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Common bean (P. vulgaris L.) is a crop of major societal importance 

and is a major source of protein and essential nutrients. Worldwide, 

common bean is the most consumed legume, providing up to 15% 

of total daily calories and 36% of total daily protein in parts of Africa 

and the Americas (see URLs). More than 200 million people in sub-

Saharan Africa depend on the common bean as a primary staple. 

It has many health-beneficial1,2 nutrients whose concentrations are 

heritable3, and increasing the concentrations of these nutrients is a 

breeding objective worldwide4.

Multiple lines of evidence have shown that wild common bean 

is organized in two geographically isolated and genetically differen-

tiated wild gene pools (Mesoamerican and Andean) that diverged 

from a common ancestral wild population more than 100,000 years 

ago5. From these wild gene pools, nearly 8,000 years ago, common 

bean was independently domesticated in what is now Mexico and in 

South America6–9, and these domestication events were followed by  

local adaptations resulting in landraces with distinct characteristics. 

In what is now Mexico, common bean was likely domesticated con-

currently with maize as part of the ‘milpa’ cropping system (featuring 

common bean along with maize and squash), which was adopted 

throughout the Americas10. Domestication led to morphological 

changes, including increased seed and leaf sizes, changes in growth 

habit and photoperiod responses11, and variation in seed coat color 

and pattern that distinguish culturally adapted classes of beans12.

Independent domestication events, starting from distinct gene 

pools of a single species, provide experimental replication not typically 

found in domestication or evolutionary studies. It is possible to deduce 

domestication history on a genome-wide scale and examine the roles 

of parallel evolution and introgression during the domestication of 

two independent lineages within a single species. Here, to understand  
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the history of these complicated domestication events and their impli-

cations for modern bean crop improvement, we report a genome 

sequence for an Andean ecotype of common bean and an analysis of 

genetic variation in accessions ranging from Mexico to the southern 

range of the species in Argentina. In addition, comparative genomics 

with soybean (Glycine max), a closely related crop, identified effects of 

shared and lineage-dependent polyploidies on gene fractionation and 

recent transposable element expansion in the common bean.

RESULTS
Reference genome and analysis
To obtain a high-quality reference genome, we sequenced an inbred 

landrace line of P. vulgaris (G19833) derived from the Andean pool 

(Race Peru) using a whole-genome shotgun sequencing strategy that 

combined multiple linear libraries (18.6× assembled sequence cover-

age) and ten paired libraries of varying insert sizes (1.8× assembled) 

sequenced with the Roche 454 platform together with 24.1 Gb of 

Illumina-sequenced fragment libraries. For longer-range linkage, we 

also end sequenced three fosmid libraries and two BAC libraries on 

the Sanger platform (0.54× long-insert pairs) for a total assembled 

sequence coverage level of 21.0× (Supplementary Tables 1 and 2). 

The resulting assembled sequences were organized into 11 chromo-

somal pseudomolecules by integration with a dense GoldenGate- and 

Infinium-based SNP map of 7,015 markers typed on 267 F2 lines from 

a Stampede × Red Hawk cross and a similar set of Infinium markers  

and 261 SSRs (simple sequence repeats) typed on 88 F5-derived 

recombinant inbred lines (RILs) derived from the same cross (P.B.C. 

and Q.S., unpublished data). Additional refinements to the pseudo-

molecules were made on the basis of synteny with soybean (G. max), 

where allowed by available map data. Almost all of these changes were 

made in pericentromeric regions, where recombination is generally 

too limited to resolve the ordering and orientation of small scaffolds. 

The pseudomolecules included 468.2 Mb of mapped sequence in 240 

scaffolds. The total release includes 472.5 Mb of the ~587-Mb genome 

(see URLs), with half of the assembled nucleotides in contigs longer 

than 39.5 kb (contig N50) (Supplementary Table 3). To annotate the 

chromosomal assembly, we combined Sanger-derived EST resources 

and a substantial amount of new RNA sequencing (RNA-seq) 

reads (727 million reads from 11 tissues and developmental stages; 

Supplementary Table 4) with homology-based and de novo gene pre-

diction approaches. The resulting annotation includes 27,197 protein-

coding loci, including 4,491 alternative transcripts (Supplementary 

Table 5), an underestimate that will increase with additional tran-

scriptomes and analyses. Most of these genes (91%) were retained in 

synteny blocks with G. max (Supplementary Note).

We identified recent transposable element activity and expansions 

of transposon numbers (Supplementary Figs. 1–3). Although recently 

diverged repeats could not be annotated directly from Roche 454 

pyrosequencing data, extensive BAC-end and fosmid-end sequence 

data and a dense genetic map allowed us to position 99.6% of genic 

sequences and to link into those genes embedded in regions dense 

with transposable elements (Supplementary Figs. 4–14). Centromere 

and pericentromeric regions were primarily repetitive, and, similar 

to in other sequenced genomes13,14, these pericentromeric genomic 

regions were recombinationally inert (Supplementary Fig. 15 and 

Supplementary Table 6). Using a threshold of 2 Mb/cM to identify 

transitions into pericentromeric regions, pericentromeres spanned 

~54% of the genome and had an average recombination rate of  

4,350 kb/cM versus 220 kb/cM in the euchromatic arms (Supplementary  

Table 7). The pericentromeres were primarily repetitive but, owing 

to their size, still contained 26.5% of the genes.

The majority of the repetitive elements in the genome were long 

terminal repeat (LTR) retrotransposons, and we identified 2,668 

complete LTR retrotransposons and classified them into 165 families,  

including 65 Ty1-copia, 78 Ty3-gypsy and 22 unclassified families 

(Supplementary Tables 8 and 9). Although there were ancient ele-

ments that inserted into the genome more than 10 million years ago, 

~75% (2,011/2,668) of the LTR retroelements integrated into P. vul-

garis within the last 2 million years (Supplementary Fig. 1). Notably,  

the insertion times of 20% (543/2,668) of the elements were more 

recent than 0.5 million years ago—this is likely an underestimate,  

as our sequencing approach is biased against the annotation of  

completely identical LTRs. These results were similar to those in 

soybean15 and suggest that LTR retrotransposons underwent recent 

amplification events in both legumes. The 165 LTR retrotransposon 

families varied in the copy number of complete elements: more than 

78% (130/165) of the families had fewer than 10 complete retroele-

ments, whereas 11 families had more than 50 complete elements  

and contained 63% (1,690/2,668) of the complete elements in the  

P. vulgaris genome. Some families showed extremely high copy  

numbers; for example, the pvRetroS2 family contained 446 com-

plete elements (likely an underestimate, as some elements would not  

have been annotated uniquely).

We observed dense clusters of resistance-associated genes in the 

common bean genome. The majority of putative resistance-associated  

genes in plants encode nucleotide-binding and leucine-rich repeat 

domains and are collectively known as NB-LRR (NL) genes15.  

We identified 376 NL genes, of which 106 encoded an N-terminal Toll/

interleukin-1 receptor (TIR)-like domain (TNLs) and 108 encoded an 

N-terminal coiled-coil domain (CNLs) (Supplementary Table 10). 

The majority of NL sequences were physically organized in complex 

clusters, often located at the ends of chromosomes (Supplementary 

Fig. 16). In particular, three large clusters were located at the ends  

of chromosomes Pv04, Pv10 and Pv11 and contained more than  

40 NL genes that were enriched for CNL (Pv04 and Pv11) or TNL 

(Pv10) genes that colocalized with previously mapped genes related to 

disease resistance16–21. Local tandem duplications and ectopic recom-

bination between clusters are involved in the evolution of these NL 

gene clusters22.

Comparison of genome changes in sister legume species
P. vulgaris (common bean) and G. max (soybean) diverged  

~19.2 million years ago but shared a whole-genome duplication (WGD)  

event ~56.5 million years ago23. G. max experienced an independent 

WGD ~10 million years ago14. These events were evident in plots of 

synonymous changes in coding sequences (Ks) between and within 

these genomes (Supplementary Fig. 17), which also showed that  

P. vulgaris has evolved more rapidly than G. max since they split  

from their last common ancestor. Assuming a divergence time of 

~19.2 million years ago23, the Ks value (synonymous substitution 

rate) for P. vulgaris was 1.4 times that of G. max (8.46 × 10−9 versus 

5.85 × 10−9 substitutions/year).

We identified orthologous P. vulgaris and G. max genes using syn-

teny and Ks values as criteria (Supplementary Table 11). Consistent 

with earlier work, there was extensive synteny between P. vulgaris and  

G. max, except in pericentromeric regions, where microcollinearity was 

often stretched out and thinned owing to genomic expansion in one or 

both genomes. Typically, two chromosomal blocks in G. max mapped 

to a single region of P. vulgaris owing to the most recent WGD in  

G. max (Fig. 1)14,24,25. Most of the P. vulgaris genes (91%; 24,861) were in 

identifiable synteny blocks in G. max, and 57% were in synteny blocks in  

P. vulgaris itself—a result of the ancient WGD event 55 million 
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years ago. Within synteny blocks, the  

G. max–G. max duplication had a mean of 

33 genes/block, whereas the older, shared  

P. vulgaris–G. max WGD event had an aver-

age of 14 genes/block.

Evolution of gene pools in common bean
Mesoamerica has been suggested to be the 

center from which common bean originated, 

ultimately forming the distinct modern wild 

Andean and Mesoamerican gene pools7. 

To investigate the differentiation of these 

wild populations, we performed pooled 

resequencing of 30 individuals each from 

Mesoamerican and Andean wild populations 

(Fig. 2 and Supplementary Table 12). Using 

π (the average pairwise nucleotide differ-

ences in a sample) and θ (the proportion of 

nucleotide polymorphisms in a sample), the 

Mesoamerican wild population (π (per bp) =  

0.0061; θ (per bp) = 0.0041) was more diverse than the Andean 

wild population (π (per bp) = 0.0014; θ (per bp) = 0.0013). We used 

~663,000 polymorphic sites (at least 5 kb from a gene and not in a repeat 

sequence) to estimate demographic parameters using the joint allele 

frequency spectrum (δaδi)26 (Supplementary Note). The strong fixa-

tion index FST of ~0.34 between these two wild populations indicates 

that they have substantial allelic differentiation from each other. We 

estimated that divergence of the two wild pools occurred ~165,000 years  

ago, with an ancestral effective population size of 168,000. This  

date is earlier than a previous estimate of ~110,000 years ago but falls 

within the 95% confidence interval of the previous estimate, which 

was based on 13 loci from 24 wild genotypes5, but it is later than other 

estimates of ~500,000 years ago27. The whole-genome analysis resulted 

in a much tighter confidence interval of 146,000–184,000 years ago.

Demographic inference for the wild Andean gene pool suggested 

that it was derived from the wild Mesoamerican population with 

a founding population of only a few thousand individuals (Fig. 3a 

and Supplementary Note). The wild Andean population showed 

no appreciable growth in effective population size for ~76,000 years 

after founding, although there was continual asymmetric gene flow 

between the two wild populations, with a higher Mesoamerican-

to-Andean migration rate (Supplementary Table 13). The Andean 

population then underwent an exponential growth phase that began 

~90,000 years ago and has continued to the present. The strong predo-

mestication bottleneck in the Andean population has been observed 

in previous analyses7,28,29; in contrast, however, no detectable bot-

tleneck was found for the wild Mesoamerican gene pool.

Domestication of common bean
To characterize diversity and differentiation within and between 

the Mesoamerican and Andean landraces (early domesticates), we 

sequenced 4 pooled populations representing distinct Mesoamerican 

landraces and 2 pooled populations representing distinct Andean  

landraces (n = 7–26 landraces). These landraces represent subpopulations  

from Mexico, Central America and South America with low levels of 

admixture (Supplementary Fig. 18). Because the four Mesoamerican 

and two Andean landrace populations are representative of the diver-

sity of the original domestication populations, we combined SNP data 

from these populations to create a composite Mesoamerican and a 

composite Andean landrace SNP data set, respectively, for further 

analysis. This approach allowed us to distinguish selection from ran-

dom fixation across the genome30 and to search for signals associ-

ated with domestication events. The number of SNPs ranged from 

8,890,318 for the wild Mesoamerican subpopulation to 1,397,405 SNPs 

for the Andean landrace subpopulation from Peru (Supplementary 

Table 14), and ~16% of these SNPs were within genes.

To characterize variation among the populations, we calculated 

diversity (π) and population differentiation (FST) statistics using data 

averaged over 10-kb windows with a 2-kb slide (10-kb/2-kb windows; 

Supplementary Table 15). Whereas the Mesoamerican landraces were 

less diverse than the wild Mesoamerican population, Andean landrace 

populations were more diverse than the wild Andean population, 

possibly owing to admixture with Mesoamerican populations and/or 

de novo mutation within the Andean gene pool. Diversity was further 

reduced within the Mesoamerican Central American and southern 
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respectively (scale is in Mb). (c) Gene density  
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at 200-kb intervals. (e) Recombination rate 

based on the genetic and physical mapping 

of 6,945 SNPs and SSRs. (f,g) First syntenic 
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due to a lineage-specific duplication resulting in 

two chromosome segments for every segment in 

P. vulgaris.
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Andean landraces, suggesting that these subpopulations underwent 

additional selection that might correspond to local adaptation.

Multiple results point to independent domestication events in the 

Mesoamerican and Andean gene pools, a feature observed for only a 

few modern crops. We characterized domestication of common bean 

at the genomic level by comparing wild and landrace populations 

across 10-kb/2-kb sliding windows, selecting windows that met strict 

composite criteria that required they be in the top 90% of the popu-

lation’s empirical distribution for both πwild/πlandrace ratios and FST 

values (Figs. 3b,c and 4). We observed 930 windows in Mesoamerican 

populations (totaling 74 Mb of sequence) with both low diversity and 

high differentiation. Because low diversity and high differentiation 

are two features of selection31, we consider these to be selection win-

dows. Of these windows, 209 that were longer than 100 kb accounted 

for 70.1% of the total selection distance. Among the 750 selection 

windows in Andean populations exhibiting low diversity and high 

differentiation, 172 that were longer than 100 kb covered 69.8% of 

the total selection distance (60 Mb). As expected for independent 

Mesoamerican and Andean domestication events, these selection 

regions were distinct. Within the Mesoamerican landrace popula-

tion, chromosomes Pv02, Pv07 and Pv09 accounted for 43% of the 

length (32.338 Mb), with 33.3% of chromosome Pv09 showing signa-

tures of selection, whereas the Andean domestication event primarily 

involved chromosomes Pv01, Pv02 and Pv10 (Fig. 4). Interestingly, 

only 7.234 Mb of the regions predicted to be involved in domestica-

tion were shared by the two gene pools, suggesting different genetic 

routes to domestication.

We identified candidate genes associated with domestication 

using the same criteria applied to find selection windows (requir-

ing that they be in the top 90% of the pool’s empirical distribution 

for both πwild/πlandrace ratios and FST values). We identified 1,835 

Mesoamerican and 748 Andean candidate genes associated with 

domestication (Supplementary Tables 16 and 17), and all candidates 

had a negative Tajima’s D value, indicating positive selection. Most 

notably, only 59 of the candidate genes (3% of the Mesoamerican 

and 8% of the Andean candidates) were shared by the 2 landrace 

populations. For the 59 common candidates, the mean FST value was 

0.67, suggesting selection on different alleles or the appearance of 

unique mutations in the two gene pools. This finding is consistent 

with evidence at the PvTFL1y determinancy locus that was independ-

ently derived in each gene pool32 but contrasts with evidence in rice, 

where a domestication locus appeared uniquely in one gene pool, 

indica or japonica, and was transferred to the other pools33. Most 

Mesoamerican candidate genes (n = 1,561; 85%) were located in 10-kb  

selection windows, whereas only 48.1% of the Andean candidate 

genes were within such windows (Supplementary Table 18). The 

effects of domestication were uneven across the Mesoamerican sub-

populations: we detected only 418 candidates in the Mesoamerican 

Central American landrace population compared to 1,424 candidates 

Figure 3 Evolution and domestication of 

common bean. (a) Divergence of the wild 

Mesoamerican and Andean common bean pools. 

The wild Andean gene pool diverged from the 

wild Mesoamerican gene pool ~165,000 years 

ago, with a small founding population and a 

strong bottleneck that lasted ~76,000 years. 

The bottleneck was followed by an exponential 

growth phase extending to the present day. 

Asymmetric gene flow between the two pools 

had a key role in maintaining genetic diversity, 

especially in the Andean population, with 

average migration rates M21 = 0.135 (wild 

Mesoamerican to wild Andean) and M12 = 0.087  

(wild Andean to wild Mesoamerican). This 

scenario conforms to the Mesoamerican origin 

model of the common bean, with an Andean 

bottleneck that predated domestication. 

