
JOURNAL OF INTERNET ENGINEERING, VOL. 4, NO. 1, DECEMBER 2010 289

A Reference Architecture
for Multi-Level SLA Management

W. Theilmann, J. Happe, C. Kotsokalis, A. Edmonds, K. Kearney, J. Lambea

Abstract—There is a global trend towards service-orientation,
both for organizing business interactions but also in modern IT
architectures. At the business-level, service industries are becom-
ing the dominating sector in which solutions are flexibly com-
posed out of networked services. At the IT level, the paradigms
of Service-Oriented Architecture and Cloud Computing realize
service-orientation for both software and infrastructure services.
Again, flexible composition across different layers is a major
advantage of this paradigm. Service Level Agreements (SLA)
are a common approach for specifying the exact conditions under
which services are to be delivered and, thus, are a prerequisite
for supporting the flexible trading of services. However, typical
SLAs are just specified at a single layer and do not allow service
providers to manage their service stack accordingly. They have
no insight on how SLAs at one layer translate to metrics or
parameters at the various lower layers of the service stack.
In this paper, we present a reference architecture for a multi-
level SLA management framework. We discuss the fundamental
concepts and detail the main architectural components and
interfaces. Furthermore, we show how the framework can be
flexibly used for different industrial scenarios.

Index Terms—Service Level Agreement (SLA), Service-
Oriented Infrastructure (SOI), e-Contracting, Adaptive Infras-
tructures, Manageability, Non-Functional Properties

I. INTRODUCTION

THE paradigm of Service-Orientation has gained enor-
mous momentum over the past few years. Business

interactions are all the more based around services. Service
industries are becoming the dominating sector and solutions
are flexibly composed out of networked services [1], [2].
The paradigm of Service Oriented Architectures (SOA) has
changed the way of building software systems [3]. Initially
SOA was mainly applied to restructure the IT stack within
an organisation. More recently it also evolves to a common
paradigm for integration of cross-organisational service land-
scapes. Similarly, Cloud Computing has changed the way
of providing complete IT systems (infrastructure, platforms
or complete software solutions) to a service-oriented fashion
(decoupled ownership, on demand provisioning, pay as you
go) [4]. Overall, both business and IT services operate under
a strong business context where customers can expect services

W. Theilmann and J. Happe are with SAP Research, Karlsruhe, Germany,
mail:wolfgang.theilmann|jens.happe@sap.com

C. Kotsokalis is with Dortmund University of Technology, Germany, mail:
constantinos.kotsokalis@udo.edu

A. Edmonds is with Intel, Leixlip, Ireland, mail: an-
drewx.edmonds@intel.com

K. Kearney is with Engineering, Rome, Italy, mail: Keven.Kearney@eng.it
J. Lambea is with Telefonica Investigacion y Desarrollo, Madrid, Spain,

mail: juanlr@tid.es

to be provided under well-defined and dependable conditions
and with clearly associated costs.

Service Level Agreements (SLAs) are a common way to
formally specify the exact conditions (both functional and non-
functional) under which services are or are to be delivered.
However, SLAs in practice are specified at the top-level
interface between a service provider and a service customer
only. Customers and providers can use top-level SLAs to
monitor whether the actual service delivery complies with the
agreed SLA terms. In case of SLA violations, penalties or
compensations can be directly derived.

In a service-oriented world, services offered are (usually)
composed of or built on a complete set of other services.
These services may reside in the domain of the provider
itself or hosted by external providers. Such services include
business, software, and infrastructure services. The quality
of the service offered heavily depends on the quality of
the services it uses. Furthermore, it also depends on the
used elements and structure of the underlying IT system that
realizes the respective service. Currently, service providers
cannot plan their service landscapes according to SLAs of
dependent services. They have no means to understand why a
certain SLA violation might have occurred and how to express
a penalization associated if the guarantee is breached. SLA
guarantee terms are neither explicitly related to measurable
metrics nor is their relation to lower level services clearly
defined. As a consequence, service providers cannot determine
the necessary (lower-level) monitoring to ensure top-level
SLAs. Overall, the missing relation between top-level SLAs
and (lower-level) metrics is a major hurdle for managing
service stacks in terms of service planning, prediction or
adjustment processes.

As part of the European Research project SLA@SOI [5],
we developed the vision to use SLAs for managing a complete
service stack (business and IT) in correlation with top-level
business SLAs. This complies very well with the technical
trend to apply the paradigm of service-orientation across
the complete IT stack (infrastructure/platform/software as a
service) but also with the organisational trend in IT companies
to organise different departments as service departments (pro-
viding infrastructure resources, middleware, applications or
composition tools as a service). SLAs will be associated with
multiple elements of the stack at multiple layers, e.g. SLAs
for elements of the physical/virtual infrastructure, middleware,
application and process-level. Such internal SLAs describe
the contract between the lower-level entities and higher-level
entities consuming the lower ones. More precisely, the SLAs
specify the required or agreed quality metrics but also the

290 JOURNAL OF INTERNET ENGINEERING, VOL. 4, NO. 1, DECEMBER 2010

related configuration parameters.
In this paper, we present the detailed conception of a

reference architecture for a multi-level SLA management
framework. It is built on a previous discussion of a purely
conceptual architecture [6] and experimental analysis of a
specialized showcase [7]. We present the underlying concepts
of the architecture and its main building blocks (components
and interactions). Last, we show how the architecture can be
flexibly used and adopted in a variety of different settings, in-
cluding domains from Enterprise Resource Planing, Enterprise
IT management, eGovernment and Telco Service Aggregation.

The remainder of this paper is organised as follows. Sec-
tion II discusses the state of the art. Section III describes
foundational concepts. Section IV introduces the developed
reference architecture and Section V shows different adoption
patterns of four exemplary use cases. Section VI concludes
with a brief summary and outlook.

II. RELATED WORK

THE ambition to create a multi-level SLA management
framework requires the integration of concepts from a

large variety of disciplines and areas. We summarise the most
important related work along the areas of modelling, negoti-
ation, planning, provisioning, monitoring, and adjustment of
SLAs. Other related aspects such as eContracting, service
composition or autonomic management are omitted due to
space restrictions.

