understand explicit parallel transformations

can help the portability of parallel code: same transformation

can have several platform specific implementations. For exam-

ple, the programmer refactors a loop for parallelism, but the

specific transformation depends on whether the code runs on a

gaming console, a general-purpose shared-memory computer,

or a distributed system. The refactoring tool would provide

several alternative implementations of the same transforma-

tion. The programmer maintains the portable code, which

is annotated with transformations, not mixed with platform-

specific code. He can switch to the platform-specific view

when needed.

3

Fig. 2. Using a refactoring tool to parallelize loops using the ParallelArray library. The preview shows the sequential code on the left-hand side. The
right-hand side shows all the changes that need to be applied.

C. Improving Performance

When deciding what to parallelize, the programmer uses

her domain knowledge and he also uses other tools to identify

performance bottlenecks. Currently, there is a gap between

these tools. There needs to be more focused interactions

between refactoring tools and the other tools in the toolbox.

Refactoring tools can take feedback from performance tools

like hardware monitors or profilers. After running a program

and detecting performance smells, performance tools can

suggest several refactorings. The programmer in the loop can

make informed decisions about which refactorings to apply.

The runtime information can also help with the imprecision

of the static analysis used in refactoring tools.

Refactoring tools can also provide explicit knobs for other

tools. For example, parallelizing a sequential divide-and-

conquer algorithm requires the user to specify the cut-off

threshold between the sequential and the parallel case. The

programmer can provide an initial starting point, and the

refactoring tool can hook into an auto-tuner to find the value

that maximizes the performance. Even more radically, an auto-

tuner could mix and match several refactorings, and select the

combination that yields the best performance.

Refactoring tools and compilers need not compete, but they

ought to complement each other. In cases when the compiler

cannot automatically parallelize a program, it can provide

information and leave this for the refactoring tool who can

use feedback from the programmer to get the job done.

III. OUR CURRENT REFACTORING TOOLSET FOR

PARALLELISM

To turn this vision into reality, we first asked the ques-

tion “what are the parallelizing program transformations that

occur most often in practice?”. To answer it, we conducted

a quantitative and qualitative study [13] of five open-source

programs (two Eclipse plugins, JUnit, Apache Tomcat server,

and Apache MINA library) that were manually parallelized by

their developers.

We found that parallelizing transformations are not random,

but they fell into four categories: transformations that improve

the latency (i.e., an application feels more responsive), trans-

formations that improve the throughput (i.e., more computa-

tional tasks executed per unit of time), transformations that

improve the scalability (i.e., the performance scales up when

adding more cores), and transformations that improve thread-

safety (i.e., application behaves according to its specification

even when executed under multiple threads).

The industry trend is to convert the hard problem of intro-

ducing parallelism into the problem of using a parallel library

or framework. For example, Microsoft provides the Task Paral-

lel Library (TPL) for .NET, Intel provides Threading Building

Blocks (TBB) for C++, and Java contains ForkJoinTask and

ParallelArray (all these libraries have comparable features).

Much of the complexity of writing parallel code (e.g., bal-

ancing the computation load among the cores) is hidden in

the library. Libraries also provide highly scalable, thread-safe

collections (e.g., ConcurrentHashMap) and lightweight tasks,

thread-like entities but with much lower overhead for creation

and management.

4

Our current refactoring toolset uses the Java libraries and

is implemented on top of Eclipse’s refactoring engine. Thus,

it offers all the practical features that programmers love:

integration in an IDE, previewing changes, and undo.

When parallelizing a sequential program, a programmer

needs to (i) make the code thread-safe by protecting accesses

to mutable shared data, (ii) make the code run on multiple

threads of execution, and (iii) make the performance scalable

when adding more cores. Several authors [13]–[15] advocate

to first make the code right (i.e., thread-safe), then make it fast

(i.e., multi-threaded), then make it scalable.

Our growing toolset currently automates six refactorings,

that fall into three categories. Refactorings for thread-safety

make a program thread-safe but do not introduce multi-

threading yet. Refactorings for throughput add multi-threading.

Refactorings for scalability replace existing data structures

with highly scalable ones.

These refactorings often require transformations that span

multiple, non-adjacent, program statements, and require ana-

lyzing the program’s control-and data-flow. Also, the refact-

oring tools must be able to analyze and detect shared objects

in OO programs that contain a web of heap-allocated objects

interconnected to other objects through their fields.