(nanc, size of ancestral population; tdiv, start 

of bottleneck; nb, size of bottleneck population; tb, length of bottleneck) (b) Population genomic analysis based on SNP data from the resequencing 

of DNA pools for common bean. The size of the circle for each pool is proportional to the π value for the pool. For a reference, π = 0.0061 for the wild 

Mesoamerican (MA) pool. FST statistics, representing the differentiation of any two pools, are noted on the lines (not proportional) connecting pools. 

Data are average statistics across all 10-kb/2-kb sliding/discarding windows with <50% called bases. Land, landrace; N, north; S, south; C, central.  

(c) Variation in seed size in common bean. The seeds of wild Mesoamerican and Andean beans (two each) are smaller than the seeds corresponding to 

the reference genotype (G19833) and the multiple market classes of common beans grown in the United States (navy to light red kidney).
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in the Mesoamerican Mexican landraces. The 

fact that only 33 of these genes were shared 

by these 2 subpopulations indicates unique 

evolutionary trajectories among subpopula-

tions of the Mesoamerican gene pool. Within 

the Andean gene pool, none of the candi-

date genes from the northern and southern 

Andean landrace populations were shared. 

These results demonstrate that the sexually 

compatible Mesoamerican and Andean line-

ages with similar morphologies and life cycles 

underwent independent selection upon dis-

tinct sets of genes. This is in contrast to the situation in rice, where 

many major domestication genes were shared by gene flow between 

the indica and japonica types34.

Domestication had distinct effects on genes involved in flower-

ing35 in the two gene pools. Whereas the principal floral integra-

tor genes SOC1 and FT35 were not candidate domestication genes 

in either pool, 25 Mesoamerican and 13 Andean genes that are in 

pathways that control these 2 genes were candidate genes for domes-

tication. For example, within the vernalization pathway, orthologs 

of VRN1 (Phvul.003G033400) and VRN2 (Phvul.002G000500) 

were Mesoamerican candidate genes, and orthologs of FRL1 

(Phvul.006G053200) and TFL2 (Phvul.009G117500) were Andean 

candidate genes. COP1 encodes a photoperiod pathway regulator 

that controls FT through CO. The Mesoamerican ortholog of COP1 

was a candidate domestication gene, and Phvul.006G165300, a CUL4 

ortholog that encodes a protein that is part of a complex that along 

with COP1 regulates CO36, was an Andean candidate gene for domes-

tication. This finding demonstrates independent selection on genes 

encoding different members of the same protein complex. The only 

shared domestication candidates were Phvul.007065600, an ortholog 

of AGL42, which regulates flowering through the gibberellin pathway, 

and Phvul.009G203400, an ortholog of FUL, which regulates SOC1.

Increased plant size is typically associated with plant domestica-

tion37, and multiple Mesoamerican candidate genes influence this trait. 

Phvul.011G213300 is an ortholog of Arabidopsis thaliana BB, a compo-

nent of the ubiquitin ligase degradation pathway that controls flower 

and stem size38, and Phvul.009G040200 is an ortholog of BIN4, which 

regulates cell expansion and final plant size39. Multiple candidate genes 

for domestication were also components of nitrogen metabolism path-

ways, which directly affect plant size. The Mesoamerican candidate 

gene Phvul.008G168000 encodes nitrate reductase, a critical element for 

plant and seed growth, which genetically maps to the SW8.2 quantitative 

trait locus (QTL) for seed weight40. Other candidate genes for domes-

tication involved in nitrogen metabolism included the Mesoamerican 

(Phvul.005G132200) and Andean (Phvul.002G242900) nitrogen transport-

ers and the Mesoamerican asparagine synthase (Phvul.006G069300).

Increased seed size is a major phenotypic shift associated with  

the domestication of the common bean41 and other legumes42 and 
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Figure 4 Differentiation and reduction in 

diversity during the domestication of common 

bean. (a,b) Genome-wide view in 10-kb/2-kb  

sliding windows of differentiation (FST) and 

reduction in diversity (π ratio) statistics 

associated with domestication within the 

common bean Mesoamerican (a) and Andean (b)  

gene pools. Log10 π ratios less than zero are 

not shown. Lines represent the 90%, 95% and 

99% tails for the empirical distribution of each 

statistic.
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Figure 5 Genome-wide association analysis of seed weight. (a) A 280-

member panel of Mesoamerican cultivars was grown in 4 locations in the 

United States. Phenotypic data were coupled with 34,799 SNP markers 

and analyzed using a mixed-model analysis that controlled for population 

structure and genotype relatedness. (b) A close-up view of the GWAS 

results for seed weight and linkage disequilibrium (r2) around a 1.23-Mb  

Mesoamerican sweep window on Pv07. The positions of candidate 

genes for domestication are noted by asterisks above the GWAS display. 

The candidates range from Phvul.007G094299 to Phvul.007G.99700 

(Supplementary Note).
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distinguishes the many types of beans that humans consume. We 

surveyed the Mesoamerican domestication candidates for genes 

previously shown to be associated with seed weight43 and used 

the whole-genome sequence for a genome-wide association study 

(GWAS; Fig. 5a) to understand the genetic architecture of seed weight  

in modern Mesoamerican cultivars. We found 15 candidate genes 

previously shown to be involved in seed weight (Supplementary 

Table 19). Among these are nearly all the components of the cyto-

kinin synthesis and multiple-component phosphorelay regulatory 

system (Supplementary Fig. 19). Included are Phvul.002G082400, 

which encodes a protein that transmits the phosphosignal in response 

to regulators, and three type B response regulator transcription fac-

tors (Phvul.003G017000, Phvul.003G110100 and Phvul.009G088900), 

which in turn activate a number of downstream genes44. An addi-

tional candidate gene, Phvul.01G038800, has orthologs that encode 

cytokinin oxidase/dehydrogenase proteins, which regulate the path-

way by degrading active cytokinin. The relevance of these genes as 

candidate loci associated with seed weight is supported by work in 

Arabidopsis, where orthologs of the candidate genes in the cytoki-

nin pathway have been shown in transgenic studies to regulate seed 

size and/or weight43. In contrast, however, none of these genes were 

Andean domestication candidates.

GWAS analysis for seed weight confirmed three of these domesti-

cation candidates. It was not possible to confirm the other 12  

candidates by GWAS because Mesoamerican domestication reduced  

diversity to near homozygosity, such that associations could not be 

found (Supplementary Table 20). GWAS analysis was able to place 

75 domestication candidate genes within 50 kb of a SNP significantly  

(P < 1.0 × 10−4) associated with seed weight, and a significantly asso-

ciated SNP was found within eight candidate genes (Supplementary 

Table 21). One sweep window on Pv07 (9.662–10.662 Mb) contained 

33 domestication candidates and was located in a GWAS peak that 

exhibited extensive linkage disequilibrium (Fig. 5b). By GWAS, we 

also detected candidate genes for seed weight that resulted from mod-

ern breeding of the common bean. These included 15 improvement-

related genes previously shown to be associated with seed weight,  

5 of which function in the cytokinin regulation/degradation pathway 

(Supplementary Table 22). Finally, three genes in complete linkage 

disequilibrium with equally significant association (P = 6.3 × 10−6) 

were located in a Pv07 QTL for seed weight that has been replicated 

in many experiments45.

DISCUSSION
Common bean is the most important grain legume for human con-

sumption and is an especially nutrient-dense food in developing parts 

of the world. Improvement of common bean will require a more fun-

damental understanding of the genetic basis of how it responds to 

biotic and abiotic stresses. The clustering of resistance-associated 

genes in a few genomic locations suggests that stacking resistances 

between clusters should be relatively easy but that stacking multi-

ple resistance genes located within a single physical cluster and then 

combining these traits by breeding may prove more challenging. The 

observation that the dual domestication events for common bean had 

few selective sweeps in common leads us to posit that domestica-

tion, previously thought to typically be associated with selection at 

a few major loci, can also be achieved via multiple genetic pathways 

resulting in similar or the same phenotypes (for example, seed size). 

In addition, the lack of correspondence between selective sweeps in 

domestication and genetic bottlenecks imposed by breeding indicates 

that domestication-derived traits were fixed early and that subsequent 

selection was likely on traits for local adaptation and desired seed and 

plant traits. Together, these findings provide information on regions 

of the genome that have undergone intense selection, either during 

domestication or early improvement, and thus provide targets for 

future crop improvement efforts, as valuable alleles will have been 

lost during early selection.

URLs. Food and Agricultural Organization of the United Nations (FAO) sta-

tistics, http://faostat.fao.org/site/291/default.aspx; Plant DNA C-values  

Database, http://www.kew.org/cvalues/; Phytozome transposon  

database, http://www.Phytozome.net/; RepeatMasker, http://www.

repeatmasker.org/; MEGA 4, http://www.megasoftware.net/mega4/.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Accession codes. Assembly and annotation are available at http://

www.phytozome.net/commonbean.php and have been deposited in 

GenBank under accession ANNZ01000000.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Sequencing. The majority of de novo genome sequencing reads were collected 

with standard sequencing protocols provided by the manufacturer on Roche 

454 XLR and Illumina HiSeq 2000 machines at the Department of Energy Joint 

Genome Institute in Walnut Creek, California. Two types of linear 454 data 

were collected, standard XLR data (31 runs; 10.7 Gb) and FLX+ data (8.5 runs; 

5.615 Gb). Six different paired 454 libraries were created, three libraries with 

average insert sizes of 2.8–4.8 kb, 1 library with average insert size of 8.0 kb,  

1 library with average insert size of 9.2 kb, 1 library with average insert size of 

11.9 kb and 1 library with average insert size of 12.2 kb, and were sequenced 

by standard XLR (26.5 runs; 6.282 Gb of useable data). Two standard 400-bp  

fragment libraries were sequenced at 2 × 101 bp (four channels; 135.8 Gb) 

on an Illumina HiSeq 2000. Two fosmid libraries (328,704 reads; 223.9 Mb) 

with 35.0-kb and 36.0-kb insert sizes and 3 BAC libraries (89,017 reads;  

55.1 Mb) with 127.0-kb, (92,160 reads; 65.9 Mb), 135.3-kb (81,408 reads; 57.6 

Mb) and 122.0-kb average insert sizes were sequenced on both ends with 

Sanger sequencing for a total of 591,289 Sanger reads of 402.5 Mb of high-

 quality sequence. Fosmid-end and BAC-end sequence data were collected 

using standard protocols at the HudsonAlpha Institute in Huntsville, Alabama, 

and at the Arizona Genomics Institute in Tucson, Arizona. Sixty P. vulgaris 

genotypes representing 30 wild Mesoamerican and 30 wild Andean individuals 

were pooled into 2 sequencing libraries, and 54× and 4.9× genome equiva-

lents were collected on a HiSeq 2000 with unamplified libraries. Similarly, 

100 genotypes from 6 individual landrace classes, selected from a structure 

analysis, were pooled into 6 libraries, and sequencing depths from 3.4 to 7.1× 

were achieved.

Construction of the genetic map. We obtained 19,619 Mb of 121-bp paired-

end Illumina Genome Analyzer IIx short reads from a diverse set of genotypes 

for common bean. Reads were aligned to the genome reference sequences for 

common bean with 14× coverage, and SNPs were called using CASAVA1.7 

software (Illumina, 2010) with the default settings. After filtering out A/T or 

G/C SNPs, SNPs with Ns in the 60 nt of flanking sequence and SNPs residing 

within 25 nt of another SNP, a total of 992,682 SNPs remained. Using these  

SNPs, an Illumina Infinium BeadChip (BARCBEAN6K_1 with 5,232 SNPs) 

was designed. The SNPs for BARCBEAN6K_1 were selected to optimize  

polymorphism among the various common bean market classes, and, when pos-

sible, SNPs were targeted to sequence scaffolds (>10 kb) in an early P. vulgaris  

assembly. A mapping population of 267 F2 progeny from a cross of the com-

mon bean cultivars Stampede and Red Hawk developed at North Dakota State 

University was genotyped with the BARCBEAN6K_1 BeadChip. An additional 

BeadChip (BARCBEAN6K_2 with 5,514 SNPs) was designed using the same 

steps as with the P. vulgaris v0.9 assembly, with markers selected to anchor 

and orient additional scaffold sequences and used to type the same popula-

tion. Both BeadChips and 261 SSR markers were also used to genotype 88 

F5-derived RILs from the cross of the Stampede and Red Hawk cultivars. SSRs 

were selected from sequence scaffolds in the P. vulgaris 8× assembly, PCR 

markers were designed and fragment length polymorphisms were assessed as 

described in Song et al.46. Linkage maps were constructed using JoinMap 4.0  

(ref. 47) software on the basis of the 6,531 polymorphic SNPs from these 

2 BeadChips and 484 SNP loci that were genotyped with the Illumina 

GoldenGate assay at the US Department of Agriculture–Agricultural Research 

Service in Beltsville, Maryland48, as well as 261 SSR markers and 25 framework 

markers. The final map contained 7,276 SSR and SNP markers arranged in 11 

linkage groups via framework markers.

Genome assembly and construction of pseudomolecule chromosomes. 

Before assembly, reads corresponding to organelle DNA were removed by 

screening against identified fragments of mitochondria, chloroplast and 

rDNA. For Roche 454 linear reads, any read <200 bp in length was discarded. 

Roche 454 paired reads were split into pairs, and any pair with a read shorter 

than 50 bp was discarded. An additional deduplication step was applied to 

the 454 paired libraries that identified and retained only one copy of each 

PCR duplicate. All remaining 454 reads were compared against 24.1 Gb of 

trimmed HiSeq 2000 V3 reads from two separate libraries, and any insertion-

deletions in the 454 reads were corrected to match the Illumina alignments. 

Before assembly, 454 reads that contained >80% 24-mers that occurred ≥400 

times in the data set were removed to reduce improper assembly of transposon  

sequences. Sequence reads were assembled using our modified version of 

Arachne v.20071016 (ref. 49) with parameters maxcliq1 = 250 and BINGE_

AND_PURGE = True, bless = False BINGE_AND_PURGE = True lap_ratio = 

0.8 max_bad_look = 2000 (note: Arachne error correction was on). An addi-

tional filtering step to remove contigs of <300 bp in length or with fewer than 

four reads was applied. This produced 1,627 scaffold sequences, with a scaffold 

L50 value of 6.0 Mb; 171 scaffolds were greater than 100 kb in length, and the 

total genome size was 474.3 Mb (Supplementary Table 2). Scaffolds were 

screened against bacterial proteins, organelle sequences and the GenBank nr 

database and were removed if found to be a contaminant. Additional scaffolds 

were removed if they (i) consisted of >95% 24-mers that occurred four other 

times in scaffolds greater than 50 kb in length, (ii) contained only unanchored 

RNA sequences or (iii) were less than 1 kb in length.

The 7,015 markers from the genetic map were aligned to the assembly using 

BLAT50 (parameters: -t = dna -q = dna -minScore = 200 –extendThroughN). 

Positions of SSR markers were determined using E-PCR51. Scaffolds were  

broken if they contained linkage group or syntenic discontiguity coincident 

with an area of low BAC or fosmid coverage. A total of 71 breaks were executed 

and 284 joins were made to form the final assembly consisting of 11 pseudo-

molecule chromosomes. Each chromosome join was padded with 10,000 Ns to 

indicate unsized map joins. The final assembly contained 708 scaffolds (41,391 

contigs) that cover 472.5 Mb of the genome with a contig N50 value of 39.5 kb 

and a scaffold N50 value of 50.4 Mb.

Completeness of the euchromatic portion of the genome assembly was 

assessed using 108,874 P. vulgaris EST sequences obtained from GenBank. 

These sequences were aligned to the assembly to estimate completeness using 

BLAT (parameters: -t = dna -q = rna –extendThroughN). Alignments that 

comprised ≥90% base-pair identity and ≥85% EST coverage were retained. The 

screened alignments indicated that 102,254 of the 108,874 cDNAs (93.92%) 

aligned to the assembly. At least 30% of the ESTs that did not align were bacte-

rial or fungal contaminants. In addition, BAC clones from euchromatic regions 

and moderately to highly repetitive regions were sequenced and compared to 

the assembly (Supplementary Figs. 19–23).

Annotation. We constructed 43,627 transcript assemblies from about  

727 million reads of paired-end Illumina RNA-seq data. These transcript 

assemblies were constructed using PERTRAN (S.S., unpublished data).  