SLA modelling is about the formal description of SLAs
and other related artefacts (e.g. software and infrastructure)
that matter within the overall SLA management process. WS-
Agreement [8] is the prevalent standard for expressing SLAs.
It defines a representation of SLA templates with terms free to
modify, SLA offers based on these templates, and agreements
themselves. A large body of work exists in the areas of soft-
ware modelling (e.g. Unified Modeling Language (UML) [9]
or Palladio Component Model (PCM) [10]) and infrastructure
modelling (e.g.ITIL’s CMDB [11]). Our framework goes be-
yond these approaches as it realises an SLA foundation model
with much higher expressiveness which is at the same time
also integrated with other modelling artefacts from software
or system level.

SLA negotiation is about the actual interaction protocol
used between service customers and providers. WS-Agreement
provides only a “single-shot” protocol, which unfortunately
does not cover requirements for multi-round negotiation with
counteroffers and re-negotiation, although relevant extensions
can be found in literature (e.g. [12]).

SLA planning is about the reasoning to determine actual
SLAs a provider can agree to. It strongly relates to (perfor-
mance) prediction and SLA translation techniques. Prominent
approaches in this area rely on (layered) queueing networks
(LQNs) [13], [14] or stochastic Petri nets (SPN) [15]. Chen
et al. [13] uses LQNs for translating service level objectives
(SLOs) into low-level system thresholds. Menasce et al. [14]
use queuing networks to allow service brokers to plan the
capacities of services traded by them. They ensure that SLAs
of all customers are adhered to. Wombacher et al. [15]

use SPNs for analysing cost and resource usage of service
compositions. A detailed analysis of this area can be found
in [16]. Distinguishing aspects of our framework are the flexi-
ble support of different scenarios (service composition styles)
and the clear separation of concerns between service and SLA
planning but also between involved parties (preventing from
universal knowledge assembled in one place).

SLA provisioning is about the orchestration of provision-
ing resources (human, software, infrastructure) according to
agreed SLAs. This is essentially a scheduling problem, where
service start times must be properly synchronised for depen-
dent services and their SLAs. Scheduling dependent tasks
has been extensively researched in the past (e.g. [17]). Most
important aspect of our approach is the systematic integration
into the overall SLA and service lifecycle.

SLA monitoring and adjustment is about the monitoring of
an SLA-governed system and the interpretation of monitor-
ing events against agreed SLAs. Research on service-based
systems monitoring has so far focused only on mechanisms
for monitoring properties expressed in first-order temporal
logic languages, e.g. Event Calculus, either event-based [18],
[19] or based on the instrumentation of the service execution
environment [20], e.g. the BPEL Process [21]. Distinguishing
aspects of our framework are the automated derivation of
monitoring rules from SLAs and the integration between
monitoring and related (autonomic) control actions in reaction
to detected violations.

Though a large body of research exists on different iso-
lated aspects of SLA management, there is no comprehensive
approach yet available, that covers the complete SLA lifecy-
cle, supports multi-level SLA management, supports different
service types (business and IT), and can be flexibly applied
and adapted to arbitrary domains. At least, a conceptual
architecture with implemenation of toolbox components for
Grid services has been proposed in [26].

III. FOUNDATION CONCEPTS

BEFORE diving into the actual reference architecture,
we detail some of its fundamental concepts around the

notion of service level agreements and the relationships be-
tween them. This includes the definition of SLA management
(including service and SLA lifecycles), the SLA (Template)
model, and the service construction model.

A. SLA Management

The overall goal of the reference architecture is multi-level
SLA management. We understand SLA Management as the
management of service delivery systems in order to meet the
QoS objectives (goals) specified in SLAs. As SLAs are the
core artefact for describing offered, requested or agreed service
characteristics, the SLA lifecycle focuses on the steps of
interaction between a service provider and a service customer.
It includes the following stages:

• SLA Template design ensures that offered QoS guarantees
are realistic;

• SLA negotiation ensures that agreed QoS guarantees are
realizable;

THEILMANN et al.: A REFERENCE ARCHITECTURE FOR MULTI-LEVEL SLA MANAGEMENT 291

• SLA runtime ensures that QoS guarantees are satisfied;
and

• SLA(Template) archiving ensures that previous experience
is available to future cycles.

The management of SLAs happens in the context of the
overall service lifecycle, which consists of the following
stages:

• Design and Development of artefacts needed for service
implementation;

• Service Offering prepares service artefacts for their in-
stantiation and offering a service to customers;

• Service Negotiation between customer and provider ide-
ally results in an agreed SLA;

• Service Provisioning creates an actual service instance
which may include booking, deployment, and configura-
tion activities;

• Service Operations addresses an actual service instance
that is up and running. It might be adjusted in order to
enforce an SLA; and

• Service Decommissioning subsumes activities to stop a
service instance so that it cannot be accessed by the
service customer anymore.

B. Data Models

In order to communicate, the components of the SLA@SOI
Architecture make heavy use of two models that reflect the
essential data structures in the system. The SLA(T) model
describes SLAs for the communication within and among SLA
Managers, as well with external providers. The Service Con-
struction Model provides and collects information necessary
to create a new instance of a service (for a particular SLA).
In the following, we provide an overview of both models.

Ground Expressions

Service Descriptions

SLAs & SLA Templates Standard Terms

depends-ondepends-on

depends-on

Primitives

depends-on

Annotations, Constraints, Events, Functions

Interface, Operation, Endpoint

Business Products

depends-on

"availability", "reliability", etc. (standard vocabulary)

depends-on

Pricing, Billing, Exclusion Clauses

Fig. 1. Overview of the model hierarchy including the SLA(T) Model.

a) SLA(T) model: The SLA and SLA Template model
(SLA(T) model) extends pure functional service descriptions
to allow for the expression of non-functional service properties
and quality of service (QoS) guarantees. The SLA(T) Model is
part of a larger model hierarchy, depicted in Fig. 1. At the low-
est level of the hierarchy are the Primitive (Ground) Terms on
which everything else is built. Building on the Primitives are
a handful of Ground Expressions, supporting annotations, and
the generic expression of constraints, events, and functions.
These expressions support extension/customisation through

standard vocabularies, in which specific terms, and semantics
can be defined. Above this is a generic Service Description
model, providing a means to describe the functional properties
(interfaces, operations, and endpoints) of services. The main
body of the present specification defines the SLA(T) Model,
which builds on the Service Description level to allow for the
expression of non-functional service properties and quality of
service (QoS) guarantees. The SLA(T) Model provides the
basic structure of an SLA(T), but leaves the specification
of particular QoS terms open, supporting extension through
standard vocabularies. A set of default QoS terms are provided
as a standard vocabulary of Common Metrics. At the highest
level is a Business SLA(T) Model, which builds on the SLA(T)
Model and Common Metrics to model business-specific infor-
mation, such as business terms (i.e. support), offer, constraints,
pricing, penalties, billing details, termination and exclusion
clauses.

