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The serum metabolome contains a plethora of biomarkers and causative agents of
various diseases, some of which are endogenously produced and some that have been
taken up from the environment'. The origins of specific compounds are known,
including metabolites that are highly heritable??, or those that are influenced by the
gut microbiome*, by lifestyle choices such as smoking’, or by diet®. However, the key
determinants of most metabolites are still poorly understood. Here we measured the
levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped
healthy human cohort of 491 individuals. We applied machine-learning algorithms to
predict metabolite levels in held-out individuals on the basis of host genetics, gut
microbiome, clinical parameters, diet, lifestyle and anthropometric measurements,
and obtained statistically significant predictions for more than 76% of the profiled
metabolites. Diet and microbiome had the strongest predictive power, and each
explained hundreds of metabolites—in some cases, explaining more than 50% of the
observed variance. We further validated microbiome-related predictions by showing
ahighreplication rate in two geographically independent cohorts’® that were not
available to us when we trained the algorithms. We used feature attribution analysis®
toreveal specific dietary and bacterial interactions. We further demonstrate that
some of these interactions might be causal, as some metabolites that we predicted to
be positively associated with bread were found to increase after arandomized clinical
trial of bread intervention. Overall, our results reveal potential determinants of more
than 800 metabolites, paving the way towards a mechanistic understanding of
alterations in metabolites under different conditions and to designing interventions
for manipulating the levels of circulating metabolites.

M Check for updates

We used mass spectrometry to profile serum samples from 491 healthy
individuals forwhomwe had previously collected extensive clinical, life-
style, dietary, genetics and gut microbiome data' (Methods, Extended
DataTablel). Our untargeted metabolomics analysis measured the lev-
elsof1,251 metabolites, covering a wide range of biochemicals including
lipids, amino acids, xenobiotics, carbohydrates, peptides and nucleo-
tides, and approximately 30% unidentified compounds (Extended
DataFig.1a, Methods, Supplementary Table1). To classify unidentified
metabolites and aid in biomarker discovery, we designed models that
accurately predict the candidate biological pathway of the metabo-
lites (Extended Data Fig. 2, Supplementary Note 1, Supplementary

Table 2-5). Most metabolites we measured were prevalent across the
cohort, including 498 metabolites that were detected inall samples and
1,104 metabolites that were detected in more than 50% of the samples
(Extended Data Fig. 1b). After quality control (Methods), 475 individu-
als with high-quality data were included in the subsequent analyses.
To validate the accuracy of our metabolomic measurements, we
compared the levels of creatinine and cholesterol to those obtained
using standardized laboratory tests (Methods) that were performed
independently on asecond blood sample taken from the participants
on the same visit, and found good agreement (creatinine, Pearson’s
R=0.87; cholesterol, R=0.79; Extended Data Fig. 1c, d). We further
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Fig.1|Diet, gut microbiome, genetics and clinical data predict thelevels of
mostserum metabolites. This dataset arises from fivefold cross-validation
predictions of metabolite levels based on separate models for each feature
group.a, Boxand swarm plots (centre, median; box, interquartile range (IQR);
whiskers, 1.5 x IQR) showing the explained variance (EV; R?) of the top 50
significantly predicted metabolites (when available) of each feature group
(group names arelisted in c). b, Heat map with colour gradient from left to right
corresponding tothe 95% confidence interval for the EV, for each metabolite by
every feature group. Only metabolites with significant predictions (FDR<10%)
areshown, and the number of metabolites per group isshowninbrackets at the

found that, for 20 participants for which samples were taken one week
apart, the two profiles were significantly correlated (Spearman p=0.68
+0.06, median * s.d.); this was in contrast to samples from different
participants, which showed no correlation (Spearman p=0.05+0.12;
Methods, Extended DataFig. 1e). These results validate the reproduc-
ibility and accuracy of our data, are consistent with previous work
showing long-term stability in the human metabolome”, and confirm
that this metabolic profile is a unique, person-specific signature.