We built 47,464 transcript assemblies using PASA52 from 79,630 P. vulgaris 

Sanger ESTs and the RNA-seq transcript assemblies. Loci were identified by 

transcript assembly alignments and/or EXONERATE alignments of pep-

tides from Arabidopsis, poplar, Medicago truncatula, grape (Vitis vinifera) 

and rice (Oryza sativa) peptides to the repeat-soft-masked genome using 

RepeatMasker53 on the basis of a transposon database developed as part of 

this project (see URLs) with up to 2,000-bp extension on both ends, unless 

they extended into another locus on the same strand. Gene models were pre-

dicted by the homology-based predictors FGENESH+ (ref. 53), FGENESH_

EST (similar to FGENESH+; EST as splice-site and intron input instead of 

peptide/translated ORF) and GenomeScan54. The highest scoring predictions 

for each locus were selected using multiple positive factors, including EST and 

peptide support, and one negative factor—overlap with repeats. Selected gene 

predictions were improved by PASA, including by adding UTRs, correcting 

splicing and adding alternative transcripts. PASA-improved gene model pep-

tides were subjected to peptide homology analysis with the above-mentioned 

proteomes to obtain Cscore values and peptide coverage. Cscore is the ratio of 

the peptide BLASTP score to the mutual best hit BLASTP score, and peptide 

coverage is the highest percentage of peptide aligned to the best homolog.  

A transcript was selected if its Cscore value was greater than or equal to  

0.5 and its peptide coverage was greater than or equal to 0.5 or if it had EST 

coverage but the proportion of its coding sequence overlapping repeats was 

less than 20%. For gene models where greater than 20% of the coding sequence 

overlapped with repeats, the Cscore value was required to be at least 0.9 and 

homology coverage was required to be at least 70% to be selected. Selected 

gene models were subjected to Pfam analysis, and gene models whose encoded 

peptide contained more than 30% Pfam transposon element domains were 

removed. The final gene set consisted of 27,197 protein-coding genes and 

31,638 protein-coding transcripts.
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Repeat analysis. In addition to the genome sequence, 15 publicly available 

BAC sequences for common bean were also downloaded from GenBank for a 

total of 2.2 Mb of sequence, including from accessions DQ205649, DQ323045, 

FJ817289–FJ817291 and GU215957–GU215966. Transposon annotation was 

conducted using different methods according to the sequence structures and 

transposases of various transposons. To annotate LTR retrotransposons, the 

genome sequence was screened with LTR_Finder35 using default parameters, 

except that we set a 50-bp minimum LTR length and 50-bp minimum distance 

between LTRs. All predicted LTR retrotransposons were manually inspected 

to eliminate incorrectly predicted sequences, including tandem repeats, nested 

transposons, incomplete DNA transposons and other sequences. The internal 

sequences of LTR retrotransposons were used to perform BLASTX and/or 

BLASTP searches to define superfamilies: Ty1-copia, Ty3-gypsy or other. LINEs 

(long interspersed elements) were predicted on the basis of the non-LTR  

retrotransposase and polyA sequences. SINEs (short interspersed elements) 

were annotated with the polyA structure feature and combined with BLAST 

searches. To find DNA transposons, conserved domains for transposases from 

different reported superfamilies were used as queries to search the common 

bean genome. The matching sequences and flanking sequence (10 kb on each 

side) were extracted to conduct BLASTN searches to identify complete DNA 

transposons by terminal inverted repeats (TIRs) and target size duplication 

(TSD). Furthermore, MITEs-Hunter software36 was also used to identify DNA 

elements. The annotated transposons and two reported LTR retrotransposons, 

pva1-118d24-re-5 (FJ402927) and Tpv2-6 (AJ005762), were combined and 

used as a transposon library to screen the genome using RepeatMasker with 

default settings except that we used the ‘nolow’ option to avoid masking low-

complexity DNA or simple repeats. Transposons were summarized according 

to names, subclasses and classes, and overlapping regions in the RepeatMasker 

output file were counted once (Supplementary Table 9).

To estimate the insertion times of LTR retrotransposons, the 5′ and 3′ LTRs 

for each full-length LTR retroelement were aligned and used to calculate the 

nucleotide divergence rate with the Kimura-2 parameter using MEGA 4. The 

insertion date (T) was estimated with the formula T = K/2r, where K is the 

average number of substitutions per aligned site and r is an average substitu-

tion rate. We used the average substitution rate of 1.3 × 10−8 substitutions per 

synonymous site per year55 to calibrate the insertion times.

Identification of disease resistance genes. NL proteins were identified in 

an iterative process. First, an HMM (Hidden Markov model) search of the 

predicted protein sequences identified sequences containing the NB-ARC 

domain. The ‘trusted cutoff ’ of the NB-ARC domain HMM (PF00931) estab-

lished by Pfam56 was used as the threshold for detecting NBS domains. We 

identified 398 predicted proteins corresponding to 342 annotated genes that 

encoded homologs of NL proteins. To identify diverse homologs, all the NL 

predicted protein sequences were used as queries for TBLASTN57 against the 

entire genome. All resulting sequences (E value < 1 × 10−10) were manually 

inspected using Artemis58. This procedure identified an additional 38 puta-

tive NL genes that were not part of the genome annotation. A new identifier 

was created for each missing gene (with last digits set as 50). NL genes were 

assessed manually in Artemis software for the presence of sequences encoding 

TIR (PF01582), NB-ARC (PF00931) and LRR (PF00560, PF07723, PF07725, 

PF12799, PF13306, PF13516, PF13504 and PF13855) domains with HMMer 

using the trusted cutoffs defined in Pfam. Coiled-coil domains were identified 

using Coils59 with a 14-amino-acid search window and a cutoff score of 2.9. 

Artemis was used for further manual analysis. Gene models with stop codons 

and/or frameshifts were classified as pseudogenes.

Development of wild and landrace pools for sequencing of common bean. 

Initially, 126 wild and 179 landrace genotypes, collected from the full geo-

graphic range of the species, were scored with 22 indel markers distributed 

throughout the genome. A Bayesian analysis was performed on the genotype 

data within each of the two groups using STRUCTURE software60,61 with 

the parameters outlined previously62. For the wild genotypes where k is the 

number of populations, k = 2 best fit the data63, and, for the landraces, k = 6 

defined 3 Mexican subpopulations, 1 Central American subpopulations and 

2 Andean subpopulations. A genotype was assigned to a subpopulation if its 

subpopulation parentage was >70%. DNA pools for resequencing were cre-

ated by selecting individuals with high subpopulation membership (>98% for 

wild subpopulations and >90% for landrace subpopulations; Supplementary 

Fig. 18). In adopting other approaches30,31, several individual-pool SNP data 

were combined with other pool SNP data to create a pool SNP data set repre-

senting a putative ancestral state.

Pooled DNA sequencing and SNP identification. DNA from each of these 

pools was sequenced to ~4× depth using Illumina technology (Supplementary 

Table 12). Each read was mapped to the v1.0 version of the assembled refer-

ence genome using Burrows-Wheeler Aligner (BWA)64 with the maximum 

edit distance set to 8. All reads with a mapping quality score of less than 25 

were discarded. An mpileup file was created for each sequenced pool using 

SAMtools65 with the –BA options. VarScan 2.2.10 (ref. 66) used the mpileup 

file for SNP calling with the following parameters: minimum coverage = 5, 

minimum consensus quality = 25 and minimum variant frequency = 0.01. To 

further reduce SNP call quality, SNPs were discarded (i) if the reference or 

variant allele was an N; (ii) if more than one variant allele was observed; and 

(iii) if the variant allele was a single-nucleotide indel. The minimum number 

of reads required for the reference or variant allele was three. The number of 

SNPs ranged from 8,890,318 for the wild Mesoamerican pool to 1,397,405 for 

the Peru landrace pool (Supplementary Table 14). Among wild genotypes, 

10,158,326 SNPs were observed, whereas the Mesoamerican landrace geno-

types contained 9,661,807 SNPs and the Andean landrace genotypes contained 

3,154,648 SNPs. For individual and combined pools, the proportion of SNPs 

found within genes was ~16%, indicating that genes were not disproportion-

ately prone to more (or less) variation.

Demographic modeling. To minimize bias in demographic inferences due 

to selection, we used neutral sites defined to be at least 5 kb away from a gene 

(as annotated in the gff3 file v1.0) and not located in repetitive regions. The 

number of different haplotypes for each pooled sample was close to 30. Data 

were thus down-sampled to 25 haplotypes for each pool via hypergeometric 

projection (random sampling of 25 alleles without replacement), from which 

the joint allele frequency spectrum (jAFS) was derived. To eliminate spurious 

singletons, we excluded sites appearing as singletons in either of the two pools, 

resulting in a total of 663,000 polymorphic sites for jAFS.

We compared different demographic models on the basis of the relative 

log likelihoods of the models given the observed site frequency spectrum. 

Asymmetric migration rates were assumed in the model (Fig. 1). To infer 

model parameters, we ran δaδi simulations with different starting points in an 

eight-dimensional parameter space until convergence was achieved. Parameter 

values for the best-fit model are listed in Supplementary Table 13, using a base 

substitution rate µ = 8.46 × 10−9 substitutions/bp/year (S.B.C., unpublished 

data) derived from silent sites. To estimate parameter uncertainties, we divided 

the genome into 10-cM segments and performed 100 bootstraps on the chro-

mosome segments. Confidence intervals were derived on the basis of simula-

tion results for the bootstrapped samples (Supplementary Table 13) as were 

comparisons between model prediction and observed data (Supplementary 

Figs. 24 and 25).

Population genetics statistics. Several population genetics statistics were 

calculated in 100-kb/10-kb and 10-kb/2-kb sliding windows and each gene 

in each DNA pool. Any window or gene with >50% Ns was excluded, and 

all statistics were based on the number of non-N nucleotides in the window. 

Nucleotide diversity (π, the average number of nucleotide differences per site 

between two DNA sequences chosen randomly from the sample population; 

ref. 67) was calculated using the following formula: 

p p=
= =
∑ ∑
i

n

j

i

i j ij
x x

1 1

Here xi and xj are the respective frequencies of the ith and jth sequences, πij  

is the number of nucleotide differences per nucleotide site between the ith  

and jth sequences, and n is the number of sequences in the sample.  

The Watterson estimate (θw; ref. 68), which is an estimation of population 
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mutation rate, was calculated on the basis of the number of segregating sites 

using the formula

qw = S

an

where S is the number of segregating sites and

an

i

n

i
=

=

−

∑
1

1
1

Tajima’s D, calculated as described in ref. 69. FST (ref. 70) is a measure of popu-

lation differentiation estimated from the average pairwise differences between 

chromosomes in each analysis panel compared to the combined samples as 

described in ref. 71
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where xij is the estimated frequency of the minor allele at SNP i in popula-

tion j, nij is the number of genotyped chromosomes at that position and nj is 

the number of chromosomes analyzed in that population. The lack of the j 

subscript in the denominator indicates that statistics ni and xi are calculated 

across the combined data sets.

The relative diversity among two pooled samples was compared by a nucleo-

tide diversity ratio (π) between the two pools for each window or gene. For 

example, the ratio πMA-wild/πMA-landrace measures the relative difference in 

diversity between the Mesoamerican wild gene pool and the Mesoamerican 

landrace gene pool. Similarly, an FST value was calculated for each window and 

gene to compare the differentiation between any two pools.

Identifying selected windows and genes and defining sweep windows. A 

composite scoring system was used to determine whether a 10-kb/2-kb sliding 

or gene window was under selection. This approach is similar to the one applied 

for silk moth where a reduction in nucleotide diversity and Tajima’s D was 

applied to discover domestication-related genes72. Here a 10-kb/2-kb window 

or a gene was considered a selection window or domestication candidate gene if 

it was in the upper 90% of the pool’s empirical distribution for the πwild/πlandrace 

ratio and FST statistics. The cutoff values for various comparisons can be found 

in Supplementary Table 18. All 10-kb/2-kb selection windows within 40 kb of 

each other were merged in a ‘sweep window’. The numbers of domestication 

candidates and total genes were calculated for each sweep window.

Annotating candidates for seed weight and size in common bean. We used 

the Arabidopsis protein sequence for all genes found to be associated with seed 

weight43,73 as queries for a BLASTP analysis of a database of the common bean 

proteins. We identified 141 common bean gene models with 50% identity and 

80% coverage that matched 70% of the query length, and these inherited the 

Arabidopsis names for the gene associated with seed weight.

Association mapping. In total, 271 diverse modern common bean varieties 

from the Mesoamerican gene pool were grown in replicated field trials by 

North Dakota State University, Michigan State University, the University of 

Nebraska and Colorado State University bean breeding programs. Each variety 

was genotyped with 34,799 SNPs. Missing data were imputed in fastPHASE 1.3 

(ref. 74) using likelihood-based imputation. Adjusted means for seed weight 

data across all locations were calculated using the MIXED procedure in SAS9.3 

(ref. 75), where the genotype was the fixed effect and all other factors were 

considered to be random.

A mixed linear model (MLM) controlling for population relatedness was 

used to conduct the GWAS. The mixed model used was from Yu et al.76, and 

the equation used was y = xβ + zµ + ε, where y is the seed weight phenotype, xβ 

indicates the genotype fixed effect, zµ represents the kinship coefficient as the 

random effect and ε is a vector of residual effects. An identity-by-state (IBS) 

kinship matrix (EMMA77) was used to control for population relatedness. 

The kinship matrix was calculated using marker loci with pairwise r2 > 0.5.  

The linkage disequilibrium (r2) between all marker loci was calculated in 

PLINK78 using a minor allele frequency of 0.1. The EMMA kinship matrix 

and the GWAS were calculated in the genome association and prediction  

integrated tool (GAPIT) package in R79, without P3D and compression.  

Only markers with minor allele frequency of 0.1 or greater were considered 

in the GWAS results. Protein sequences for Arabidopsis genes associated  

with seed weight43,73 were used as queries for a BLASTP analysis against a 

database of common bean proteins. We identified 141 common bean gene 

models with 50% identity and 80% coverage that matched 70% of the query 

length, and these inherited the Arabidopsis gene names.
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Supplementary Figure 1. The insertion times of full length LTR retrotransposons in common 

bean. 
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Supplementary Figure 2. The integration times of full length LTR retrotransposons on the 11 

chromosomes of common bean.  
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Supplementary Figure 3. The insertion times of 11 LTR retrotransposon families each of which 

contains more than 50 complete elements. 

 

 

	  

	  
Supplementary Figure 4.  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 1. 
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Supplementary Figure 5:  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 2. 

	  

	  
Supplementary Figure 6:  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 3. 
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Supplementary Figure 7:  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 4. 

	  

	  
Supplementary Figure 8:  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 5. 
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Supplementary Figure 9:  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 6. 

	  

	  
Supplementary Figure 10:  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 7. 
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Supplementary Figure 11:  Marker placements for the genetic map on the Phaseolus vulgaris 

chromosome 8. 

	  

	  
Supplementary Figure 12:  Marker placements for the genetic map on Phaseolus vulgaris 

chromosome 9. 
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Supplementary Figure 13:  Marker placements for the genetic map on Phaseolus vulgaris 

chromosome 10. 

	  

	  
Supplementary Figure 14:  Marker placements for the genetic map on Phaseolus vulgaris 

chromosome 11. 
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Supplementary Figure 15. Identification of pericentromeric regions. Identification of 

pericentromeric regions. Based on the comparison between physical distance (X axis) with gene 

density (blue line, left Y axis), repeats density (red line, right Y axis) and average of genetic 

distance (green line, left Y axis). Yellow vertical bars indicate position of transition from 

euchromatic arms to pericentromeres. All measures are based in a 1Mb window increasing every 

200 kb. The gene density includes 27,197 genes and the genetic distance is based on 6,945 markers 

mapped in the Stampede x Redhawk population in a F2 generation. 
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Supplementary Figure 16. Physical map of the 11 common bean chromosomes with individual 

CNLs and TNLs. The relative map position of 376 NL encoding genes is shown on the individual 

pseudomolecules depicting the chromosomes 1-11. Each gene has a unique label representing the 7 

last informative digits from the annotation. For example, G002600 located on pseudomolecule 3 

corresponds to the gene Phvul.003G002600. Genes encoded by the positive DNA strand are 

depicted on the right side of the chromosome, whereas those encoded by the negative strand are 

shown on the left. TNL sequences are presented in pink and CNL sequences are presented in black. 

NL corresponding to a pseudogene are denoted by an asterisk (*) after their name. 
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Supplementary Figure 17. Gene duplications and divergence estimates. Observed Ks values and 

inferred speciation and gene duplication divergence estimates, based on median synonymous 

substitutions values (Ks) of synteny-block-median Ks values from gene pairs from syntenic regions. 