Basically, an SLA is a set of agreements between two (or
more) parties. These agreements are expressed by terms each
of which denotes guarantees made by, or obligations on, the
various parties. Each agreement term comprises an optional
constraint expression specifying the conditions under which
the agreement term holds (i.e. a precondition on the term). If
no preconditions are specified then it is assumed the term holds
for the entire effective duration of the SLA. Guarantees defined
in the agreement are either guaranteed states or guaranteed
actions.

A guaranteed state is a guarantee made by one of the
parties to the agreement, that a certain state of affairs will
hold, e.g. service level objectives (SLOs) or targets for key-
performance indicators (KPIs). The state of affairs is defined
by a constraint expression. A guaranteed action is an action
that one of the parties to the SLA is obligated to perform (or
may perform, or is forbidden from performing) under certain,
specified circumstances.

For example, the expression mean(
completion_time(S)) < 500.0 ms states that
for operation S of the target service the customer requires
a mean completion time below 500 ms. A precondition like
mean(arrival_rate(S)) < 200.0 rpm ensures
an upper bound for its usage by giving a mean arrival rate of
200 requests per minute.

b) Service Construction Model (SCM): The SCM is
inspired by the management of services (cf. Section IV-B)
and SLA concepts sketched above. We introduced the SCM
to ease the communication between different components,
responsible for the core SLA management, the management
of services, and the quality evaluation of possible service
offerings. Service Managers can use the SCM to manage
multiple implementations of the same service. Furthermore,
the SCM allows different components to access and add
information about a potential service instance.

Figure 2 illustrates the basic concepts of the SCM. The core
classes of the SCM (Service Type, Service Implementation,
Service Builder, and Service Instance) represent the different
stages in a service’s life cycle.

A Service Type specifies the functional interfaces a service
provides. Service Types can be realized by multiple Service

292 JOURNAL OF INTERNET ENGINEERING, VOL. 4, NO. 1, DECEMBER 2010

ServiceHierarchy 2010/07/07 JUDE(Free Version)

ServiceHierarchypkg

ServiceType

ServiceImplementation

ServiceBuilder

SLATemplate

SLA

ServiceDependency

ServiceBinding

Interface

Endpoint

- type1

- implementation1

- dependencies

*

- binding

*

- dependency1

- providedInterfaces

*

<<contains>>

<<contains>>

- requiredType

1

- sla0..1

ServiceInstance
- endpoints

*

- builder1

SLATemplate

Fig. 2. Overview of the Service Construction Model.

Implementations that specify i) the artifacts of the imple-
mentation (such as software components, or executables) and
ii) the dependencies of the artifacts on other services. For
example, a software service “InventoryService” may depend
on infrastructure services that host its virtual machines. Such
dependencies are expressed in terms of Service Dependencies.

Service Builders hold information about resolved dependen-
cies of a Service Implementation. For this purpose, a Service
Binding relates a Service Dependency to an SLA Template or
one of its specializations (SLA and Business Product). The
SLA Template contains all information necessary to evaluate
and access a service outside the domain of an SLA Manager.
The SLA Template includes quality constraints and, after the
SLA has been agreed, endpoints of the service.

Component Diagram0 2010/07/07 JUDE(Free Version)

Examplecmp

My Service External Service

IExternalIExternal

ServiceDependencyServiceImplementation

ServiceBinding

SLATemplat
e

IMyService

Fig. 3. Binding a Service Dependency to an SLA Template.

Figure 3 illustrates the concepts of ServiceBuilders and
ServiceImplementations. On the lefthand side, a Service Im-
plementation called “My Service” is depicted. It is repre-
sented by a simple component providing a single interface
“IMyService”. Furthermore, the implementation depends on
external functionality captured by interface “IExternal”. The
link between implementation and interface reflects the Service
Dependency (also known as (required) role in software com-
ponent models [10]). The dependency is resolved by a Service
Binding that links the Service Dependency to an SLA Tem-
plate of an external provider. In Figure 3, the SLATemplate
also contains the specification of interface “IExternal”.

Finally, a Service Instance models the actual runtime entity
representing a service. The Endpoints of a Service Instance
either refer to a running and accessible service or point to the
location where the service will be available according to the
time constraints defined in its SLA.

In the following section, we describe the architecture of the
SLA management framework and how it makes use of the
concepts presented in this section.

IV. ARCHITECTURE

THE primary functional goal of our SLA management
framework is to provide a generic solution for SLA

management that
1) supports SLA management across multiple layers with

SLA (de-)composition across functional and organiza-
tional domains;

2) supports arbitrary service types (business, software, in-
frastructure) and SLA terms;

3) covers the complete SLA and service lifecycle with
consistent interlinking of design-time, planning and run-
time management aspects; and

4) can be applied to a large variety of industrial domains.
In order to achieve these goals, the reference architecture

is based on three main design principles. First, we put a
strong emphasis on a clear separation of concerns, by clearly
separating service management from SLA management and by
supporting a well layered and hierarchical management struc-
ture. Second, a solid foundation in common meta models for
SLAs as well as their relation to services and the construction
of actual service instances is an important aspect to support
clear semantics across different components of the framework.
Third, design for extensibility is a key aspect in order to
address multiple domains. Therefore, we clearly distinguish
between generic solution elements and places where domain-
specific logic/models need to be provided.

A. Overview

Figure 4 illustrates the main components of the SLA@SOI
framework and their relationships. The framework commu-
nicates to external parties, namely customers who (want to)
consume services and 3rd party providers which the actual
service provider might rely upon. Relationships are defined
by stereotyped dependencies that translate to specific sets of
provided and required interfaces. Figure 4 shows a possible
setup of the framework. Other configurations are given in
Section V.