A. Refactorings for Thread-Safety

Before introducing multi-threading, the programmer needs

to prepare or enable the program for parallel execution.

This involves finding the mutable data that will be shared

across parallel executions. The programmer can decide

to (i) synchronize accesses to such data, or (ii) remove

either its mutability or shared-ness. Our toolset supports

two refactorings for synchronizing accesses to data: one

refactoring [7] converts an int field to an AtomicInteger,

a j.u.c. library class which provides atomic operations for

field updates. Another refactoring converts a HashMap field

into a ConcurrentHashMap, a thread-safe implementation for

working with hashmaps. Below we present the refactoring for

converting a mutable into an immutable class.

Make Class Immutable

One way to make a whole class thread-safe, is to make

it immutable. An immutable class is thread-safe by default,

because its state cannot be mutated once an object is properly

constructed. Thus, an immutable class can be shared among

several threads, with no need for synchronization.

Our refactoring enables the programmer to convert a muta-

ble class into an immutable class. To do so, the tool makes the

class and all its fields final, so that they cannot be assigned

outside constructors and field initializers. The tool finds all

mutator methods in the class, i.e., methods that directly or

indirectly mutate the internal state (as given by its fields).

The tool converts these mutator methods into factory methods

that return a new object whose state is the old state plus

the mutation. Java programmers have seen such methods

in immutable classes like String where replace(oldChar,

newChar) or toUpperCase() return a new String with some

characters replaced.

Next, the tool finds the objects that are entering from outside

(e.g., as method parameters) and become part of the state, or

objects that are part of the state and are escaping (e.g., through

return statements). It clones these objects, so that the class state

can not be mutated by a client class who holds a reference to

these state objects. Lastly, the tool updates the client code to

use the class in an immutable fashion. For example, when

the client invokes a factory method, the tool reassigns the

reference to the immutable class to the object returned by the

factory method.

Our comparison with open-source classes that were manu-

ally refactored for immutability shows that the tool is much

safer: it finds subtle mutations and entering/escaping objects

that programmers overlooked. However, not all classes can be

made immutable. For example, if a mutator method already

returns an object, the tool cannot convert it into a factory

method. Also, due to the extra overhead of copying state,

using this refactoring is advisable only when mutations are

not frequent. More details about this refactoring can be found

in [8].

B. Refactorings for Throughput

Once a program is threadsafe, multi-threading can be used

to improve its performance. The programmer could manage

himself a raw thread (e.g., create, spawn, wait for results), or

he could use a programmer-friendlier construct, a lightweight

task, managed automatically by a framework. Our toolset

supports two such refactorings. One refactoring [7] converts

a sequential divide-and-conquer algorithm into an algorithm

which solves the recursive subproblems in parallel using

Java’s ForkJoinTask framework [14]. Another refactoring

parallelizes loops over arrays.

Parallelize Loop

This refactoring parallelizes loop iterations over an array

via ParallelArray [14], a parallel library upcoming in Java.

ParallelArray is an array data structure that supports parallel

operations over the array elements. For example, one can

apply a procedure to each element, or can reduce all elements

to a new element in parallel. The library balances the load

among the cores it finds at runtime.

The refactoring changes the data type of the array, and

it replaces loops over the array elements with the equiva-

lent parallel operations from ParallelArray. Consider the

example in Fig. 2. The first loop replaces each element

with another random element, thus the tool invokes the

replaceWithGeneratedValue parallel operation. The second

loop applies the moveBy function to each element, thus the

tool invokes the apply parallel operation.

A parallel operation takes as an argument an element

operator (lambda function or a closure) and applies it on each

element. Since Java does not support closures, the tool extracts

the statements from the original loop and wraps them within

the op method of an Operator class. The tool choses the

correct operator among a class hierarchy with 132 classes.

At the heart of the tool lies a data-flow analysis that

determines objects that are shared among loop iterations, and

5

detects writes to the shared objects. The analysis works with

both programs in source code and in byte code (e.g., jar-

packaged libraries). When the analysis finds writes to shared

objects, it presents the user a stack of code statements that

resulted in the objects being shared. These statements are

hyper-linked to the original source code, thus helping the

developer to find the problematic code.