A system of equations corresponding to branches on gene-pair lineages (red, blue, or purple) was 

used to determine the branch lengths in this gene-family model. Rates of substitutions are based on 

the divergence time estimated by Lavin et al. (2005) for Phaseolus and Glycine of 19.2 Mya. 

 

 
 
Supplementary Figure 18.  Population substructure of 60 wild and 100 landrace common bean 

genotypes used for pooled resequencing.  Population membership was defined using the 

STRUCTURE software.  Based on historical research, the wild genotypes (a) were subdivided into 

two subpopulations, while the landraces (b) were defined by six subpopulations. 
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Supplementary Figure 19. Cytokinin pathway and MA domestication genes.  Cytokinin is 

synthesized from a precursor by the enzyme LOG1. It is then sensed by members of the AHK 

class that autophosphorylate themselves. The phosphate group is passed to AHP proteins that 

migrate to the nucleus and phosphorylate ARR proteins.  These transcription factors in turn 

activate genes such as CKX that degrades cytokinin to modulate the effects of the hormone on 

multiple plant development processes (Hwang et al. 2012). The MA domestication candidates 

for genes in the pathway are noted. 
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Supplementary Figure 20:  Dot plot of BAC clone 13941 on a region of chromosome Pv04.  

This alignment is representative of the high quality BAC clone alignment. 

	  

	  
(a)	  

	  
(b)	  

Supplementary Figure 21:  Dot plot of BAC clone 13936 on a region of chromosome Pv04.  

This alignment is representative of a BAC clone in a moderate transposon region, where (a) is the 

dot plot on Chr08 and (b) is the dot plot of the clone with itself. 
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(a)	  

	  
(b)	  

 

Supplementary Figure 22:  Dot plot of BAC clone 13925 on a region of chromosome Pv11.  

This alignment is representative of a BAC clone in a dense transposon environment, where (a) is 

the alignment on Chr11 and (b) is the dot plot of the clone with itself. 
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Supplementary Figure 23:  Dot plot of BAC clone 13935 with itself.  This clone likely resides 

in a region of the genome that was not resolved in the assembly. 
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Supplementary Figure 24. Data vs model prediction for the genetic variation in the two wild bean 

pools of wild Mesoamerican (MW) and wild Andean (AW).  Each pool has been down-sampled to 

25 chromosomes. Singletons in both pools have been excluded in model inference and prediction. 

(a) The summary statistic of 4 types of mutually exclusive single nucleotide variants: fixed=sites 

with 2 alleles separately fixed in MW and AW, share=sites variant in both pools, MW=sites variant 

in MW only, AW=sites variant in AW only.  (b) Minor allele frequency distribution for the MW 

pool. (c) Minor allele frequency distribution in the AW pool with sample size 25. 
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Supplementary Figure 25. Joint allele frequency spectrum for the two wild pools of common 

bean.  The pooled data were down-sampled to 25 chromosomes for each pool, and singletons were 

excluded both in model inference and prediction.  The Anscombe residuals between the best fit 

model and data are shown in the bottom row. See test for discussions.  MW=wild Mesoamerican, 

AW=wild Andean.  
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B. Supplementary Tables 
 

Library 

Sequencing 

Platform 

Average Read 

Length/Insert 

Size 

Read 

Number 

Assembled 

Sequence 

Coverage 

Linear 454 XLR & FLX+ 362
*
 38,107,155 18.64x 

GPNB 454 XLR paired 2,798 ± 1,047 589,346       0.11x 

GGAS 454 XLR paired 3,922 ± 643 1,940,576     0.41x 

GXSF 454 XLR paired 3,991 ± 337 467,414    0.07x 

HYFA 454 XLR paired 4,729 ± 497 1,648,022    0.25x 

HYFC 454 XLR paired 4,736 ± 504 1,491,648      0.24x 

HYFB 454 XLR paired 4,759 ± 528 1,196,104 0.17x 

HXTI 454 XLR paired 8,022 ± 1,016 1,364,808      0.22x 

GXNX 454 XLR paired 9,192 ± 1,058 878,832 0.16x 

HXWF 454 XLR paired 11,903 ± 1,928 724,196 0.13x 

HXWH 454 XLR paired 12,231 ± 1,902 413,396 0.08x 

VUK Sanger 34,956 ± 4,536 240,384 0.20x 

VUL Sanger 36,001 ± 4,632 88,320 0.08x 

PVC Sanger 121,960 ± 16,572 81,408 0.08x 

PVA Sanger 126,959 ± 25,658 89,017 0.09x 

PVB Sanger 135,292 ± 21,487 92,160 0.09x 

Total   49,412,786    21.02x 

Supplementary Table 1. Genomic libraries included in the Phaseolus vulgaris genome assembly 

and their respective assembled sequence coverage levels in the final release. 
*
Indicates that the 

number reported in the table is the average read length, not insert size. 
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Minimum 

Scaffold 

Length 

Number of 

Scaffolds 

Number of 

Contigs 
Scaffold Size Basepairs 

% Non-gap 

Basepairs 

5 Mb 36 24,903 310,700,332 284,755,606 91.65% 

2.5 Mb 65 33,373 418,546,348 382,376,028 91.36% 

1 Mb 109 38,683 497,761,392 454,793,715 91.37% 

500 Kb 122 39,252 507,057,583 463,387,171 91.39% 

250 Kb 136 39,730 512,032,524 466,907,449 91.19% 

100 Kb 157 40,017 515,361,076 468,917,527 90.99% 

50 Kb 171 40,169 516,398,703 469,738,390 90.96% 

25 Kb 213 40,452 517,980,937 470,824,917 90.90% 

10 Kb 289 40,740 519,103,479 471,766,339 90.88% 

5 Kb 479 41,194 520,388,386 472,773,109 90.85% 

2.5 Kb 641 41,453 521,017,136 473,245,231 90.83% 

1 Kb 1,100 41,920 521,675,054 473,897,487 90.84% 

0 bp 1,627 42,447 522,065,413 474,287,846 90.85% 

	  
Supplementary Table 2. Summary statistics of the output of the whole genome shotgun assembly 

prior to screening, removal of organelles and contaminating scaffolds and chromosome-scale 

pseudomolecule construction. The table shows total contigs and total assembled basepairs for each 

set of scaffolds greater than the size listed in the left hand column.	  	  
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Scaffold total 708 

Contig total 41,391 

Scaffold sequence total 521.1 Mb 

Contig sequence total 472.5 Mb (1.7% gap) 

Scaffold N50/L50 5/50.4 Mb 

Contig N50/L50 3,273/39.5 Kb 

 
Supplementary Table 3. Final summary assembly statistics for chromosome scale assembly. 
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Supplementary Table 4. Transcript resources used for annotation for Phaseolus vulgaris.	  

 

  

Resource type Tissue  

Type 

Number of 

reads 

GSNAP (Wu 

and Nacu 2010) 

Aligned 

Percent 

Aligned 

Sanger Mixed 79,630 - - 

Illumina 2x100 bp Roots 10 DAP (days 

after planting) 
65,429,570 59,846,373 92.1% 

Illumina 2x100 bp Roots 19 DAP  46,593,274 44,116,235 94.9% 

Illumina 2x100 bp Nodules 19 DAP 71,716,844 66,112,750 92.7% 

Illumina 2x100 bp Stem 10 DAP 40,933,844 38,196,918 93.6% 

Illumina 2x100 bp Stem 19 DAP  61,842,390 44,116,235 94.9% 

Illumina 2x100 bp Primary leaves 10 

DAP  
68,255,918 61,371,430 90.5% 

Illumina 2x100 bp Young trifoliates 19 

DAP 
66,127,642 60,209,317 91.6% 

Illumina 2x100 bp Flower buds 68,363,986 61,332,231 90.5% 

Illumina 2x100 bp Whole Flowers  66,112,818 62,126,340 94.7% 

Illumina 2x100 bp Young pods 1-5cm 

seedless 
66,133,582 62,301,836 94.8% 

Illumina 2x150 bp Green mature pods 

11.5-13.5 cm 
120,724,870 113,736,673 94.6% 

Total RNA-Seq  742,234,738 687,643,736 93.2% 
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Primary loci 27,197 

Alternative transcripts 4,491 

Average number of exons 5.5 

Median exon length 160 

Median intron length 200 

Complete genes 26,279 

Incomplete genes with start codon 225 

Incomplete genomes with stop codon 657 

 
Supplementary Table 5. Annotation results 
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Supplementary Table 6. Start and end points of centromeric regions in Mb based on BLASTN of 

CentPv1 and CentPv2 repeats. Start and end point of pericentromeric regions in Mb identified 

following the plots on Supplementary Figure 15. 
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Genetic 
Length   

(cM) 

Physical 
length   

(Kb) 

Kb/cM 

Pericentromere 

Kb/cM 
euchromartic 

arms 

Kb/cM  per 

chromosome 

Chr01 84.0 52183.5 5210 278 651.5 

Chr02 127.6 49033.7 3084 233 384.2 

Chr03 116.9 52218.6 3452 262 445.6 

Chr04 94.0 45793.2 4701 164 486.7 

Chr05 90.8 40237.5 2342 134 443.0 

Chr06 70.8 31973.2 6102 239 451.3 

Chr07 105.4 51698.4 9179 233 489.7 

Chr08 114.0 59634.6 6913 208 554.7 

Chr09 94.6 37399.6 3322 352 394.0 

Chr10 60.2 43213.2 5388 267 732.1 

Chr11 78.5 50203.6 5877 232 638.9 

Mean 94.3 46689.9 5052 237 515.6 

!

 
Supplementary Table 7. Physical (Kb) and genetic (cM) position of the last marker mapped in 

each chromosome and recombination rate (Kb/cM) per chromosome and comparison between 

pericentromeric regions and euchromatic arms. 

  

Nature Genetics: doi:10.1038/ng.3008



	   	  25	  

 

 

Super families of 

TEs 

Number of 

TEs (X10
3
) 

Coverage of TEs 

(bp) 

Fraction of 

genome (%) 

    

Class 1 
 

281.3 185,960,175 39.36 

     LTR 

retrotransposon 

242.9 173,201,891 36.66 

         Ty3-gypsy 145.1 118,698,650 25.12 

         Ty1-copia 61.2 44,242,298 9.37 

         others 36.6 10,260,943 

 

2.18 

    

                 LINEs 37.5 12,599,869 2.67 

     SINEs 1.0 158,415 0.03 

    

    

Class 2 87.1 25,979,571 5.50 

  CACTA 43.9 12,726,168 2.69 

  Harbinger/PIF 0.5 264,755 0.06 

  hAT 3.9 1,028,733 0.22 

  Helitron 18.2 5,037,722 1.07 

  MULE 20.6 

 

6,922,193 1.46 

    

Unclassified TEs 14.7 2,680,413 0.57 

    

Total 383.2 21,4620,159 45.42 

Supplementary Table 8. Summary of transposable elements (TEs) in Phaseolus vulgaris. 
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Supplementary Table 9. Transposon distribution across the 11 chromosomes of Phaseolus 

vulgaris. 
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#Full length #Pseudo  #Total % 

TNL 82 24 106 28.2% 

TIR-NB-LRR 73 20 93 

 TIR-NB 9 4 13 

 
CNL 185 85 270 71.8% 

CN 3 1 4 

 N 5 2 7 

 NL 91 64 155 

 CNL 86 18 104   

#Total 267 109 376 

  
Supplementary Table 10. Numbers of common bean genes that encodes domains similar to plant 

R proteins 
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Pv	  

total	  

genes	  	  

Pv	  

synteny	  

genes	  

Gm	  A	   Gm	  B	  
Lost	  in	  	  	  	  	  

A	  or	  B	  

Retained	  

in	  A	  or	  B	  

%	  Gm	  

A	  
%Gm	  B	  

Ratio	  

A:B	  

Pv01	   2694	   2116	   1971	   1888	   373	   1743	   93%	   89%	   1.04	  

Pv02	   3338	   2695	   2426	   2451	   513	   2182	   90%	   91%	   0.99	  

Pv03	   2973	   2294	   2112	   1894	   582	   1712	   92%	   83%	   1.12	  

Pv04	   1789	   1035	   908	   902	   260	   775	   88%	   87%	   1.01	  

Pv05	   1863	   1349	   1198	   1139	   361	   988	   89%	   84%	   1.05	  

Pv06	   2221	   1649	   1508	   1417	   373	   1276	   91%	   86%	   1.06	  

Pv07	   2812	   2146	   1961	   1920	   411	   1735	   91%	   89%	   1.02	  

Pv08	   2932	   2067	   1873	   1810	   451	   1616	   91%	   88%	   1.03	  

Pv09	   2633	   2134	   1947	   1945	   376	   1758	   91%	   91%	   1.00	  

Pv10	   1659	   1020	   933	   890	   217	   803	   91%	   87%	   1.05	  

Pv11	   2168	   1274	   1177	   1055	   316	   958	   92%	   83%	   1.12	  

Total	   27082	   19779	   18014	   17311	   4233	   15548	   	  	   	  	   	  	  

Mean	   2462	   1798	   1638	   1574	   385	   1413	  

	   	   	  Supplementary Table 11. Phaseolus synteny genes and their corresponding chromosomes in 

Glycine. Lost and retained genes in Glycine homolog chromosomes with based on Phaseolus genes. 

(% of GmA and GmB were calculated over the total number of genes in synteny blocks per 

chromosome.) 
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Pool definition (abbreviation) 

 

Genepool 

Pool 

size 

Sequence 

collected in GB 

Diploid 

genome 

equivalents 

Landrace Mexico 1 Meso 25 153.2 6.1x 

Landrace Mexico 2 Meso 7 47.9 6.8x 

Landrace Mexico 3 Meso 16 102.9 6.4x 

Landrace Central America Meso 26 136.8 5.3x 

Landrace South Andes Adean 9 63.7 7.1x 

Landrace North Andes  Andean 17 57.2 3.4x 

Wild Mesoamerican Meso 30 161.5 5.4x 

Wild Andean Andean 30 147.4 4.9x 

Supplementary Table 12. Phaseolus vulgaris race and wild pool resequencing 
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 95% confidence intervals un-bootstrapped fit 

M12=2*Nanc*m12 0.072 - 0.1 0.087 

M21=2*Nanc*m21 0.12 - 0.152 0.135 

Ancestral population size 158900 -  176200 1.68E+05 

Divergence time (yr) 146200 - 183700 1.65E+05 

MW initial pop size 124900 -  205800 1.55E+05 

MW final pop size 463300 - 658300 5.61E+05 

AW bottleneck pop size 2304 - 8978 3.59E+03 

AW bottleneck duration (yr) 60370 - 99470 7.59E+04 

AW final effective pop size 188500 - 271300 2.19E+05 

AW exponential growth 

duration 
65500 - 99150 8.88E+04 

Supplementary Table 13. Demographic model parameters for the divergence of the wild 

Mesoamerican and wild Andean bean pools. The confidence intervals were derived from 100 

bootstrap replicates.  A population size refers to the effective population size. For example, MW 

initial population size refers to the effective population size of the wild Mesoamerican pool right 

after its split from the wild Andean (AW) pool. M12 is the AW to MW population migration rate, 

and M21 is the MW to AW migration rate.  A base substitution rate of 8.46e-9 /bp/yr is used. See 

Fig. 1 for model illustration and text for details. 
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Population 

Population 

size 

# of SNPs in 

population 

# of SNPs 

in genes 

% of 

SNPs in 

genes 

Middle American 

    Wild  30 8,890,318 1,422,926 16.01 

All landraces 74 9,661,807 1,487,930 15.40 

Mexican landraces 48 9,420,133 1,460,670 15.51 

Mexican sub population 1 25 6,065,384 949,620 15.66 

Mexican sub population 2 7 5,843,761 971,569 16.63 

Mexican sub population 3 16 7,009,370 1,113,682 15.89 

Central America sub 

population 26 5,046,476 808,411 16.02 

     Andean 

    Wild 30 2,837,493 422,393 14.89 

All landraces  26 3,154,648 522,897 16.58 

Andean sub population 1 9 1,397,405 221,196 15.83 

Andean sub population 2 17 2,589,280 439,086 16.96 

Supplementary Table 14.  SNP diversity among pooled sequencing populations. 
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Supplementary Table 15. Window or gene based summary of population genomics statistics for 

common bean averaged over two window sizes and individual genes. 