In order to achieve a good generalization of the framework
architecture, the SLA Manager and the Service Manager are
defined as general components that can be specialised for
different domains (cf. Section IV-C). In Figure 4, we chose
an example where SLA Managers are realized for business,
software and infrastructure level and Service Managers are
realized for software and infrastructure level.

On the highest level, we distinguish the Framework Core,
Service Managers (infrastructure and software), deployed Ser-
vice Instances with their Manageability Agents and Moni-
toringEventChannels. The Framework Core encapsulates all
functionality related to SLA management. Infrastructure- and
Software Service Managers contain all service-specific func-
tionality. The deployed Service Instance is the actual service
delivered to the customer and managed by the framework
via Manageability Agents. Monitoring Event Channels serve
as a flexible communication infrastructure that allows the
framework to collect information about the service instance
status.

THEILMANN et al.: A REFERENCE ARCHITECTURE FOR MULTI-LEVEL SLA MANAGEMENT 293

TopLevel 2010/07/07 JUDE(Free Version)

Frameworkcmp

<<composite component>>
Framework Core

ServiceEvaluation

<<SLAManager>>
InfrastructureSLAManager

<<SLAManager>>
SoftwareSLAManager

<<SLAManager>>
BusinessSLAManager

BusinessManager

<<provider_relations>>

<<manage_software_service>>

<<query_product_catalog>>

<<subscribe_to_event>>

<<negotiate/query/coordinate>>

<<prepare_software_services>>

<<negotiate/coordinate>>

<<negotiate/query/coordinate>>

<<customer_relations>>

<<evaluate>>

<<control/track/query>>

<<actor>>
Provider (3rd party)

<<ServiceManager>>
SoftwareServiceManager

<<ServiceManager>>
InfrastructureServiceManager

<<manage_infrastructure_service>>

<<prepare_infrastructure_services>>

<<native_service_management>>

<<instance>>
InfrastructureService

<<instance>>
ManageabilityAgent

<<adjust>>

<<pubsub>>
MonitoredEventChannel

<<instance>>
ManageabilityAgent

<<native_service_management>>

<<publish_event>>

<<adjust>>

<<instance>>
SoftwareService

ServiceInterfaceServiceInterface

<<actor>>
Customer

DEPLOYED INFRASTRUCTURE SERVICESDEPLOYED SOFTWARE SERVICES

Fig. 4. Architecture Overview

In the following, we briefly describe the main compo-
nents of our framework and their interactions. The Business-
Manager controls all business information and communica-
tion with customers (<<customer relations>>) and providers
(<<provider relations>>). For example, it realizes the cus-
tomer relation management (CRM) necessary to efficiently
sell the services. Furthermore, the BusinessManager governs
the (Business-, Software-, and Infrastructure-) SLAManagers
(<<control/track/query>>). For this purpose, an SLAMan-
ager has to adhere to business rules defined by the Business-
Manager (’control’) and have to inform the BusinessManager
about their current status and activities (’track’).

The (Business-, Software- & Infrastructure-) SLAManagers
are responsible for the management of all SLA-related con-
cerns. They are specialisations of a generic SLA Manager (cf.
Figure 5). SLA Managers are responsible for the negotiation
of SLAs, and for the SLA Management of services subject
to SLAs. All SLA Managers can act as “service customers”;

negotiating SLAs with other SLA Managers inside the same
framework, or with external (3rd party) service providers (in-
cluding other framework instances). As “service providers” all
SLA Managers can negotiate SLAs with other SLA Managers
in the same framework. However, only the BusinessSLAMan-
ager can negotiate with customers who are external to the
framework. To avoid confusion, we refer to external customers
as “business-customers”, and use the term “product” to denote
the (SLA governed) services offered by the framework to
business-customers. Product descriptions are published in a
product catalog (accessible via <<query product catalog>>)
maintained by the BusinessManager. Once an SLA has been
agreed with a customer, it is the responsibility of the Business
Manager to send reports on SLA status to the customer and to
provide a unique access point to query historical consolidated
information about his products consumption linked with the
specific SLAs. All negotiation and reporting interactions are
captured by the <<negotiate/query/coordinate>> relation.

294 JOURNAL OF INTERNET ENGINEERING, VOL. 4, NO. 1, DECEMBER 2010

These interactions are equally used at business-level for the
customer interaction (<<negotiate/coordinate>>) where the
BusinessSLAManager adds business-level considerations (e.g.
billing) to the negotiation protocol. Finally, all SLA Managers
can consult ServiceEvaluation to evaluate a-priori the potential
quality of a service (<<evaluate>>). This evaluation can
be based on prediction, historical data, or predefined quality
definitions, and supports the SLA Manager in finding service
realisations of appropriate quality.

Infrastructure- and SoftwareServiceManager encapsulate
all service-specific details. Both are specialisations of the
abstract ServiceManager concept. Service Managers pro-
vide information about the service implementations sup-
ported, such as the service realisation and its dependencies
with other services (<<prepare infrastructure services>>,
<<prepare software services>>). SLA Managers provision
services using the management functionality of their corre-
sponding ServiceManager (<<manage software service>>,
<<manage infrastructure service>>). Furthermore, Service
Managers control the service instances they have provisioned.
SLA Managers can manipulate service instances via generic
management functions provided by the ServiceManager.

The MonitoringAdjustment Management System provides
the underlying fabric across different layers (i.e. across soft-
ware and infrastructure layer) supporting the monitoring and
management of service instances. The MonitoringEventChan-
nel is the basic component via which arbitrary monitor-
ing events (e.g. SLO violations) can be propagated to rel-
evant SLA Managers. Access to this channel is realized
via the <<publish event>> and <<subscribe to event>>
interaction stereotypes. ManageabilityAgents support the ac-
tual configuration and management of service instances.
The access to Manageability Agents for SLA Managers is
always mediated via a specific Service Manager. Due to
the service-specific nature, the interactions between Service
Managers and Manageability Agents is represented by the
<<native service management>> stereotype which is not
further refined by this architecture.