Although we were able to refactor several real programs

and the analysis was fast and effective, not all loops can be

refactored. For example, a loop must (i) iterate over all the

array elements, (ii) not contain blocking I/O calls, and (iii)

not contain writes to shared objects. More information about

the tool can be found in [9].

C. Refactorings for Scalability

One must not sacrifice thread-safety and correctness in

the name of performance. However, a naive synchronization

scheme can lead to serializing an application, thus drastically

reducing its scalability. This usually happens when working

with low-level synchronization constructs like locks. Locks are

the goto statements of parallel programming: they are tedious

to work with, and error prone. Too many locks slow down or

deadlock a program, while too few lead to data races.

When possible, a better alternative is to use a highly-

scalable data-structure provided by parallel libraries. Our

toolset supports two such refactorings. One converts an int

into an AtomicInteger, a lock-free data structure which uses

compare-and-swap hardware instructions. Another refactoring

converts a HashMap to ConcurrentHashMap.

Convert HashMap to ConcurrentHashMap

If a class contains a HashMap field that is read/written

in parallel, it must synchronize the accesses to the

map. The programmer can use a common lock, or

can use a synchronized wrapper over a HashMap (e.g.,

Collections.synchronizedMap(aMap)). The synchronized

HashMap achieves its thread-safety by protecting all accesses

to the map with a common lock. This results in poor scalability

when multiple threads try to access different parts of the map

simultaneously, since they contend for the lock.

A better alternative is to refactor the map field into an

ConcurrentHashMap, a thread-safe, highly scalable implemen-

tation for hash maps provided by the j.u.c. library (all

readers run in parallel, a limited number of writers can

run in parallel). The refactoring replaces map updates with

calls to ConcurrentHashMap APIs. For example, a common

update operation is (i) first check whether a map contains a

certain key, (ii) if not present, create the value object, and

(iii) place the 〈key, value〉 in the map. The tool replaces

such an updating pattern with a call to ConcurrentHashMap’s

putIfAbsent which executes the update atomically, without

locking the entire map.

Comparison with 77 refactorings performed by open-source

developers shows that they frequently performed this re-

factoring incorrectly, forgetting to replace some compound

updates with the new atomic APIs in ConcurrentHashMap.

However, this refactoring is not always applicable, for example

when an application needs to lock the entire map for exclusive

access (e.g., for a whole traversal). More details about this

refactoring can be found in [7].

D. Lessons Learned

Building this refactoring toolset taught us several lessons.

One, programmers often use parallel libraries, thus refact-

oring tools need to support such libraries. Two, to keep the

programmer engaged, refactoring tools need to finish in less

than thirty seconds. Thus, they must use efficient, on-demand

program analyses. Three, program analysis libraries and IDEs

with excellent AST rewriting capabilities are essential for

building refactoring tools. Four, once a program is parallel,

it must remain maintainable, i.e., readable and portable. Five,

refactoring tools must interact with other tools in the parallel

toolbox.

Although the currently-implemented refactorings are among

the most commonly used in practice [13], one needs many

more refactorings. We are constantly expanding the number of

refactorings, inspired by the problems that industry practition-

ers face everyday when they parallelize their programs. Also,

we will start tackling the problems of readability, portability,

and interactiveness with other performance tools.

IV. OTHER REFACTORING TOOLS FOR PARALLELISM

The earliest work on interactive tools for parallelization

stemmed from the Fortran community, and targeted loop

parallelization. Interactive tools like ParaScope [5] and SUIF

Explorer [6] relied on the user to specify what loops to

interchange, align, replicate, or expand. The tool computed

and displayed to the programmer various information like

dependence graphs. However, this work was done in the

context of numerical computation on scalar arrays and did not

deal with the sharing through the heap prevalent in object-

oriented programs.

Reentrancer [10] is a recent refactoring tool developed at

IBM for making code reentrant. Reentrancer changes global

data (stored in static fields) into thread-local data. The refact-

oring for reentrancy can be seen as an enabling refactoring,

i.e., it makes accesses to global data thread-safe. We have

manually performed this refactoring several times when elim-

inating writes to global shared objects pointed by our tool [9].

Fuhrer [11] proposes five concurrency refactorings for the

X10 programming language for server computing on net-

worked nodes with distributed memory. X10 introduces sev-

eral high-level parallel constructs (e.g., asynchronous tasks,

clocks). The proposed set of refactorings converts sequential

code to make use of these parallel constructs.