  

Population SNP π θ Tajima's D SNP π θ Tajima's D SNP π θ Tajima's D

Ancestral wild 1998 0.0057 0.0040 0.0785 208 0.0057 0.0040 0.0789 59 0.0046 0.0031 0.0833

Mesoamerican

Wild 1749 0.0060 0.0040 0.0852 182 0.0061 0.0041 0.0836 53 0.0049 0.0032 0.0771

All landraces 1900 0.0050 0.0037 0.0382 198 0.0050 0.0037 0.0364 56 0.0039 0.0028 0.0249

Mexican landraces 1852 0.0049 0.0039 0.0418 193 0.0050 0.0039 0.0397 55 0.0038 0.0030 0.0316

Mexican sub population 1 1192 0.0035 0.0029 0.0283 124 0.0035 0.0029 0.0255 35 0.0028 0.0022 0.0205

Mexican sub population 2 1149 0.0044 0.0039 0.0281 120 0.0044 0.0039 0.0260 36 0.0036 0.0032 0.0208

Mexican sub population 3 991 0.0027 0.0024 0.0133 103 0.0027 0.0024 0.0104 30 0.0021 0.0019 0.0030

Central American sub population 1378 0.0047 0.0037 0.0459 143 0.0047 0.0037 0.0435 42 0.0037 0.0029 0.0348

Andean

Wild 555 0.0014 0.0013 0.0067 58 0.0014 0.0013 0.0056 16 0.0010 0.0010 -0.0003

All landraces 618 0.0017 0.0015 -0.0484 64 0.0017 0.0015 -0.0471 20 0.0015 0.0013 -0.1132

Andean sub population 1 273 0.0011 0.0009 0.0203 29 0.0011 0.0009 0.0195 8 0.0009 0.0007 0.0222

Andean sub population 2 507 0.0016 0.0013 0.0171 53 0.0028 0.0014 0.0136 16 0.0014 0.0012 0.0163

100kb/10kb 10kb/2kb Gene 
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Supplementary Table 16. Mesoamerican domestication candidates (see separate Excel file) 

Supplementary Table 17. Andean domestication candidates (see separate Excel file) 
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Comparison 

Upper 90% πwild/ 

πlandrace  

Upper 90% 

FST 

10kb/2kb sliding window 

  Mesoamerica wild vs. landrace 

Mesoamerica 2.5596 0.3806 

Andean wild vs. Andean landraces 2.7214 0.3304 

Genes 

  Mesoamerica wild vs. landrace 

Mesoamerica 4.0510 0.4613 

Andean wild vs. Andean landraces 2.9512 0.3103 
Supplementary Table 18. Pi-ratio and Fst cutoff values to identify selection. 
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Gene Model Seed weight symbol Chrom Start End 

Phvul.001G000500 CDLB1 Chr01 144,309 146,169 

Phvul.001G003700 EXPO10 Chr01 341,806 344,139 

Phvul.001G007800 LOG1 Chr01 616,683 620,819 

Phvul.001G017100 DA1 Chr01 1,429,648 1,435,650 

Phvul.001G032200 KNAT1 Chr01 3,078,925 3,084,634 

Phvul.001G037400 LOG1 Chr01 3,601,073 3,604,290 

Phvul.001G038800 CKX7 Chr01 3,860,546 3,865,008 

Phvul.001G043600 AHK5 Chr01 4,529,713 4,537,672 

Phvul.001G066000 GA20OX1 Chr01 8,381,806 8,385,990 

Phvul.001G125800 ARR9_ATRR3 Chr01 35,340,847 35,342,926 

Phvul.001G128800 CKX1_CKX5_CKX6 Chr01 36,632,356 36,635,291 

Phvul.001G149400 IPT3_IPT5 Chr01 40,282,825 40,283,742 

Phvul.001G166700 ARR24 Chr01 42,826,352 42,827,545 

Phvul.001G168500 ARR24 Chr01 43,093,331 43,094,123 

Phvul.001G177400 LOG1 Chr01 44,084,869 44,089,144 

Phvul.001G181600 EXPO10 Chr01 44,623,426 44,625,593 

Phvul.001G194400 LOG1 Chr01 46,037,896 46,042,703 

Phvul.001G204900 WEE1 Chr01 46,982,597 46,985,854 

Phvul.001G219700 EXPO10 Chr01 48,217,860 48,218,892 

Phvul.001G232600 EXPO10 Chr01 49,338,402 49,339,807 

Phvul.001G261500 KLU Chr01 51,618,070 51,619,993 

Phvul.002G007600 CLV1 Chr02 878,645 882,943 

Phvul.002G024900 DA1 Chr02 2,660,954 2,668,059 

Phvul.002G029500 DDM1 Chr02 3,063,228 3,069,240 

Phvul.002G029700 DWF4 Chr02 3,098,498 3,103,000 

Phvul.002G083600 EXPO10 Chr02 12,900,620 12,902,739 

Phvul.002G090900 EIF-5A Chr02 15,370,102 15,371,825 

Phvul.002G107100 ATHK1 Chr02 21,585,247 21,592,897 

Phvul.002G152900 EXPO10 Chr02 29,369,190 29,370,828 

Phvul.002G169600 SH/SHB1 Chr02 31,271,901 31,279,943 

Phvul.002G169700 SH/SHB1 Chr02 31,290,312 31,295,950 

Phvul.002G173000 AHK2_AHK3_AHK4 Chr02 32,130,970 32,138,797 

Phvul.002G191500 MSI1 Chr02 34,804,672 34,807,990 

Phvul.002G202100 CDLB1 Chr02 36,183,223 36,191,730 

Phvul.002G246800 REV Chr02 41,323,900 41,330,159 

Phvul.002G282200 ARF2 Chr02 44,603,605 44,608,648 

Phvul.002G285000 HSD1 Chr02 44,850,979 44,853,798 

Phvul.002G324900 AHK2_AHK3_AHK4 Chr02 48,341,049 48,349,166 

Phvul.003G015500 AHK2_AHK3_AHK4 Chr03 1,411,225 1,417,895 

Phvul.003G041200 KLU_EOD3 Chr03 4,582,905 4,584,971 

Phvul.003G093100 IPT3_IPT5_IPT7 Chr03 19,179,812 19,181,667 

Phvul.003G099000 AHP1_AHP3_AHP5 Chr03 24,084,486 24,086,087 

Phvul.003G110100 ARR1_ARR2 Chr03 27,714,817 27,718,947 

Phvul.003G136400 CKX2_CKX3_CKX5 Chr03 32,803,946 32,807,861 

Phvul.003G136500 CKX3 Chr03 32,819,603 32,824,801 

Phvul.003G171500 AVP Chr03 38,248,747 38,253,381 
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Phvul.003G183100 KLU_EOD3 Chr03 39,501,091 39,503,000 

Phvul.003G187500 EIF-5A Chr03 39,959,123 39,960,634 

Phvul.003G196300 ARR3 Chr03 40,904,491 40,906,528 

Phvul.003G196500 ARR3_ARR15 Chr03 40,921,022 40,923,192 

Phvul.003G196600 DEL1 Chr03 40,933,175 40,936,648 

Phvul.003G213800 EXPO10 Chr03 42,940,817 42,942,083 

Phvul.003G253100 DWF4 Chr03 48,110,623 48,114,757 

Phvul.003G264600 ATHK1 Chr03 49,180,437 49,187,253 

Phvul.004G028800 GASA4 Chr04 3,121,597 3,124,051 

Phvul.004G030500 EXPO10 Chr04 3,354,742 3,356,837 

Phvul.004G064600 CYP735A1_CYP735A2 Chr04 8,973,882 8,980,231 

Phvul.004G123600 GA20OX1 Chr04 39,699,554 39,701,390 

Phvul.004G126100 ERL1_ERL2 Chr04 40,138,267 40,146,076 

Phvul.004G133200 MET1 Chr04 41,050,065 41,057,146 

Phvul.005G022700 LOG1 Chr05 2,008,896 2,010,207 

Phvul.005G027100 ARR9_ATRR3 Chr05 2,488,729 2,490,502 

Phvul.005G034000 CKX1_CKX5_CKX6 Chr05 3,178,703 3,181,535 

Phvul.005G055400 NAC1 Chr05 7,254,487 7,258,898 

Phvul.005G091500 FIE/FIS3 Chr05 26,314,512 26,318,717 

Phvul.005G109300 ENT3_ENT4_ENT6_ENT7 Chr05 31,905,455 31,909,909 

Phvul.005G134000 LOG1 Chr05 36,088,586 36,092,426 

Phvul.005G144500 EXPO10 Chr05 37,308,017 37,309,279 

Phvul.005G166900 REV Chr05 39,178,449 39,185,837 

Phvul.005G178200 AHP6 Chr05 40,070,379 40,071,717 

Phvul.006G029000 CLV1 Chr06 12,372,351 12,376,922 

Phvul.006G077200 EXPO10 Chr06 19,594,514 19,596,982 

Phvul.006G086800 EXPO10 Chr06 20,544,891 20,546,039 

Phvul.006G103700 AN3 Chr06 22,003,259 22,007,707 

Phvul.006G122800 CDLB1 Chr06 23,818,584 23,826,499 

Phvul.006G128600 REV Chr06 24,311,622 24,317,626 

Phvul.006G154200 IPT5_IPT7 Chr06 26,718,306 26,720,084 

Phvul.006G159300 

AHP1_AHP2_AHP3_AHP5

-AHP6 Chr06 27,127,859 27,133,631 

Phvul.006G193100 ENT3_ENT4_ENT6_ENT7 Chr06 30,034,563 30,042,648 

Phvul.006G193300 ENT3_ENT4_ENT6_ENT7 Chr06 30,060,498 30,062,676 

Phvul.006G193400 ENT3_ENT4_ENT6_ENT7 Chr06 30,064,924 30,067,226 

Phvul.007G028100 IPT1_IPT6_IPT8 Chr07 2,165,646 2,167,688 

Phvul.007G064800 GA20OX1 Chr07 5,714,864 5,716,900 

Phvul.007G148800 LOG1 Chr07 36,706,872 36,710,937 

Phvul.007G166700 FIE/FIS3 Chr07 39,848,075 39,854,258 

Phvul.007G167900 AHP1_AHP2_AHP3_AHP5 Chr07 40,027,937 40,032,078 

Phvul.007G170100 IPT3_IPT5 Chr07 40,285,383 40,286,351 

Phvul.007G183200 AHP1_AHP2_AHP3_AHP5 Chr07 41,941,397 41,943,008 

Phvul.007G189200 AN3 Chr07 42,549,946 42,553,336 

Phvul.007G207600 EXPO10 Chr07 44,644,205 44,645,485 

Phvul.007G269400 LOG1 Chr07 50,766,672 50,770,415 

Phvul.007G269500 E2F3 Chr07 50,780,968 50,785,786 

Phvul.008G005600 CYP735A1_CYP735A2 Chr08 615,053 619,432 

Phvul.008G034700 EXPO10 Chr08 2,903,260 2,905,172 

Nature Genetics: doi:10.1038/ng.3008



	   	  37	  

Phvul.008G037500 EXPO10 Chr08 3,131,412 3,133,124 

Phvul.008G038300 SH/SHB1 Chr08 3,234,893 3,240,176 

Phvul.008G041200 GASA4 Chr08 3,480,877 3,482,421 

Phvul.008G120700 EXPO10 Chr08 15,661,050 15,664,385 

Phvul.008G160500 ATRR3 Chr08 41,207,395 41,211,052 

Phvul.008G229800 DA1 Chr08 54,461,684 54,466,341 

Phvul.008G232200 EXPO10 Chr08 54,674,682 54,676,674 

Phvul.008G240800 EXPO10 Chr08 55,529,938 55,532,235 

Phvul.008G248000 EXPO10 Chr08 56,264,486 56,266,809 

Phvul.008G253500 CDLB1 Chr08 56,750,663 56,754,010 

Phvul.008G285800 AHK2 Chr08 59,078,551 59,088,594 

Phvul.009G016000 LOG1 Chr09 2,660,091 2,663,107 

Phvul.009G019000 EXPO10 Chr09 3,497,612 3,499,649 

Phvul.009G034400 PUP1_PUP2 Chr09 7,386,248 7,387,735 

Phvul.009G043400 ARR5_ARR16_ARR17 Chr09 8,461,349 8,462,913 

Phvul.009G060200 

CKX1_CKX3_CKX5_CKX

6 Chr09 10,719,497 10,726,239 

Phvul.009G078800 LOG1 Chr09 12,794,282 12,797,245 

Phvul.009G081800 CKX7 Chr09 13,074,754 13,078,870 

Phvul.009G109700 MAX4 Chr09 16,502,002 16,504,992 

Phvul.009G110500 REV Chr09 16,589,773 16,595,618 

Phvul.009G131500 GA20OX1 Chr09 19,423,003 19,426,332 

Phvul.009G138500 BRI1/DWF2_BRI1_EMS1_ Chr09 20,367,117 20,370,855 

Phvul.009G142800 EXPO10 Chr09 20,892,482 20,894,300 

Phvul.009G155400 GA20OX1 Chr09 22,617,152 22,620,144 

Phvul.009G161900 ARF2 Chr09 23,557,877 23,563,227 

Phvul.009G182500 DEL1 Chr09 26,885,942 26,892,635 

Phvul.009G182800 ARR7 Chr09 26,960,006 26,962,365 

Phvul.009G184600 EIF-5A Chr09 27,211,707 27,214,154 

Phvul.009G186400 EXPO10 Chr09 27,567,879 27,570,714 

Phvul.009G187400 GASA4 Chr09 27,698,675 27,700,213 

Phvul.009G231700 CKX3_CKX5 Chr09 34,182,344 34,186,263 

Phvul.009G231800 CKX3 Chr09 34,223,306 34,229,917 

Phvul.009G253200 ARR1_ARR2 Chr09 36,593,953 36,598,004 

Phvul.010G010200 EXPO10 Chr10 1,596,184 1,599,156 

Phvul.010G087500 GA20OX1 Chr10 32,648,913 32,651,094 

Phvul.010G117100 KLU_EOD3 Chr10 38,413,620 38,415,853 

Phvul.010G146200 REV Chr10 41,737,278 41,745,149 

Phvul.011G013500 ENT1 Chr11 1,029,308 1,031,750 

Phvul.011G014000 CKX1_CKX5_CKX6 Chr11 1,092,381 1,094,971 

Phvul.011G031700 DWF1 Chr11 2,752,538 2,755,643 

Phvul.011G035800 MSI1 Chr11 3,137,684 3,140,779 

Phvul.011G063800 EXPO10 Chr11 5,535,300 5,537,331 

Phvul.011G079800 REV Chr11 7,419,065 7,425,525 

Phvul.011G080600 LOG1 Chr11 7,544,162 7,548,685 

Phvul.011G097700 E2F3 Chr11 10,137,208 10,143,109 

Phvul.011G110200 ENT3_ENT4_ENT6_ENT7 Chr11 14,190,043 14,193,584 

	  	  	  	  	  Supplementary Table 19.  Candidate common bean seed weight genes. 

	  

Nature Genetics: doi:10.1038/ng.3008



	   	  38	  

	  

    

Arabidopsis thaliana 

 

Gene model Chrom Start End  best hit 

 gene 

symbol  gene description 

Distance 

GWAS 

SNP 

peak 

Phvul.001G261500 1 51,618,070 51,619,993 AT1G13710 

CYP78A5, 

KLU 

cytochrome P450, 

family 78, 

subfamily A, 

polypeptide 5 5,223 

Phvul.003G099000 3 24,084,486 24,086,087 AT3G21510 AHP1 

NAC (No Apical 

Meristem) domain 

transcriptional 

regulator 

superfamily protein 42,841 

Phvul.003G196500 3 40,921,022 40,923,192 AT1G74890 

ARR5, 

ATRR2, 

IBC6, RR5 

response regulator 

5 427 

Phvul.003G196600 3 40,933,175 40,936,648 AT3G48160 

DEL1, 

E2L3, 

E2FE DP-E2F-like 1 0 

Phvul.003G253100 3 48,110,623 48,114,757 AT3G50660 

DWF4, 

CYP90B1, 

CLM, 

SNP2, 

SAV1, 

PSC1 

Cytochrome P450 

superfamily protein 79,755 

Phvul.003G264600 3 49,180,437 49,187,253 AT2G17820 

ATHK1, 

AHK1, 

HK1 histidine kinase 1 31,991 

Phvul.004G064600 4 8,973,882 8,980,231 AT5G38450 CYP735A1 

cytochrome P450, 

family 735, 

subfamily A, 

polypeptide 1 32,221 

Phvul.006G077200 6 19,594,514 19,596,982 AT2G40610 

ATEXPA8, 

EXP8, 

ATEXP8, 

ATHEXP 

ALPHA 

1.11, 

EXPA8 0 16,867 

Phvul.006G159300 7 27,127,859 27,133,631 AT3G21510 AHP1 

histidine-

containing 

phosphotransmitter 

1 67,893 

Phvul.007G166700 7 39,848,075 39,854,258 AT3G20740 

FIE, FIS3, 

FIE1 

Transducin/WD40 

repeat-like 

superfamily protein 57,051 

Phvul.008G120700 8 15,661,050 15,664,385 AT2G37640 

ATEXPA4, 

ATEXP4, 

ATHEXP 

ALPHA 

1.6, 

EXPA4 expansin A4 44,202 

Phvul.010G010200 10 1,596,184 1,599,156 AT2G39700 

ATEXPA4, 

ATEXP4, 

ATHEXP 

ALPHA 

1.6, 

EXPA4 expansin A4 17,454 
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Phvul.011G013500 11 1,029,308 1,031,750 AT1G70330 

ENT1,AT, 

ENT1 

WPP domain 

protein 2 1,212 

Phvul.011G014000 11 1,092,381 1,094,971 AT3G63440 

ATCKX6, 

CKX6, 

ATCKX7 sulfur E2 59,412 

Phvul.011G035800 11 3,137,684 3,140,779 AT2G16780 

MSI2, 

MSI02, 

NFC02, 

NFC2 

Transducin family 

protein / WD-40 

repeat family 

protein 0 

	  
Supplementary Table 20. Mesoamerican seed weight improvement candidate genes. 
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Supplementary Table 21 Mesoamerican domestication candidates within 50kb of GWAS peak. 