The negotiation/planning sequence starts with a cus-
tomer querying for available products and SLA Tem-
plates (<<query product catalog>>) and eventually regis-
tering himself with the provider (<<customer relations>>).
The actual negotiation is then started by the cus-
tomer via <<negotiate/coordinate>>. The framework man-
ages the negotiation request in a hierarchical manner
across different SLA Managers, again using the same
<<negotiate/coordinate>> interaction. Each SLA Manager
checks with its Service Managers for possible service im-
plementations (<<prepare [T] services>>). For each pos-
sible implementation it resolves required dependencies to
lower-level services with the next level SLA Manager
(<<negotiate>>), evaluates possible combinations of service
implementations and service bindings via the ServiceEvalu-
ation (<<evaluate>>) and, finally, returns a set of feasible
SLA offers to the customer (or the higher-level SLA Man-
ager). Once an agreement has been established (again via
<<negotiate>>) relevant resources are booked on all layers
(<<prepare [T] services>>).

In general, the provisioning sequence is automatically trig-
gered by the respective SLA Managers according to the service
start times specified in the agreed SLAs. It is executed via
the respective Service Managers (<<manage [T] service>>)
who take care of the creation of service instances (if neces-
sary), their configuration as well as the set up of a responsible
ManageabilityAgent. Alternatively, provisioning might be also
explicitly triggered by a customer (<<coordinate>>). Suc-
cessful provisioning is eventually reported back to customers
via the reporting mechanisms of <<customer relations>>.

The monitoring/adjustment sequence typically starts with
the detection of an SLA violation by the monitor-
ing system. SLA Managers evaluate these violations
and initiate adjustment actions via the Service Man-
agers (<<manage [T] service>>) who use the respective
ManageabilityAgent to execute the corresponding adjust-
ment actions. Furthermore, SLA Managers report viola-
tions to the BusinessManager (<<control/track/query>>)
who decides whether the customer needs to be informed
(<<customer relations>>) and/or a renegotiation may be
initiated (<<negotiate>>).

The examples above illustrate the interplay of the framework
components. However, the flexibility of the framework allows
many different variants, such as provider initiated negotiation
processes or different order of planning steps.

B. Generic elements
In order to apply the architectures to multiple service

domains, the SLA management framework includes a set of
generic components that can be specialised for the domains
of interest. In the following, we explain the structure of
the generic (i.e., domain-independent) framework components,
discuss their functionality, and describe the hooks to plug in
domain-specific extensions.

1) Generic SLA Manager: As discussed earlier in Sec-
tion IV, the framework includes a generic SLA management
component that is expected to be customized depending on
the domain and use case at hand. The Generic SLA Manager
(GSLAM) builds around domain-independent concepts for
SLA negotiation and service monitoring, and enhances them
with placeholders for domain-specific models and algorithms.
Figure 5 illustrates the internal architecture of the GSLAM.

Its most important generic components are as follows:
a) Protocol Engine: The Protocol Engine (PE) imple-

ments different negotiation protocols, by means of a con-
figurable state machine. We have made a design choice to
separate between the protocol (i.e. message exchange sequenc-
ing and control), and the negotiation strategies which concern
decision-making as regards what constitutes a “good” SLA.
The PE controls the interactions between different SLAM
implementations, and ensures sanity and security. For example,
an incoming message contains the information about an agree-
ment to a previous offer, but the referenced offer is unknown to
the specific SLAM. Such a message should be rejected without
further processing.

b) Template Registry: SLA Templates are used to start
negotiations. In real-world situations, people know by experi-
ence what kind of quality levels they can expect from a service.

THEILMANN et al.: A REFERENCE ARCHITECTURE FOR MULTI-LEVEL SLA MANAGEMENT 295
GenericSLAManager 2010/07/08 JUDE(Free Version)

Generic SLAManagercmp

GenericSLAManager

IProvisioningCoordination

INegotiation

IProvisioningCoordination

MonitoringManager

<<abstract>>
ProvisioningAndAdjustment

<<abstract>>
PlanningAndOptimisation

INegotiation ProtocolEngine

<<registry>>
SLARegistry

<<registry>>
ServiceManagerRegistry

<<registry>>
SLATemplateRegistry

<<pubsub>>
ServiceAdvertisements

{SLATemplateRegistry::<<query>>}

<<coordinate_provisioning>>

<<manage_<T>_service>>

<<subscribe_to_event>>

<<evaluate>>

<<negotiate>>

<<coordinate_provisioning>>

<<control/track>>

<<prepare_<T>_services>>

<<negotiate>>

<<publish/subscribe_advertisements>>

<<check_monitorability>>

<<plan>>

<<assess/customise>><<trigger_(re)negotiation>>

IModifiable

ServiceEvaluation

ServiceManager

BusinessManager

{<<query>>}

<<pubsub>>
MonitoredEventChannel

All registries are accessible to
internal components

SLAs & SLATs are maintained
for customers & providers

Provider facingCustomer facing

Fig. 5. Generic SLA Manager

However, computing systems do not carry this knowledge;
instead, we implement templates as a way to instruct them
with regards to the negotiable variables in relation to a service.
For instance, a template would include information to indicate
that, it is possible to negotiate property CompletionTime for a
particular operation of a service. The domain-specific decision-
making algorithms know by design how to use this property, as
long as the service provider offers it for negotiation. The tem-
plate registry is a query-able data store, where we implement
complex reasoning for matching queries (also implemented as
SLA templates) to stored information. Templates are normative
and described in full by the SLA(T) model (cf. Section III-B).

c) SLA Registry: SLAs are stored in this registry after
they are established. Queries return not only SLA information,
but also the dependencies of one SLA onto others. This way,
it is possible to find which SLAs would be affected if one
fails.

d) Service Manager Registry: This data store is used
by SLA Managers to manage the known Service Managers.
It contains only static information about Service Managers;
dynamic information (e.g. resource availability) is retrieved
directly from the Service Manager using respective query
methods.

e) Monitoring Manager: The Monitoring Manager
(MM) determines the monitoring infrastructure that must be
deployed in order to monitor a service, for which we establish
one or more SLAs. In addition, the MM can perform mon-
itorability checks, based on which it is possible to know at
negotiation time, whether a SLA can be monitored at all. The
rational is that a SLAM should never establish an agreement
that it cannot monitor.

f) Service Advertisements: One of the design goals was
to achieve service discovery and SLA template discovery
concurrently. Additionally, we need to achieve a high degree
of decentralization, and SLAM autonomy. For this purpose,
additionally to query capabilities of the SLA template registry,
we have implemented a Publish/Subscribe system which is
used to advertise new templates as they become available.
Prospective customers can receive the advertisements, filter

them, and cache them as initial indications of candidate
providers for the services of interest. Follow-up queries to the
respective providers’ registries retrieve additional information
about particular offers. We have not tied the system by design
to a specific broadcasting technology; this is left open to the
implementation.