Robust predictions of serum metabolites

We trained gradient-boosted decision trees' (GBDT) algorithms that
predict metabolite levels in held-out individuals (Methods, Supple-
mentary Note 2). GBDT systematically outperformed linear models
(Lasso; Methods), with a median and maximum explained variance
gain of 8.3% and 43.2%, respectively, for prediction with diet data, and
4.6% and 14.9%, respectively, for microbiome data (Extended Data
Fig. 3). Notably, our predictions for more than 76% of the metabo-
lite groups tested were statistically significant with at least one fea-
ture group after multiple hypothesis correction (Methods). In total,
335 metabolites were significantly explained by diet-related features,
and 182 by the microbiome (Fig. 1a, b). Our models explained more
than 10% of the variance for 543 metabolite groups (median 10.2%;
range 0-73.5%; Fig. 1d, Supplementary Table 6), and more than 50%
of the variance for 17 metabolites.

We next checked, for each feature group, whether any type of metab-
olite was enriched with superior predictions (Fig. 1c, Methods). We
found that clinical data better predicted metabolites that were classi-
fied as blood lipids, amino acids and peptides, as opposed to xenobi-
otics and unidentified compounds, on which it performed worse than
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top. Pvalues and confidenceintervals were estimated using bootstrapping
(Methods). ¢, Enrichment of metabolite typesinthe predictions by each
feature group (two-sided Mann-Whitney U-test; Methods). Only significant
enrichments are shown (P<0.05 after 10% FDR correction). Exact Pvalues are
writtenineachcell.d, Histogram of the number of metabolites with each value
of EV obtained using the full model. Theinset shows the EV range of 0.3-0.8.

e, Thefraction of total EV of each feature group compared to the total EV ofa
modelwithall feature groups excluding genetics (full model). The total EVis
thesumofthe EV of the first 15metabolite principal components weighted by
the EV of each principal component (Methods).

on other metabolites. By contrast, microbiome data better explained
levels of xenobiotics (P<107*) and unidentified compounds (P<0.001),
highlighting its potential for explaining the origins of the large number
of unidentified compounds. We further found that predictions based
onclinical data were significantly correlated with those based on diet
(Spearman’s p=0.30,P<10%°), and had aweaker correlation with pre-
dictions based on the microbiome (R=0.21, P<10™). Predictions based
on microbiome data had the highest correlation with those based on
diet (R=0.44, P<107%). Finally, we found that metabolites associated
withgenetics could not be predicted by other feature groups, and there
was a weak correlation between the prediction accuracy of a model
containingall other features (‘full model’, Methods) and the heritability
of metabolites (R=0.09, P<0.005). Altogether, each feature group was
particularly informative with respect to a different set of metabolites
(Extended Data Figs. 4, 5a).

Toestimate therelative predictive power of each feature group across
allmetabolites, we built models to predict the principal metabolomic
components (Extended Data Fig. 5b). Diet had the largest predictive
power, inferring 48.9% of the variance explained by a model contain-
ing all features (Methods), whereas lifestyle factors explained only
1.9% (Fig. 1e). Notably, the predictive power of microbiome data was
30.8%that of the fullmodel. As alarge portion of these predictions did
not overlap with the predictions of other data, these results highlight
the importance of microbiome data in predicting and potentially
determining serum metabolite levels.

Replication in external cohorts

Totest the robustness and reproducibility of the models based on gut
microbiome data, we validated their accuracy in two geographically
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Fig.2|Validation of microbiome-based predictions of metabolitesintwo
independent cohorts. a, ¢, R? of predicted metabolitesin our cohort plotted
againsttherate of replicated associationsin the replication cohorts (TwinsUK,
a; IMIDIRECT, ¢), computed as the fraction of significant replications out of all
predictions withequal or higher predicted R?in our cohort (left y axis; blue;
FDR <10%), and the cumulative number of metabolites (right y axis; red).

b, d, Spearman correlation between true and predicted levels of metabolitesin
our cohort plotted against the same correlations in the replication cohorts
(TwinsUK, b; IMIDIRECT, d). Metabolites are coloured by the replication
success (replicated, blue (n=95 (b), n=28 (d)); notreplicated, red (n=12 (b),
n=22(d)); FDR<10%).