Gene model Chrom Gene start Gene end

MA selected 
gene block 
assignment

Best A. thaliana 

hit
Top A. thaliana 

hit symbol Top A. thaliana hit description
Distance to 

SNP

Phvul.001G258300 1 51,408,257 51,411,015 95 AT1G67700 unknown protein 9,590

Phvul.001G258400 1 51,413,288 51,418,655 95 AT3G26020 Protein phosphatase 2A regulatory B subunit family protein 14,621

Phvul.001G260800 1 51,580,507 51,583,778 None AT1G67440 emb1688 basic helix-loop-helix (bHLH) DNA-binding superfamily protein 34,430

Phvul.002G193900 2 35,052,110 35,052,559 None 9,021

Phvul.003G035600 3 3,571,816 3,577,791 238 AT1G13380 Protein of unknown function (DUF1218) 33,863

Phvul.003G050900 3 6,241,388 6,253,146 245 AT2G04160 AIR3 Subtilisin-like serine endopeptidase family protein 0

Phvul.003G104100 3 25,801,140 25,806,833 267 AT1G09040 non-ATPase subunit 9 21,790

Phvul.003G124100 3 30,403,201 30,405,704 269 AT5G28050 Cytidine/deoxycytidylate deaminase family protein 21,166

Phvul.003G124900 3 30,542,597 30,550,021 270 AT5G17250 Alkaline-phosphatase-like family protein 2,573

Phvul.003G144500 3 34,150,168 34,153,951 275 AT5G57390 AIL5, CHO1, EMK AINTEGUMENTA-like 5 42,105

Phvul.003G196800 3 40,951,232 40,951,474 293 AT3G48180 Plant protein of unknown function (DUF869) 9,239

Phvul.003G264600 3 49,180,437 49,187,253 323 AT2G17820 ATHK1, AHK1, HK1 histidine kinase 1 31,930

Phvul.003G264700 3 49,189,215 49,192,451 323 AT5G66140 PAD2 vacuolar ATP synthase subunit C (VATC) / V-ATPase C subunit / vacuolar proton pump C subunit (DET3) 35,363

Phvul.003G265400 3 49,227,814 49,229,673 323 AT5G04780 Pentatricopeptide repeat (PPR) superfamily protein 8,570

Phvul.004G057500 4 7,657,458 7,661,986 347 AT3G27320 alpha/beta-Hydrolases superfamily protein 35,580

Phvul.004G066500 4 9,460,848 9,462,568 None AT5G33370 GDSL-like Lipase/Acylhydrolase superfamily protein 30,307

Phvul.006G070000 6 18,939,698 18,940,811 496 AT5G58580 ATL2, TL2 TOXICOS EN LEVADURA 2 13,650

Phvul.006G070100 6 18,945,216 18,945,869 496 AT3G05200 8,592

Phvul.007G065600 7 5,847,170 5,851,242 538 AT5G62165 AGL42 AGAMOUS-like 42 19,861

Phvul.007G065800 7 5,858,793 5,860,428 538 AT5G51890 Peroxidase superfamily protein 10,675

Phvul.007G066000 7 5,869,640 5,872,158 538 AT4G38010 Pentatricopeptide repeat (PPR-like) superfamily protein 0

Phvul.007G066800 7 5,976,854 5,979,050 None AT5G51940 NRPB6A, NRPD6A, NRPE6A RNA polymerase Rpb6 15,141

Phvul.007G066900 7 5,993,698 5,997,594 None AT2G45750 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein 31,985

Phvul.007G071100 7 6,408,764 6,409,930 None AT5G52390 unknown protein 36,657

Phvul.007G075800 7 6,962,320 6,964,291 542 AT5G52870 unknown protein 13,076

Phvul.007G075900 7 6,978,392 6,980,784 542 AT4G23630 Reticulon family protein 12,355

Phvul.007G076300 7 7,016,455 7,024,238 542 AT4G28000 P-loop containing nucleoside triphosphate hydrolases superfamily protein 0

Phvul.007G094000 7 9,664,594 9,665,620 546 41,860

Phvul.007G094200 7 9,696,188 9,705,030 546 AT1G48850 EMB1144 chorismate synthase, putative / 5-enolpyruvylshikimate-3-phosphate phospholyase, putative 46,778

Phvul.007G094300 7 9,724,193 9,729,678 546 AT2G39220 PLP6, PLA IIB PATATIN-like protein 6 22,130

Phvul.007G094400 7 9,770,994 9,772,378 546 AT5G19290 alpha/beta-Hydrolases superfamily protein 19,186

Phvul.007G095000 7 9,869,289 9,872,915 546 AT4G30080 ARF16 auxin response factor 16 29,711

Phvul.007G095100 7 9,882,588 9,884,606 546 ATMG00300 18,020

Phvul.007G095300 7 9,922,891 9,926,868 546 AT3G54810 GATA9 GATA transcription factor 9 20,265

Phvul.007G095600 7 9,983,235 9,985,678 546 AT5G03250 Phototropic-responsive NPH3 family protein 39,122

Phvul.007G095700 7 9,987,742 9,988,152 546 AT4G02210 36,648

Phvul.007G095800 7 9,992,495 9,994,474 546 30,326

Phvul.007G095900 7 9,996,844 9,998,891 546 AT4G14145 unknown protein 25,909

Phvul.007G097100 7 10,248,037 10,254,281 546 AT3G10360 APUM2, PUM2 34,621

Phvul.007G097200 7 10,278,772 10,289,556 546 AT2G39130 Transmembrane amino acid transporter family protein 0

Phvul.007G097400 7 10,374,618 10,378,029 546 10,474

Phvul.007G097500 7 10,403,778 10,406,331 546 AT4G02550 39,634

Phvul.007G098700 7 10,512,291 10,516,538 546 AT3G54850 ATPUB14, PUB14 plant U-box 14 8,126

Phvul.007G098800 7 10,517,794 10,543,382 546 AT3G10380 SEC8, ATSEC8 subunit of exocyst complex 8 13,629

Phvul.007G098900 7 10,543,501 10,547,486 546 AT2G39140 SVR1 pseudouridine synthase family protein 791

Phvul.007G099100 7 10,588,199 10,591,587 546 AT2G39170 Galactose oxidase/kelch repeat superfamily protein 10,025

Phvul.007G099300 7 10,628,850 10,631,945 546 AT3G10405 unknown protein 27,238

Phvul.007G099500 7 10,638,977 10,646,055 546 AT3G54880 unknown protein 37,365

Phvul.007G100800 7 10,964,374 10,965,093 None 15,225

Phvul.007G101400 7 11,174,527 11,175,292 550 AT1G68765 29,497

Phvul.007G101600 7 11,247,272 11,249,964 550 AT3G25670 RNI-like superfamily protein 42,483

Phvul.007G107600 7 13,015,723 13,017,441 None AT5G03120 14,372

Phvul.007G108100 7 13,277,836 13,278,510 556 HR-like lesion-inducing protein-related 4,704

Phvul.007G109200 7 13,591,085 13,594,278 None AT2G30580 DRIP2 DREB2A-interacting protein 2 25,940

Phvul.007G119600 7 19,539,118 19,541,066 575 AT2G02240 MEE66 Transducin family protein / WD-40 repeat family protein 37,574

Phvul.007G121500 7 21,620,803 21,622,206 580 AT1G08650 PPCK1, ATPPCK1 cation/H+ exchanger 20 25,431

Phvul.007G123000 7 23,296,799 23,300,482 None AT1G54450 44,015

Phvul.007G166700 7 39,848,075 39,854,258 595 AT3G20740 FIE, FIS3, FIE1 Transducin/WD40 repeat-like superfamily protein 9,246

Phvul.007G166900 7 39,863,504 39,867,874 595 AT4G03110 AtRBP-DR1, RBP-DR1 RNA-binding protein-defense related 1 49,780

Phvul.007G171000 7 40,345,396 40,349,737 None AT1G61750 46,340

Phvul.008G062800 8 5,704,198 5,704,599 None AT5G12060 Plant self-incompatibility protein S1 family 2,234

Phvul.008G100300 8 10,901,891 10,903,411 None AT2G41475 34,281

Phvul.008G113700 8 13,662,384 13,663,511 None AT3G09270 ATGSTU8, GSTU8 glutathione S-transferase TAU 8 39,152

Phvul.008G130300 8 20,089,563 20,091,716 660 AT1G65450 HXXXD-type acyl-transferase family protein 16,963

Phvul.008G130500 8 20,108,398 20,113,506 660 AT5G48660 B-cell receptor-associated protein 31-like 0

Phvul.008G130600 8 20,139,504 20,145,813 660 AT3G25070 RIN4 RPM1 interacting protein 4 30,825

Phvul.008G130700 8 20,149,301 20,151,400 660 AT3G25100 CDC45 cell division cycle 45 40,622

Phvul.008G141900 8 25,473,533 25,473,985 668 Nucleic acid-binding, OB-fold-like protein 43,018

Phvul.008G168000 8 43,530,648 43,537,164 675 AT1G77760 NIA1, GNR1, NR1 nitrate reductase 1 0

Phvul.009G204800 9 30,290,454 30,293,780 798 AT5G10840 Endomembrane protein 70 protein family 0

Phvul.009G223700 9 33,110,310 33,111,518 808 AT4G22600 ARM repeat superfamily protein 23,096

Phvul.009G234200 9 34,533,509 34,536,079 815 AT5G57090 PIN7, ATPIN7 Auxin efflux carrier family protein 46,220

Phvul.010G101800 10 35,914,907 35,916,655 None AT4G34138 UGT73B1 UDP-glucosyl transferase 73B1 0

Phvul.010G102300 10 35,938,015 35,938,383 None AT5G63470 NF-YC4 nuclear factor Y, subunit C4 22,480

Phvul.011G037000 11 3,224,391 3,224,860 878 AT4G38840 SAUR-like auxin-responsive protein family 32,254
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Supplementary Table 22. Mesoamerican seed weight improvement candidate genes. 

 

 

  

Gene model Chrom Start End
A. thaliana best 
hit A. thaliana gene symbol A. thaliana gene description

Distance to 
GWAS SNP 
peak

Phvul.001G261500 Chr01 51,618,070 51,619,993 AT1G13710 CYP78A5, KLU cytochrome P450, family 78, subfamily A, polypeptide 5 5,223

Phvul.003G099000 Chr03 24,084,486 24,086,087 AT3G21510 AHP1 NAC (No Apical Meristem) domain transcriptional regulator superfamily protein 42,841

Phvul.003G196500 Chr03 40,921,022 40,923,192 AT1G74890 ARR5, ATRR2, IBC6, RR5 response regulator 5 427

Phvul.003G196600 Chr03 40,933,175 40,936,648 AT3G48160 DEL1, E2L3, E2FE DP-E2F-like 1 0

Phvul.003G253100 Chr03 48,110,623 48,114,757 AT3G50660 DWF4, CYP90B1, CLM, SNP2, SAV1, PSC1 Cytochrome P450 superfamily protein 79,755

Phvul.003G264600 Chr03 49,180,437 49,187,253 AT2G17820 ATHK1, AHK1, HK1 histidine kinase 1 31,991

Phvul.004G064600 Chr04 8,973,882 8,980,231 AT5G38450 CYP735A1 cytochrome P450, family 735, subfamily A, polypeptide 1 32,221

Phvul.006G077200 Chr06 19,594,514 19,596,982 AT2G40610 ATEXPA8, EXP8, ATEXP8, ATHEXP ALPHA 1.11, EXPA8 0 16,867

Phvul.006G159300 Chr07 27,127,859 27,133,631 AT3G21510 AHP1 histidine-containing phosphotransmitter 1 67,893

Phvul.007G166700 Chr07 39,848,075 39,854,258 AT3G20740 FIE, FIS3, FIE1 Transducin/WD40 repeat-like superfamily protein 57,051

Phvul.008G120700 Chr08 15,661,050 15,664,385 AT2G37640 ATEXPA4, ATEXP4, ATHEXP ALPHA 1.6, EXPA4 expansin A4 44,202

Phvul.010G010200 Chr10 1,596,184 1,599,156 AT2G39700 ATEXPA4, ATEXP4, ATHEXP ALPHA 1.6, EXPA4 expansin A4 17,454

Phvul.011G013500 Chr11 1,029,308 1,031,750 AT1G70330 ENT1,AT, ENT1 WPP domain protein 2 1,212

Phvul.011G014000 Chr11 1,092,381 1,094,971 AT3G63440 ATCKX6, CKX6, ATCKX7 sulfur E2 59,412

Phvul.011G035800 Chr11 3,137,684 3,140,779 AT2G16780 MSI2, MSI02, NFC02, NFC2 Transducin family protein / WD-40 repeat family protein 0
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1 Sequencing, Assembly, and Annotation 

 

1.1 Accession numbers 

Version 1.0 assembly - Assembly and annotation is available from 

http://www.phytozome.net/commonbean.php and is deposited in Genbank under accession 

ANNZ01000000. 

 

454 Shotgun and Pairs: SRX012337-SRX012348, SRX028889-SRX028890, SRX028894-

SRX028898, SRX028915-SRX028920, SRX028964-SRX028978, SRX062194-

SRX062216, SRX273310-SRX273311 

BAC END Sequence - PV_A: EI415689-EI504705; PV_B, PV_C: JY504315-JY663793 

Fosmid End Sequence – JY665079-JY879798, JY893769-JY972748.  

Illumina Whole Genome Shotgun: SRX273308-SRX273309 

	  

1.2 Pseudomolecule Chromosome Construction 

The combination of the available genetic maps (7,015 SNP and 261 SSR markers for a total 

of 7,276) as well as 25 framework markers and Glycine max synteny were used to identify 

false joins in the initial assembly. Scaffolds were broken if they contained a putative false 

join coincident with an area of low BAC/fosmid coverage. A total of 71 breaks were 

identified and broken, resulting in 1,698 scaffolds in the broken assembly.  The optimal 

order and orientation of the broken scaffolds was obtained using markers and G. max 

synteny.  Due to the high-resolution of the genetic map (7,015 markers in the 267-

individual primary mapping population) and the large size of the assembled scaffolds, the 

pseudomolecule assemblies were well constructed before use of synteny. Nevertheless, 

genetic map data alone was not able to give precise placements or orderings of scaffolds 

within the recombination-poor pericentromeric regions.  Additional refinements to the 11 

pseudomolecule chromosomes were made based on synteny with soybean (Glycine max). 

Approximately 22% (52/240) of the initial marker-based scaffold ordering was locally 

modified based on G. max synteny with (usually within a 1 cM range, within the 

pericentromeres); and 17% (41/240) of the orientations were changed. Almost all such 

order/orientations and synteny changes were made within the Phaseolus pericentromeric 

regions, where there is virtually no genetic recombination.  Significant telomeric sequence 

was identified using the TTTAGGG repeat, and care was taken to make sure that it was 

properly oriented in the production assembly. BAC/Fosmid paired end link support was 

also used to order and orient the scaffolds composing the pseudomolecule chromosomes.  

A total of 248 joins were made on 259 scaffolds to form the final assembly containing 11 

chromosomes capturing 514.8 Mb (98.8%) of the assembled sequence. Each join is sized 

with 10,000 Ns. After screening for contaminant, there were 697 additional scaffolds that 

did contain a marker alignment and could not be localized using G. max synteny, and they 

are included as part of the release assembly.  The final assembly contains 708 scaffolds  

(41,391 contigs) with a contig L50 of 39.5 kb and a scaffold L50 of 50.4 Mb. Plots of the 

marker placements for the 11 chromosomes are shown in Supplementary Figs. 1-11. 