In addition to these generic components, the GSLAM also
includes placeholders for domain- or use-case-specific compo-
nents, in the form of the Planning and Optimization Compo-
nent (POC) and the Provisioning and Adjustment Component
(PAC). The former implements algorithms to decide, during a
negotiation, if an incoming SLA offer is acceptable and how
to construct a subsequent outgoing SLA offer. Additionally,
the POC carries the knowledge to do resource planning, to
negotiate subsequent SLAs when required, and to decide
whether a monitoring infrastructure is reasonably economic
to deploy for monitoring a service and the respective SLAs.
In general, the POC concerns with utility concepts.

Finally, the PAC has the responsibility to provision the
services for which a SLA was negotiated, and to safeguard
the SLAs in collaboration with monitoring infrastructure. It
relies on plans that the POC feeds to it, but it also carries
knowledge of tasks to execute when SLAs are violated (or,
when its forecasting models indicate that a SLA will soon be
violated unless appropriate actions are taken). The PAC will
behave differently in different circumstances: It may take an
action on its own given sufficient certainty about the problem
and its solution, or it may request the POC to create a new
plan, or even to re-negotiate an existing SLA.

2) Service Manager: Service Managers encapsulate
all management activities specific to services, including
service lifecycle management, booking of resources
required, and maintenance of service specific information
(service landscape). All this is part of the top-
level interactions <<prepare [T] services>> and
<<manage [T] services>>.

Management functionality for services throughout
their lifecycle is primarily facilitated by the
<<manage [T] services>> interaction. It includes the
deployment, configuration, and startup and shutdown related
functionality of services. The configuration is predominantly
domain and service specific and, therefore, customized for
each service.

Furthermore, the Service Manager manages and dispatches
communication with domain-specific Manageability Agents.
The Service Manger keeps track of the available Manageability
Agents and their status.

In addition, the Service Manager is responsible for main-
taining and managing the software resource booking and
reservation related information. For example, it can maintain
information about software licenses required for software
service provisioning.

Finally, the Service Manager keeps track of available service
types, service implementations, and of provisioned service
instances. SLA Managers can query available service types
as well as service implementations for a particular service
type and provide metadata about all service implementations.
The metadata includes (but is not limited to): dependencies

296 JOURNAL OF INTERNET ENGINEERING, VOL. 4, NO. 1, DECEMBER 2010

of the implementation to other services, a description of the
service realisation, information related to provisioning, and
available monitoring / manageability configuration options.
However, SLA Managers can only read information about the
available service implementations. The implementations and
their metadata are maintained by the Service Provider. In addi-
tion to information about service implementations, the service
landscape administrates metadata about service instances of
the implementations under its control. The metadata of these
instances may contain the service endpoint, a reference to
the corresponding Manageability Agent, and external services
used.

3) Service Evaluation: SLA Managers at each level (busi-
ness, software, infrastructure) use Service Evaluation to deter-
mine a-priori evaluation of service quality parameters. The
results of evaluation are used during negotiation to agree
upon feasible terms and conditions regarding service quality.
However, the concrete realization of Service Evaluation is
domain-specific and varies in scope and solution strategy. Each
type of service (business, software, infrastructure) comes with
its own specific characteristics and evaluation goals. Regarding
solution strategy, very different approaches may be possible,
such as (i) interpretation and aggregation of historical data
of service quality, (ii) application of rules and constraints to
calculate expected quality parameters, and (iii) analysis and
/ or simulation of architectural models created during system
design.

4) Business Management: Also business-related manage-
ment aspects are largely realized in a generic manner. First,
the generic business product model is build upon the SLA(T)
model (see Section III-B) and supports business-specific terms
such as pricing, warranties etc. and it has been derived from
the SID standard [22]. Based on these modelling standards
framework users can configure their product offerings, and the
complete functionality for their automated management is then
realized by the framework in a generic manner. Second, a rule-
based approach (based on Drools [23]) allows to formulate
business intelligence rules that are to be applied during the
overall product/service lifecycle, e.g. for negotiation, penalty
evaluation and priority analysis. Based on concrete rules spec-
ified by framework users, the framework will automatically
implement them in the overall management lifecycle without
the need for any further domain-specific adjustments. All
this business-related functionality is realized within a generic
BusinessManager implementation.

C. Domain-specific extensions

Within the framework there are two specialisations of the
GenericSLAManager. The first is the SoftwareSLAManager
used to manage software services (e.g. SaaS) under their
agreed software SLAs. The second is the InfrastructureSLA-
Manager that is used to manage infrastructure services (e.g.
IaaS) also under their agreed infrastructure SLAs.

a) Software: In case of software services, the Soft-
wareSLAManager is responsible for the negotiation, the con-
figuration of SLA-related monitoring, the coordination of
provisioning actions, and the adjustment of running Service

Instances. For negotiation (done by the software-specific Plan-
ningAndOptimisation), the SoftwareSLAManager makes use
of the predictive SoftwareServiceEvaluation that is based on a
model-driven performance and reliability prediction method-
ologies [10]. The predictions allow the SoftwareSLAManager
to identify a set of feasible offers for its customers. The
SoftwareSLAManager stepswise constructs a service using the
Service Builder. Moreover, the Builder provides all informa-
tion needed by the predictive SoftwareServiceEvaluation to
assess the potential quality of a service instance. Finally, the
SoftwareServiceManager provides the functionality to provi-
sion the required service instances and acts as a gateway to the
service instance’s Manageability Agent (used by the software-
specific ProvisioningAndAdjustment Component).

b) Infrastructure: For infrastructure services, the Infras-
tructureSLAManager manages all aspects of SLAs concerning
IT infrastructural resources. It is a specialisation of the Gener-
icSLAManager and as a result supplies infrastructure-specific
implementations of the POC and PAC.