The Photran [12] project also plans to support several

concurrency refactorings for high-performance computing in

Fortran.

V. CONCLUSION

Today’s sequential programs are tomorrow’s legacy pro-

grams, unless they are retrofitted for parallelism. Refactoring

sequential programs for parallelism is time-consuming and

6

error-prone. It also leaves the code less readable and less

portable. Fortunately, interactive refactoring tools can alleviate

the burden of analyzing and transforming these programs.

When combined with smart IDEs and other tools, future

refactoring tools would tackle the problems of readability and

portability as well.

Although our examples and refactorings are using Java

and Eclipse, they are representative for other OO languages

like C++ and C# and can also be accomplished in other

environments.

ACKNOWLEDGMENT

This work is partially funded by Intel and Microsoft through

the UPCRC Center at Illinois. The author would like to

thank Paul Adamczyk, Nicholas Chen, Milos Gligoric, Ralph

Johnson, Fredrik Kjolstad, Jeff Overbey, and Cosmin Radoi

for providing valuable feedback on drafts of this paper.

REFERENCES

[1] D. J. Kuck, “Automatic program restructuring for high-speed computa-
tion,” in CONPAR 81: Conference on Analysing Problem Classes and

Programming for Parallel Computing, 1981, pp. 66–84.
[2] F. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferreant, “An overview

for the ptran analysis system for multiprocessing,” J. Parallel Distrib.

Comput., vol. 5, no. 5, pp. 617–640, 1988.
[3] R. Allen, D. Callahan, and K. Kennedy, “Automatic decomposition of

scientific programs for parallel execution,” in POPL ’87: Proceedings

of the 14th ACM SIGACT-SIGPLAN symposium on Principles of pro-

gramming languages, 1987, pp. 63–76.
[4] S. P. Amarasinghe, J.-A. M. Anderson, M. S. Lam, and A. W. Lim, “An

overview of a compiler for scalable parallel machines,” in Proceedings

of the 6th International Workshop on Languages and Compilers for

Parallel Computing, 1993, pp. 253–272.
[5] K. Kennedy, K. S. McKinley, and C. W. Tseng, “Interactive parallel

programming using the parascope editor,” IEEE Trans. Parallel Distrib.

Syst., vol. 2, no. 3, pp. 329–341, 1991.
[6] S.-W. Liao, A. Diwan, R. P. Bosch, Jr., A. Ghuloum, and M. S.

Lam, “Suif explorer: an interactive and interprocedural parallelizer,” in
PPoPP ’99: Proceedings of the seventh ACM SIGPLAN symposium on

Principles and practice of parallel programming, 1999, pp. 37–48.
[7] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential Java

code for concurrency via concurrent libraries,” in 31st International

Conference on Software Engineering (ICSE), 2009, pp. 397–407.
[8] F. Kjolstad, D. Dig, G. Acevedo, and M. Snir, “Refactoring for im-

mutability,” UIUC, Tech. Rep. http://hdl.handle.net/2142/16399, June
2010.

[9] D. Dig, C. Radoi, M. Tarce, M. Minea, and R. Johnson, “Refactoring for
loop parallelism,” UIUC, Tech. Rep. http://hdl.handle.net/2142/14536,
September 2009.

[10] J. Wloka, M. Sridharan, and F. Tip, “Refactoring for reentrancy,” in
ESEC/SIGSOFT FSE, 2009, pp. 173–182.

[11] R. Fuhrer and V. Saraswat, “Concurrency refactoring for x10,” in 3rd

ACM Workshop on Refactoring Tools, 2009, pp. 1–4.
[12] M. Mndez, J. Overbey, A. Garrido, F. Tinetti, and R. Johnson, “A catalog

and classification of fortran refactorings,” in 11th Argentine Symposium

on Software Engineering (ASSE 2010), 2010, pp. 1–10.
[13] D. Dig, J. Marrero, and M. D. Ernst, “How do programs become

more concurrent? A story of program transformations.” MIT, Tech. Rep.
http://hdl.handle.net/1721.1/42832, September 2008.

[14] D. Lea, Concurrent Programming in Java. Addison-Wesley, 2000.
[15] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and D. Lea, Java

Concurrency in Practice. Addison-Wesley, 2006.