	  

1.3 Screening and Final Assembly Release 

Remaining scaffolds were classified into bins depending on sequence content. 

Contamination was identified using megablast against Genbank NR and blastp using a set 
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of known microbial proteins.  Additional scaffolds were classified as mitochondrion (8 

scaffolds, 18.1 Kb), chloroplast (12 scaffolds, 453.5 Kb), unanchored rDNA (6 scaffolds, 

158.1 Kb), prokaryote (1 scaffold, 44.8 Kb), unanchored retrotransposons (28 scaffolds, 

65.1 Kb), repetitive (>95% masked with 24mers that occur more than 4 times in the 

genome) (160 scaffolds, 1.4 Mb). We also removed 527 scaffolds that were less than 1 kb 

in sequence length (total of 390.4 Kb). Resulting final statistics are shown in 

Supplementary Table 3.  

 

1.4 Assessment of Assembly Accuracy 

A set of 8 random BAC clones totaling 1.12 Mb were sequenced in order to assess the 

completeness of the genic regions. A low rate of base pair mismatch and indel bases ( 

combined <0.5%) was indicated in the comparison of the 8 BAC clones and the assembly, 

with the main discrepancies in the clones being minor gaps (2-5 Kb).  A representative 

example of one of these BAC clones is given in Supplementary Fig. 12 (all dot plots were 

generated using Gepard (Krumsiek and Rattei 2007)).  The overall nonmatching bp rate 

(not including gap bases) in this group of clones is 0.13% (1,414 bp out of a possible 1.03 

Mb).  A second set of 5 BAC clones aligned to regions of moderate transposon content, 

with a representative clone given in Supplementary Fig. 13.  The third set of BAC clones 

are ones that place in regions of high transposon content, with an example given in 

Supplementary Fig. 14.  Finally, there are regions where the transposon/repeat content is a 

confounding factor in the genome assembly process, resulting in these regions not being 

included in the final assembly.  An example of such a clone is given in Supplementary 

Figure 23.  The clone was not located in the final assembly, likely due to the complex 

repetitive structures in the clone. 

Completeness of the euchromatic portion of the genome assembly was assessed 

using 108,012 P. vulgaris EST sequences >400bp obtained from GenBank.  The aim of this 

analysis is to obtain a measure of completeness of the assembly, rather than a 

comprehensive examination of gene space.  ESTs were aligned to the release assembly using 

BLAT (Parameters: -t=dna -q=rna –extendThroughN). Alignments that comprised >=90% base pair 

identity and >=85% EST coverage were retained.  The screened alignments indicate that 102,254 of 

108,012 (96.9%) of the ESTs aligned to the assembly.  A further 2,146 (2.03%) could be placed at 

>50% EST coverage, totaling 98.93%.  Comparatively few sequences represented artifacts 

(2,479;2.3%) or were not found (1,133;1.07%).  We also aligned 11 rnaSEQ libraries composed of 

2x100 bp Illumina reads given in Supplementary Table 4. Reads were aligned using 

GSNAP (Wu and Nacu,2010) with paramters “-A sam -N 1 -n 6 -w 5000 --nthreads=1 --

novelend-splicedist=5000 -K 18 -l 18 --pairmax-rna=5400 --max-mismatches=0.04” as part 

of the annotation process with an average of 93.2% aligned to the genome sequence 

(Supplementary Table 4).  

	  

	  

2 Centromere and Pericentromeric Analysis 

 

Centromeric positions were identified by BLASTN using centromere tandem repeats 

CentPv1 and CentPv2 with at least 80% length similarity and 60% identity. For almost all 

chromosomes CentPv1 was used except for Pv05, Pv06 and Pv11 where CentPv2 was used 

(Iwata et al. 2013). 

To determine the proportion of the genome that falls within pericentromeric 
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regions, we compared gene and repeat density and genetic distance versus the physical 

distance (Supplementary Fig. 16). Genetic distance was measured using 6945 SNP and 

SSR markers on the assembly, in the Stampede x Redhawk F2 population genetic map with 

267 individuals. Repeats density was parsed using Repeatmasker (version 3.3.0; 

http://www.repeatmasker.org/) with non-default parameters based on a TE custom library 

constructed for Phaseolus which include 791 repeats composed by 285 Class I elements, 

460 Class II elements and 46 unclassified elements in the database (www.phytozome.org). 

All measures were taken per 1-Mb sliding window at 200-kb intervals; gene counts were 

taken for gene density, nucleotide counts for repeats density and average of cM between 

markers in a window were taken for genetic distance. The start and end points on the 

pericentromeric regions were taken according the cross points in the plots where gene 

density decreased, repeats density increased and the recombination rate is suppressed or 

diminished. 

 

 

3 Repeat Annotation and Analysis 

 

Transposons are the most abundant genetic elements which have broad impacts on genome 

evolution, gene innovation and regulation, as well as on maintenance of chromosome 

structure and genomic heterochromatic silencing (Lippman and Martienssen 2004). In 

addition, transposons also serve as useful tools for insertional mutagenesis and gene 

isolation (Kumar and Bennetzen 1999; IRGSP 2005). Thus, genome-wide transposon 

annotation is important for understanding the genome composition and dynamics and the 

initial step for discovering endogenous active transposons in common bean. 

The common bean genome harbors ~45.0% of transposons, which include 39.4% of 

retrotransposons (Class 1) and 5.5% of DNA transposons (Class 2) (Supplementary Table 

8). The Ty3-gypsy retrotransposons are the most plentiful elements which make up about 

25.1% of the genome or more than 50% of the total transposons. Ty1-copia 

retrotransposons account for about 9.4% of the common bean genome. In addition, some 

LTR retroelements cannot be grouped as their internal regions encode no retrotransposase 

or only produce tiny proteins, these elements constitute 2.0% of the genome. Long 

interspersed elements (LINEs) and short interspersed elements (SINEs) comprise 2.9% and 

0.03% of the common bean genome. DNA elements are much lower than retroelements in 

number and fraction, they contribute 5.5% of the common bean genome. Among DNA 

transposons, the CACTA elements are the most abundant superfamily, these elements 

constitute 2.7% of the genome. In addition, four superfamilies of DNA elements also were 

identified which include Harbinger/PIF, hAT, Helitron and MULE. The transposon 

contents on 11 chromosomes in common bean are different, the chromosomes 10 exhibits 

the highest transposon content (55.1%) whereas the chromosome 9 has the lowest fraction 

of transposons (26.8%) which is less than half of chromosome 10 (Supplementary Table 9). 

The proportions of DNA transposons on 11 chromosomes are similar which range from 

5.0% on chromosomes 2 and 7 to 6.1% on chromosome 4. However, the retrotransposon 

contents greatly vary from 20.8% on chromosome 9 to 48.7% on chromosome 10 and 

suggesting that the difference of transposon fractions on 11 chromosomes was mainly 

caused by retrotransposons. 
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To gain insight into the dynamics of LTR retrotransposons, the integration times of 

2668 full length LTR retroelements were calculated (Supplementary Fig. 1). Most, 75% 

(2011/2668), of LTR retroelements integrated into common bean within the last 2 million 

years (MY), although, someancient elements that inserted into the genome more than 10 

million year ago (MYA) were also found. Notably, the insertion times of 20% (543/2668) 

of the elements were less than 0.5 MYA, this result likely suggests that these elements 

inserted recently and some of them may be still active in the genome.  

The insertion dynamics of retroelements on the11 chromosomes vary 

(Supplementary Fig. 2). More than 84.0% of the complete elements on chromosomes 10 

and 11 were inserted less than 2 MYA, however, only 57.0% of the elements on 

chromosome 9 were integrated within 2 MYA, which is lower than that (65.3% to 78.5%) 

on other 8 chromosomes.  

The 2668 complete LTR retrotransposons were grouped into 165 families including 

65 Ty1-copia, 78 Ty3-gypsy and 22 unclassified families according to the described criteria 

(Wicker et al. 2007). These 165 LTR retrotransposon families contain different numbers of 

complete retroelements. More than 78% (130/165) of LTR retrotransposon families have 

less than 10 complete retroelements, however, more than 50 complete elements were found 

for each of 11 families which contain totally 63% (1690/2668) of the complete elements in 

common bean genome. It is worth noting that some families show extremely high copy 

numbers. For example, a small retroement family named pvRetroS2 contains 446 complete 

elements. Interestingly, the size of pvRetroS2 is only 342 bp and with 122-bp LTR, thus 

this family may be considered as the terminal-repeat retrotransposons in miniature (TRIM) 

group (Witte et al. 2001). Other two Ty3-gypsy families, pvRetro31 and pvRetro48, have 

364 and 156 complete copies, respectively. To explore the amplification dynamics of 

different retrotransposon families, the insertion times of 11 families are compared 

(Supplementary Figure 3). The insertion times of pvRetroS2 elements range from 0 to more 

than 10 MYA and no obvious amplification peak was found, this suggests that the 

amplification events of pvRetroS2 retroelements occurred over a long period and these 

elements may have an ancient origin. However, the other 10 families show dramatic 

difference in amplification dynamics with pvRetroS2, most elements of these 10 families 

inserted in the common bean less than 2 MYA. Impressively, more than 44% (163/364) of 

pvRetro31 elements were inserted less than 0.5 MYA.  

Compared to other sequenced plants, the transposon fraction in common bean is 

larger than that in rice of 35% [3], but is less than 52% in pigeonpea (Varshney et al. 2001) 

and 59% in soybean (Schmutz et al. 2010), 62% in sorghum (Paterson et al. 2009) and 85% 

in maize (Schnable et al. 2009). Despite Ty3-gypsy elements are most abundant in these 

genomes, however, the ratios of Ty3-gypsy to Ty1-copia are different. The ratio is about 

2.5:1 ratio in common bean, it is similar to that of 2.4:1 ratio in soybean, but is lower than 

that in rice (2.8:1) and sorghum (3.71). LINEs contribute 1.0% of maize, rice and 

pigeonpea genomes, 0.25% of soybean and 0.04% of sorghum. However, nearly 3.0% of 

common bean genome is comprised of LINEs. The DNA transposon content is 5.5% in 

common bean, lower than found in rice (12.3%), sorghum (7.5%), maize (8.6%), and 

soybean (16.5%). Other than rice, CACTA elements are the most abundant among different 

superfamilies of DNA elements in the sequenced genomes.  

In summary, our results indicate that: 1) The common bean genome harbor 45.4% 

transposons which is similar to that (45%) in human; 2) The common bean genome likely 

Nature Genetics: doi:10.1038/ng.3008



	   	  47	  

have undergone massive amplification of LTR retrotransposons within 2 MYA; 3) 165 

LTR retrotransposon families were detected in common bean, the majority of these 

retrotransposons show low transposition activity.  

 

4 Resistance Gene Analysis 

 

The complete set of NL proteins was identified in a reiterative process. First, an HMM 

search of the predicted protein sequences of Phaseolus (Phaseolus vulgaris G19833; JGI, 

version 1.0) was done to identify sequences containing NB-ARC domain. The “trusted 

cutoff” of the NB-ARC domain HMM (PF00931) established by Pfam (Finn et al. 2010) 

was used as the threshold for detecting NBS domains. This analysis led to the identification 

of 398 predicted proteins corresponding to 342 annotated genes that encoded homologs of 

NL proteins. To identify homologs (such as diverse or not being identified as ORFs by the 

automated annotation) missed in the first step, all the NL predicted protein sequences 

identified in the first step were used as query to tBLASTn the entire genome. All resulting 

sequences in the BLAST output (E value < 1e-10) were manually inspected using the 

Artemis software tool (Rutherford et al. 2000). This procedure identified 34 additional NL 

genes. A new identifier was created for each missing genes (the last digits are 50). 

 

Domain predictions and manual annotation 

NL genes were assessed manually in Artemis software for the presence of TIR (PF01582), 

NB-ARC (PF00931) and LRR (PF00560, PF07723, PF07725, PF12799, PF13306, 

PF13516, PF13504 and PF13855) domains with HMMer using trusted cut-off defined in 

Pfam. Coiled Coil domains were identified using Coils (Lupas et al. 1991) with a 14 

amino-acid search window and a 2.9 score cut-off threshold. All this information was 

imported into the annotation platform Artemis for further manual analysis. We classified 

sequences with stop codons and/or frameshift as pseudogene. 

 

 

5 Comparison of Glycine and Phaseolus 

 

The Glycine max genome was used as a reference for identification of synteny and for 

estimates of gene divergence rates between Glycine and Phaseolus. Synteny blocks within 

and between Glycine and Phaseolus were identified by first making blast comparisons of 

peptide sequences, followed by filtering to top hits per chromosome pair, and then synteny 

prediction with DAGchainer (Haas et al. 2004). The Ks values for for gene pairs from 

synteny blocks were calculated, using in-frame CDS alignments, using the codeml program 

from the PAML package.  Mean values per synteny blocks were then taken; histograms of 

block-mean Ks values are shown in Supplementary Fig. 17. 

Syntenic blocks are generally highly collinear with Glycine, except in the 

pericentromeric regions – where synteny is extenuated due to low gene density. The order 

and structure of synteny blocks in Glycine versus Phaseolus confirm previous studies on 

synteny at genetic linkage map level (Galeano et al. 2011; Galeano et al 2009; McClean et 

al. 2011). For most Phaseolus genes, it is possible to find strongly homologous genes in at 

least 2 homoeologous chromosomes of Glycine (Main Figure 1), due to the soybean 

paleotetraploidization (Gill et al. 2009; Schmutz et al. 2010). 
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The average numbers of homologous genes per synteny block in the Glycine - 

Phaseolus and Phaseolus – Phaseolus comparisons are 33 and 14 genes, respectively. Of 

the Phaseolus genes, 91% (24,861) are contained in synteny blocks with Glycine (via the 

~20 Mya speciation), and 57% are in synteny blocks within the Phaseolus – Phaseolus 

comparison (via the ~58 Mya WGD). Similarly, 86% (46,853) of the total genes in the 

Glycine genome are in synteny blocks within the Glycine-Glycine comparison (via either 

the ~10 Mya or the ~58 Mya WGDs), and 96% (46,814) of those Glycine genes are in 

synteny blocks with Phaseolus (86% of the total genes in the Glycine genome).	  

Using the modal Ks values from the Ks plots, we determined the likely branch 

lengths (in Ks units) for the Glycine, Phaseolus, and "shared" portions of an idealized 

Glycine-Phaseolus gene tree (Supplementary Figure 17). There are three types of paths 

between leaves (genes) in this tree. Each may be represented as an equation, with the value 

of the equation being the modal Ks value for that path.  

As evident in Ks plots of synteny-block-median Ks values from gene pairs from 

syntenic regions (Supplementary Figure 17), Phaseolus has evolved faster than soybean 

since their common ancestor.  Assuming that Glycine and Phaseolus separated at 19.2 Mya 

(7), the Ks rate along the Phaseolus lineage is 0.1625/19.2 Mya = 8.4635 e-9, and the Ks 

rate along the Glycine lineage is 0.1125/19.2 Mya = 5.8594 e-9. The Phaseolus rate has 

therefore 1.44 times faster than the Glycine rate, since their common ancestor. Using the 

sharp Ks peak of 0.125 for the Glycine-Glycine WGD, the estimated time to that 

palaeotetraploidization would be (0.125/2)/5.859 e-9 = 10.6 Mya (Supplementary Figure 

17). 

Estimates of the whole-genome duplication (WGD) time range from 45.8 and 57.6 

Mya, depending on use of the faster Phaseolus Ks rate or the slower Glycine rate from the 

common ancestor of Glycine and Phaseolus to the legume WGD episode. This range 

contains the estimate from Lavin et al. (2005) of 56.5 Mya for the papilionoid radiation, 

and is similar to the estimates of 44-58 Mya in Schlueter et al. (2004) and Schmutz et al. 

(2010). 

 

Fractionation and locally duplicated gene clusters 

Gene loss and gene retention was identified taking the genes shared and non-shared 

between Phaseolus and Glycine. The list of the Phaseolus genes retained was used to do a 

BLASTp analysis against Glycine with an E-value ≤1e-10 whit a cutoff of 80% length and 

80% identity, to confirm whether they are lost or moved in the Glycine genome, and 

conversely for Glycine genes retained versus Phaseolus. 