The InfrastructurePOC is responsible for the planning and
optimisation of infrastructure SLAs. It receives requests for
infrastructure, queries the InfrastructureServiceManager for
potential provisioning solutions, selects and reserves the op-
timal one and requests the InfrastructurePAC to provision the
selected plan as appropriate. If local resources cannot satisfy
the request (e.g. due to lack of availability or specification
discrepancies), the InfrastructurePOC can attempt to outsource
to third party providers to satisfy the request.

The InfrastructurePAC is responsible for the provisioning
and adjustment of Infrastructure SLAs. It directs the Infras-
tructureServiceManager to provision as per the plan supplied
by the POC. It also decides on any adjustments required, e.g.
to avoid potential SLA violations.

Of note is the InfrastructurePAC’s ability to communicate
with standard-compliant infrastructure services. It accom-
plishes this by implementing the Open Cloud Computing In-
terface (OCCI) [24], an OGFbib:ogf standard partly driven by
SLA@SOI. The work within the InfrastructureSLAManager
presents a SLA Manager that is applicable to all infrastructure
providers that will offer this standardised interface.

V. ADOPTION EXAMPLES

BROAD adoption of our SLA management framework in
different domains and settings is a key design goal. This

section will sketch a few use case examples that demonstrate
the broad applicability of the framework architecture but
will also show the differences of the resulting framework
instantiations. The examples span the areas of Enterprise IT,
ERP Hosting, Service Aggregators and eGovernment and are
visualized in figure 6.

The Enterprise IT use case is about the application of
the framework to three core areas of Enterprise IT, namely,
IT-enabling the enterprise, IT efficiency and IT investment
and technology adoption. At the core of the use case is an
SLA-enabled Platform-as-a-Service (PaaS) Service Manager
and its complementing SLA Manager. The use case utilizes
the generic framework by reusing the Business Manager

THEILMANN et al.: A REFERENCE ARCHITECTURE FOR MULTI-LEVEL SLA MANAGEMENT 297

!

ERP Hosting 2010/07/07 JUDE(Free Version)

 cmp

Business Manager

<<SLA Manager>>
Business SLAM

<<SLA Manager>>
Software SLAM

<<SLA Manager>>
Infrastructure SLAM

<<actor>>
Customer

<<actor>>
Cloud Provider

<<Service Manager>>
Support SM

<<Service Manager>>
Application SM

<<Service Manager>>
Middleware SM

<<Service Manager>>
Infrastructure SM

ERP Hosting Provider

eGovernment 2010/07/07 JUDE(Free Version)

 cmp

<<actor>>
Customer

<<SLA Manager>>
Business SLAM

Business Manager

<<SLA Manager>>
Software SLAM

<<SLA Manager>>
Human SLAM

<<Service Manager>>
BPEL SM

<<Service Manager>>
Human SM

<<actor>>
Call Centre

<<actor>>
Mobility Provider

<<actor>>
Health Treatment Provider

Citizen Service
Centre

Service Aggregator 2010/07/07 JUDE(Free Version)

 cmp

Business Manager

<<SLA Manager>>
Business SLAM

<<SLA Manager>>
Infrastructure SLAM

<<SLA Manager>>
Software SLAM

<<Service Manager>>
Composite SM

<<Service Manager>>
Telco WS SM

<<Service Manager>>
IT Infrastructre SM

<<Service Manager>>
Telco Infrastructure SM

Business Manager 2

<<SLA Manager>>
Business SLAM 2

<<actor>>
3rd Party Provider

<<actor>>
Customer

TaaS
Provider

Service
Aggregator

Enterprise IT 2010/07/07 JUDE(Free Version)

 cmp

<<actor>>
Customer

Business Manager

<<SLA Manager>>
Business SLAM

<<SLA Manager>>
Platform SLAM

<<Service Manager>>
Platform SM

<<actor>>
Support Provider

Enterprise IT
Manager

Fig. 6. Framework adoption by four different use cases: (1) Enterprise IT, (2) ERP Hosting, (3) Service Aggregator, (4) eGovernment

component and providing specialisations of the Generic SLA
Manager, namely the Business SLA Manager and the Platform
SLA Manager. In this use case there is only one Service Man-
ager, the Platform Service Manager. Supporting the Business
SLA Manager are the Enterprise’s support provider. With the
combination of these cooperating managers, four themes are
being investigated. These themes are 1) Business Alignment,
2) Server Efficiency, 3) Sustainability and 4) Data Security. All
these themes and the resulting policies and SLAs are governed
by the Enterprise Capability Framework.

The ERP Hosting use case is about the dynamic provi-
sioning of hosted Enterprise Resource Planning solutions. It
applies the generic framework architecture in a straightforward
manner by realizing 3 distinct SLA Managers and 4 distinct
Service Managers. A Business SLA Manager is responsible
for the overall offering but also for the planning of human
support services, a Software SLA Manager is responsible for
the SLAs of the complete software stack and an Infrastructure
SLA Manager is responsible for the in-house IT resources but
also able to contact external cloud providers in order to acquire
resources for burst scenarios. Furthermore, a Support Service
Manager is responsible for planning/managing the human
support services. Two separate Software Service Managers

are introduced, one for managing application logic, one for
managing the underlying middleware. Last, an Infrastructure
Service Manager deals with all the internal IT resources.

The Service Aggregator use case is about the Web-based
offering of traditional telco services (e.g. voice, SMS) and
for the flexible composition and aggregation of these into
higher-level added value services, including multiple offers
from external service providers (such us Internet players). The
use case is realized by instantiating two different variants of
the SLA framework. The first one supports the foundation
of telecommunication as a service (TaaS) and comes with a
layered SLA/Service Manager architecture for Web-Service
wrapped telco infrastructure services, software compositions
on top of these and a business layer for managing the sales
of the eventual services/products. The second one addresses
the role of a pure service aggregator who does not own any
resources but simply aggregates external services. This one
adopts a framework with only a business SLA Manager and
a business manager.

The eGovernment use case is about supporting a citizen
service center providing combined health treatment and mo-
bility services(elderly citizens that need a medical treatment
can request a mobility service for transportation to the place

298 JOURNAL OF INTERNET ENGINEERING, VOL. 4, NO. 1, DECEMBER 2010

of treatment). The use case is realized with 3 distinct SLA
Managers and 2 Service Managers. A Business SLA Manager
has the overall responsibility of the offering and automatically
negotiates with 3rd party call centers, when the expected
demand exceeds the capacity of an in-house booking service.
A Software SLA Manager (together with a Software Service
Manager) is realized which is specialized on BPEL processes
(in the essence coordinate the combined service offering,
including the dynamic selection and binding of mobility
providers based on already negotiated SLAs). Last a pair of
SLA and Service Manager is introduced for managing the
human based in-house service.