To identify locally duplicated genes in Phaseolus and Glycine, a BLAST comparison 

between whole chromosomes in Phaseolus and whole chromosomes in Glycine was parsed, 

genes similar at E-value ≤1e-10 and clustered within sliding windows of 100 kb, were 

taken as locally duplicated genes. Over the total of genes in GmPv synteny blocks, 21% 

(5203/24861) of those genes are locally duplicated in the Phaseolus genome and 17% 

(7849/46814) are locally duplicated in the Glycine genome. Furthermore, 20% (5082) of 

the synteny genes are retained in Phaseolus with respect to Glycine, and 26% (12269) of 

the genes are retained in Glycine in contrast with Phaseolus.  

The Phaseolus synteny sites, which have copy in at least one homolog in soybean 

were analyzed per chromosome (Supplementary Table 11), resulting in 1798 Phaseolus 

synteny genes on average per chromosome, having chromosome 2 the highest number of 
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synteny sites with 2695, corresponding with the highest number of genes in the genome 

(3338) and with the major number of ortholog genes in Glycine. In the same way, 

chromosome 10 covers the fewest number of synteny sites (1020), corresponding with the 

slight number of genes in the genome (1659). Fractionation occurs almost in the same 

proportion in both copies of the Glycine genome, only 21 genes in Glycine have a third 

paralog gene (not included in the table). 

 

Structural organization  

The synteny blocks identified for Phaseolus – Glycine, Glycine – Glycine recent 

duplication and Phaseolus – Phaseolus were taken to make the reference rings in a Circos 

graph for visualization (Krzywinski et al. 2009) . Homologous genes in Phaseolus 

derivated after speciation are showed with connection lines. 

Based on Phaseolus data, gene density and repeats density were parsed as described 

below and recombination rate was parsed dividing the distance in cM between the markers 

in the genetic map, by the distance in Mb between the markers in the sequence map, taking 

the midpoint of the location of the markers in the sequence. Sliding windows of 1-Mb at 

200-kb intervals was taken and finally the windows with high discrepancies were 

eliminated. 

 

Polyploidy and fractionation 

One effect of polyploidy is fractionation, or loss of genetic material from one or both 

duplicated chromosomes. Using Phaseolus and Glycine, we analyzed fractionation 

from the shared WGD and the more recent WGD unique to Glycine. Fractionation 

occurred in similar proportions in both duplicated copies of the Glycine genome 

(Supplementary Fig. 17). However, based on combined phylogenetic and synteny 

analyses, we estimate that 9% of the apparent differential gene loss between Glycine 

and Phaseolus relative to their shared (pan-legume) duplication is due to expansion of 

gene clusters in one or the other of the genomes, rather than to selective loss of low-

copy (unclustered) genes.  

 Surprisingly, Phaseolus genes occur in locally duplicated clusters at a rate 25% 

higher than Glycine (17.3% in Glycine versus 21.5% in Phaseolus). Nevertheless, due 

to the recent WGD in Glycine, there are 60% more locally clustered genes in Glycine 

than Phaseolus, and the total number of paralogs in Glycine is much higher (16,919 in 

Glycine versus 3,197 in Phaseolus – or 31% versus 12% of total genes).  

 

 

	  
6 Historical Population Size Analysis 

 

Divergence of wild Mesoamerica and wild Andean pools 

A recent study based on five gene loci from a wide collection of wild common bean 

samples  (Bitocchi et al. 2012) pointed to Mesoamerica as the origin of all common bean 

varieties existing today. There are two major gene pools for the wild Phaseolus vulgaris, 

wild Mesoamerica and wild Andean, which underwent two independent domestications 

giving rise to all the major landraces. To investigate the details of the divergence and 

demographic history of the two wild pools, we make use of the whole genome pooled 
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sequencing data (Supplementary Table 12) consisting of 30 individuals within each pool, 

and make inferences about the demographic parameters by modeling the joint allele 

frequency spectrum (jAFS) using the package dadi version 1.6.3 (Gutenkunst et al. 2009). 

  To minimize bias in our demographic inference due to selection effects, we used 

neutral sites which are defined to be at least 5kb away from a gene (as annotated in the gff3 

file v1.0) and are not located in the repetitive regions (as defined by Repeatmasker (Smit et 

al. 1996)).  Due to the high selfing rate (~93%) in common bean (Ibarra-Perez et al. 1997), 

the number of different haplotypes for each pooled sample is close to 30. The data were 

thus down-sampled to 25 haplotypes for each pool via hypergeometric projection (i.e. 

random sampling 25 alleles without replacement), from which the joint allele frequency 

spectrum (jAFS) was derived.  As spurious singletons can arise due to sequencing and 

mapping errors, we excluded sites appearing as singletons in either of the two pools, 

resulting in a total of 662,835 polymorphic sites for the jAFS. 

We investigated and compared different demographic models based on the relative 

log-likelihoods of the models given the observed site frequency spectrum.  No population 

growth or decline was detected in the ancestral population before the two pools split.  

Based on this and other observations, we select a model (Main text Figure 1) with constant 

population size before the divergence of the two pools, and allow an epoch of constant 

population size for the wild Andean after it split from the wild Mesoamerican population, 

followed by an exponential growth phase till the present. By contrast, for the wild 

Mesoamerican population, a single epoch of exponential growth is adequate to describe its 

post-divergence history. Asymmetric migration rates are assumed in the model (Main text 

Figure 1). 

To make inference of model parameters, we ran dadi simulations with different 

starting points in an 8-dimensional parameter space, till convergence is achieved.  

Parameter values for the best fit model are listed in Supplementary Table 13, using a base 

substitution rate mu=8.46e-9/bp/yr (S. Cannon, unpublished) derived from silent sites. To 

estimate parameter uncertainties, we divided the genome into 10cM segments and 

performed 100 bootstraps on the chromosome segments.  Confidence intervals were 

derived based on simulation results for the bootstrapped samples. The results are shown in 

Supplementary Table 13. 

Comparisons between model prediction and observed data are shown in 

Supplementary Figs. 24 and 25.   Supplementary Fig. 24(a) shows the summary statistics of 

4 types of mutually exclusive single nucleotide variants, with 80% of all variants accounted 

for by the wild Mesoamerican pool (MW) alone.  By contrast, only 12.5% of the variants 

are observed exclusively in the wild Andean pool (AW).  This great disparity in genetic 

diversity between the two pools can be explained by the strong population bottleneck in the 

Andean gene pool and is consistent with the Mesoamerican origin of the common bean (see 

discussion later). The marginal allele frequency distribution for each of the two pools was 

shown in Supplementary Figs. 24(b) and Fig. 24(c), respectively, with good agreement 

between model prediction and data. 

The joint allele frequency spectra between the two pools are shown in 

Supplementary Figure 25.  The difference between the model and data is described by 

Anscombe residuals following dadi (Gutenkunst et al. 2009), and is shown in the lower 

panel.  As can be seen from the lower left panel of Supplementary Fig. 25, the model 

predicts fewer sites with low-frequency alleles in both pools, and an excess of sites with 
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large allele frequency differences between the two pools. These discrepancies may reflect a 

more complex history of the common bean than captured by the model presented here. For 

example, the migration rates are more likely to be time-varying than stationary, as the wild 

Andean population size had changed by a factor of  ~60 since its founding population.  

Another feature unaccounted for by our model is the possible genetic structure within the 

wild Mesoamerican gene pool (Bitocchi et al. 2012).  These and other details may be 

resolved with additional sequencing beyond the two pooled datasets. 

 

 

7 Common Bean Domestication Analysis	  

 

Development of common bean wild and landrace populations for pooled 

resequencing. 

Initially, 135 wild and 180 landrace genotypes, collected from the full geographic range of 

P. vulgaris, were scored with 22 indel markers (Mafi Modhaddam et al. 2013) distributed 

throughout the genome.  A Bayesian analysis was performed on the genotype data within 

each of the two groups using the STRUCTURE software (Pritchard et al. 2000a; Falush et 

al. 2003).  The linkage ancestry model with correlated allele frequencies was used to 

analyze the data with a haploid phase setting because common bean is self-fertilizing 

species.  Based on previous experience with a subset of this population (McClean et al. 

2012), a total of 20,000 iterations were performed following a burin length of 50,000.  In 

each case, the number of subpopulations ranged from k=2 to k=10 with 10 runs for each 

subpopulation size.  For the wild genotypes, k=2 best fit the data (Evanno et al. 2005).  

These subpopulations correspond geographically to the wild Mesoamerican and wild 

Andean gene pools.  Because many studies have described further substructure in common 

bean landraces, k=6 was chosen to further subdivide the landrace genotypes. At k=2, 

Mesoamerican and Andean landrace subpopulations were defined.  At k=3, the 

Mesoamerican landraces where split into Mexico and Central American subpopulations. At 

k=4 and k=5, the Mexico subpopulation was further split into three subpopulations.  The 

original Andean subpopulation at k=2 was retained from k=3-5, and at k=6, the southern 

and northern Andean landrace subpopulations were defined.  A genotype was assigned to 

subpopulation if its subpopulation parentage was >70%.  Based on this STRUCTURE 

analysis, we developed pooled populations for sequencing.  From each wild subpopulation, 

30 individuals were selected to create wild Mesoamerican and Andean populations for 

pooled sequencing.  All members of each subpopulation were from distinct geographic 

locations.  The average parentage for each genotype within each wild pool was 98%.  

Similarly, six landraces populations were developed for pooled sequencing (Supplementary 

Table 12).  Average parentage for members in these populations ranged from 90% to 96%.  

A graphical display of the population membership of the genotypes selected for pooled 

resequencing is found in Supplementary Fig. 18.   

 

DNA sequencing and SNP identification. 

DNA from each of these pooled populations was sequenced to ~4X depth using Illumina 

technology.  Each read was mapped to v1.0 version of the assembled reference genome 

using BWA (Li and Durbin 2009) with maximum number of hits set to 8.  All reads with a 

quality score less than 25 were discarded.  An mpileup file was created for each sequenced 
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pool using SAMtools (Li et al. 2009) with the –BA options.  VarScan 2.2.10 (Koboldt et al. 

2012) utilized the mpileup file for SNP calling with the following parameters: minimum 

coverage = 5; minimum consensus quality = 25, minimum variant frequency = 0.01.  To 

further reduce SNP call quality, 1) a SNP was discarded if the reference or variant allele 

was a ‘N’; 2) a SNP was discarded if more than one variant allele was observed; and 3) if 

the variant allele was a single nucleotide indel that position was discarded.   

Similar to previous work in chicken and pig (Rubin et al. 2010, 2012), SNP data 

from several pooled populations were combined.  Mesoamerican and Andean landrace 

population SNP diversity data were created by combining SNP data for each of the 

appropriate race pools.  By pooling the SNP data from these pools, we were able to create 

datasets representative of the diversity found within the early domestication populations 

from which landraces were subsequently derived.  Additionally, the data from the three 

Mexican subpopulations were combined to create a single race Mexican landrace pool.  

The minimum number of reads required for the reference or variant allele was three.  The 

number of SNPs ranged from 8,890,318 for the wild Mesoamerican pool to 1,397,405 for 

the Peru landrace pool (Supplementary Table 14).  Among all wild genotypes, 10,158,326 

SNPs were observed while the Mesoamerican landraces contained 9,661,807 SNPs, and all 

Andean landraces 3,154,648.  For all individual and combined pools, the proportion of 

SNPs found within genes was ~16% indicating that the genes were not disproportionately 

prone to more (or less) variation. 

 

Population genetics statistics. 

Several population genetics statistics were calculated for each 100kb/10kb and 10kb/2kb 

sliding window, and each gene within each DNA pool.  Any window or gene with >50% 

Ns were excluded, and all statistics were based on the number of non-N nucleotides in the 

window.  Nucleotide diversity (π; Tajima 1983), defined as the average number of 

nucleotide differences per site between any two DNA sequences chosen randomly from the 

sample population, was calculated using the following formula. 

 

π =    x!x!π!"

!

!!!

!

!!!

 

 

Here, xi and xj are the respective frequencies of the i
th

 and j
th

 sequences, πij is the number of 

nucleotide differences per nucleotide site between the i
th

 and j
th

 sequences and n is the 

number of sequences in the sample.  The Watterson estimate (θw; Watterson 1975), which is 

an estimation of population mutation rate, was calculated based on the number of 

segregating sites using the formula 

 

θw =
S

a!

 

 

where S is the number of segregating sites and 
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a! =
1

i

!!!

!!!

 

 

Tajima’s D was calculated  as described in Tajima (1989). FST, (Hudson et al 1992)   is a 

measure of population differentiation, estimated from the average pairwise differences 

between chromosomes in each analysis panel compared to the combined samples as 

described in The International HapMap Consortium (2005). 
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where xij is the estimated frequency of the minor allele at SNP i in population  j, nij is the 

number of genotyped chromosomes at that position, and nj is the number of chromosomes 

analyzed in that population.  The lack of the j subscript in the denominator indicates that 

statistics ni and xi  are calculated across the combined data sets.   

The relative diversity level among two pooled samples was compared by a 

nucleotide diversity (π) ratio between the two pools for each window or gene.  For 

example, the ratio πMA-wild/ πMA-landrace measures the relative difference in diversity between 

the Mesoamerican wild gene pool and the Mesoamerican landrace gene pool.  Similarly, 

FST (TIHC 2005) was calculated for each window and gene to compare the differentiation 

between any two pools. 

 

Identifying selected windows and genes and defining sweep windows. 

A number of statistical approaches are currently favored when evaluating genome-wide 

resequencing data to discover genomic regions or genes that are putatively undergoing 

selection.  Divergence approaches use a comparison of nucleotide diversity between an 

ancestral state and a derived state.  These primarily include diversity ratios (Huang et al. 

2012; Xu et al. 2012) or reduced heterozygosity (Rubin et al. 2010) among populations.  

Other studies have used population differentiation methods, such as FST to identify selected 

regions (Lam et al. 2010; Turner et al. 2010).  Rather than relying on a single statistic, we 

adopted a strict composite scoring system that combined diversity and differentiation data 

to identify putative genomic regions or genes under selection.  This is similar to the 

approach applied to silk moth where a reduction in nucleotide diversity and Tajima’s D 

was applied to discover domestication genes (Xia et al. 2009).  Here, a 10kb/2kb window 

or a gene was considered a selection window or domestication candidate gene if it was in 

the upper 90% of a bootstrap simulation population (n=1000) for the πwild/πlandrace ratio and 

FST statistics.  The cutoff values for various comparisons can be found in Supplementary 

Table 18.  All 10kb/2kb selection windows within 40kb of each other were merged in a 

“sweep window”.  The number of domestication candidates and total genes were calculated 

for sweep window. 

 

Annotating common bean seed weight/size candidates. 
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We identified candidate common bean seed size genes by a blastp analysis using 

Arabidopsis seed size/weight genes (Van Daele et al. 2012) as a query against a database of 

the common bean protein sequences.  Any common bean gene model hit with 50% identity 

and 80% coverage that matched 70% of the query length inherited the Arabidopsis seed 

weight gene name.  A total of 141 common bean gene models inherited the seed weight 

gene name (Supplementary Table 19).  

 

Association Mapping 

As part of the USDA Common Bean Coordinated Agricultural Project, a collection of 280 

diverse modern common bean varieties from the Middle American gene pool were grown 

in replicated field trials by the North Dakota State University, Michigan State University, 

University of Nebraska, and Colorado State University bean breeding programs.  Each 

genotype in the trial was genotyped with 34,799 SNPs.  Of these, 10,318 SNPs were from 

the Illumina Infinium platform used to develop the SNP-based genetic map (see Methods 

Summary), and 24,481 SNPs were obtained by genotype-by-sequencing (GBS) 

technology (Elshire et al. 2011).  The GBS data was generated by the Institute for 

Genomic Diversity, Cornell University.  Missing data were imputed in fastPHASE 1.3 

(Scheet and Stephens 2006).  Adjusted means for seed weight data across all locations 

were calculated using the MIXED procedure in SAS9.3 (SAS 2002) where the genotype 

was the fixed effect and all other factors were considered as random.  A mixed linear 

model (MLM) controlling for population relatedness was used to conduct the genome 

wide association study (GWAS). Multiple statistical models were tested, and a mixed 

model (Yu et al. 2005) that controlled for genotype relatedness and population structure 

was chosen.  An identity-by- state (IBS) kinship matrix [EMMA, (Kang et al. 2008)] was 

used to control for population relatedness, while two principal components were used to 

control for population structure. The kinship matrix was calculated using marker loci with 

pairwise r
2
 > 0.5. Linkage disequilibrium (r

2
) between all marker loci was calculated in 

Plink (Purcell et al. 2007) using loci with a minor allele frequency (MAF) ≥ 0.05. The 

EMMA kinship matrix and the GWAS were calculated in the GAPIT package in the R 

programming language (Lipka et al. 2012), without P3D and compression. 
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