VI. CONCLUSION

W ITH this paper we presented a reference architec-
ture for multi-level SLA management, that supports

the comprehensive management of possibly complex service
stacks. Service Level Agreements are used for managing
the non-functional aspects of the complete service lifecycle.
Furthermore, SLA translations across different layers allow
for consistent interlinking of complete service networks and
hierarchies. The presented architecture is based on the experi-
ences gained from an SLA framework built around a specific
reference application. The main achievement against that work
is the generalization of the concepts so that the architecture
can serve a large variety of domains. Four example use cases
demonstrate the applicability and flexibility of our architecture.

Future work is planned on assessing the business benefit
of multi-level SLA management in the presented use cases.
Technically, the SLA management framework will be extended
in various dimensions, such as support for managing specific
non-functional properties (e.g. reliability), a library of SLA
planning algorithms and finally advanced interfaces for har-
monized cloud infrastructures.

ACKNOWLEDGEMENTS

The research leading to these results is partially supported
by the European Community’s Seventh Framework Pro-
gramme (FP7/2001-2013) under grant agreement no.216556.

REFERENCES

[1] IfM and IBM, Succeeding through service innovation: A
service perspective for education, research, business and
government White Paper, Univ. of Cambridge, 2008, URL:
http://www.ifm.eng.cam.ac.uk/ssme/documents/080428cambridge ssme
whitepaper.pdf

[2] SAP Research, Service Delivery Framework: Supporting Service
Delivery for On-Demand, Business Network, Cloud Environments
on an Internet-scale. White Paper, SAP Research, November 2009,
URL: http://www.internet-of-services.com/uploads/media/SDF-Value-
Proposition 01.pdf

[3] M. Papazoglou and W.J. van den Heuvel, Service oriented architectures:
approaches, technologies and research issues. The VLDB Journal 16(3)
(07 2007) 389–415

[4] M. Armbrust, et al., Above the Clouds: A Berkeley View of Cloud
Computing. Report, UC Berkeley Reliable Adaptive Distributed Systems
Laboratory, February 10, 2009, URL: http://radlab.cs.berkeley.edu/

[5] SLA@SOI project: IST- 216556; Empowering the Service Economy with
SLA-aware Infrastructures, http://www.sla-at-soi.eu/

[6] W. Theilmann, R. Yahyapour, J. Butler, Multi-level sla management for
service-oriented infrastructures. Towards a Service-Based Internet (2008)
324–335

[7] M. Comuzzi, C. Kotsokalis, C. Rathfelder, W. Theilmann, U. Winkler,
and G. Zacco, A Framework for Multi-level SLA Management. Proc.
of 3rd Workshop on Non-Functional Properties and SLA Management
in Service-Oriented Computing (NFPSLAM-SOC’09), November 23,
Stockholm, Sweden

[8] Andrieux, A., Czajkowski, K., IBM, A., Keahey, K., IBM, H., NEC,
T., HP, J., IBM, J., Tuecke, S., Xu, M., et al., Web Services Agreement
Specification (WS-Agreement). Open Grid Forum (2007)

[9] Object Management Group (OMG), Unified Modeling Language: Super-
structure Specification: Version 2.1.2, Revised Final Adopted Specification
(formal/2007-11-02) (2007)

[10] Becker, S., Koziolek, H., Reussner, R., The Palladio component model
for model-driven performance prediction. JSS 82 (2009) 3–22

[11] Office of Government Commerce, The official introduction to the ITIL
service lifecycle. Stationery Office Books (TSO) (2007)

[12] Frankova, G., Malfatti, D., Aiello, M., Semantics and Extensions of WS-
Agreement. Journal of Software 1(1) (2006)

[13] Chen, Y., Iyer, S., Liu, X., Milojicic, D., A., S., Translating service
level objectives to lower level policies for multi-tier services. Cluster
Computing 11 (2008) 299–311

[14] Menascé, D.A. and Ruan, H. and Gomaa, H., QoS management in
service-oriented architectures Performance Evaluation 64 (2007) 646–
663

[15] Bodenstaff, L., Wombacher, A., Reichert, M., Jaeger, M.C., Monitoring
dependencies for slas: The mode4sla approach. Proceedings of IEEE
International Conference on Services Computing, 2008. SCC ’08., 8-11
July 2008, Honolulu, USA. (2008) 21–29

[16] Li, H., Theilmann, W., Happe, J., Sla translation in multi-layered service
oriented architectures: Status and challenges. Technical Report 2009-8,
Universität Karlsruhe (TH) (April 2009)

[17] Chetto, H., Silly, M., Bouchentouf, T., Dynamic scheduling of real-time
tasks under precedence constraints. Real-Time Systems 2(3) (09 1990)
181–194

[18] Spanoudakis, G., Mahbub, K., Non intrusive monitoring of service based
systems. Int. Journal of Cooperative Information Systems 15(6) (2006)
325–358

[19] Barbon, F., Traverso, P., Pistore, M., Trainotti, M., Run-time monitoring
of instances and classes of Web service compositions. In: Proc. IEEE
ICWS 2006. (2006)

[20] Lazovik, A., Aiello, M., Papazoglou, M., Planning and monitoring the
execution of Web service requests. Int. Journal of Digital Libraries (2006)

[21] Baresi, L., Guinea, S., Towards dynamic monitoring of WS-BPEL
processes. In: Proc. ICSOC 2005. (2005)

[22] TM Forum, Information Framework (SID), URL:
http://www.tmforum.org/InformationFramework/1684/home.html

[23] JBoss, Drools 5 - The Business Logic integration Platform, URL:
http://labs.jboss.com/drools

[24] OCCI, Open Cloud Compute Interface, URL: http://www.occi-wg.org
[25] OGF, Open Grid Forum, URL: http://www.ogf.org
[26] Brein project, Final Brein Architecture. Deliverable D4.1.3 v2, 13 July

2009, URL: http://http://www.eu-brein.com/index.php?option=com docm
an&task=doc download&gid=63&Itemid=31