independent cohorts (Methods): 1,004 samples from healthy older
participants from the UK (from the TwinsUK Registry’), and 245 samples
fromNorthern European individuals with type 2 diabetes (from the IMI
DIRECT cohort®; Extended Data Table1). Validation data were not avail-
ableto uswhile developing the prediction models, which were trained
only onsamples fromtheinitial Israeli cohort. We obtained predictions
for metabolites that had statistically significant predictions (false dis-
covery rate (FDR) <0.1) with R*>5% in the Israeli cohort (107 metabolites
in TwinsUK, 50 in IMI DIRECT), using only microbiome data from the
validation cohorts. Notably, 95 out 0f107 and 28 out of 50 predictions
werereplicated (FDR <0.1) in the healthy TwinsUK cohort and in the IMI
DIRECT cohort of patients with type 2 diabetes, respectively, including
all top 60 predictions in the TwinsUK cohort (Fig. 2, Supplementary
Tables 7, 8). We note that most of the replicated associations are accom-
panied by areduction in effect size; this is expected, particularly as a
result of study-specific biases. These results indicate that our models
reveal robust associations between serum metabolites and the gut
microbiome, despite differences between both the populations and
the protocols and staff used to assemble these cohorts. Finally, most
significant associations between metabolite levels and body mass
index were also replicated in the TwinsUK cohort™ with high accuracy
(R=0.85,P<107°; Extended Data Fig. 5¢, Supplementary Table 9).

Diet and microbiome models are independent

Because the diet modulates the gut microbiome', we compared the
explained variance of metabolites obtained by models based oneither.
Although some metabolites—mostly related to coffee consumption—
were significantly predicted by both diet and microbiome data, many

were not (Supplementary Table 10). Furthermore, adding microbiome
datato a diet-based prediction model improved its accuracy in 66%
of cases (median and maximum gain of 2.1% and 62.6% respectively;
Supplementary Table11), whereas adding permuted datareduced the
performancein 82% of cases (median and maximum gain of -1.7% and
7.4% respectively; Extended Data Fig. 5d-f). Finally, 34 metabolites
were significantly predicted only by microbiome data. Altogether,
these results suggest that the gut microbiome may be modulating
the production of many circulating metabolites, independent of diet.

We next used feature attribution analysis (SHAP’; Methods) to inter-
pret these models, infer the drivers of each prediction, and examine
interactions between different predictive factors (Extended DataFig. 6,
Supplementary Note 3). We found dozens of diet and bacterial fea-
tures that were strongly predictive of blood metabolites in our models
(Fig. 3a, Extended Data Fig. 7). Notably, the reported consumption of
coffee (bothlong-term and short-term; Methods) was astronger predic-
torthanother dietary features for the levels of alarge number of xeno-
biotics and unidentified compounds. These included metabolites from
the xanthine metabolism pathway such as paraxanthine (diet prediction
Pearson R = 0.64, P<107°) and caffeine (R=0.68, P<107%°), as previ-
ously reported®™. These metabolites were also significantly predicted
using microbiome data, with a Clostridiaceae species being the main
predictor. Another strong feature was long-term fish consumption,
which accurately predicted the levels of several blood lipids includ-
ing 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (diet R=0.71,
P<107%), auraemic toxin that accumulates in the serum of patients
with chronic kidney disease'® and has also been suggested to prevent
and reverses steatosis”. X-16124 (microbiome R=0.77, P<107°) and
X-11850 (R=0.7, P<107?°) are two unidentified metabolites that were
accurately predicted by microbiome data, and specifically by bacteria
from the Eggerthellaceae family and Clostridium genus, respectively.
Microbiome datawas also highly predictive of the uraemic toxins phe-
nylacetylglutamine (R = 0.63, P <107?°) and indoxyl sulfate (R = 0.37,
P <107%°), which have been previously reported in association with
cardiovascular disease'® and chronic kidney disease'’; these predictions
were driven by a species from the Lachnospiraceae family.

To assess whether a few important taxa are sufficient for accurate
prediction, we defined the ‘main predictor’ of each metabolite as the
taxon with the maximal mean absolute SHAP value. Nineteen bacterial
taxa were the main predictors for the top 50 microbiome-predicted
metabolites (prediction R > 0.4; Supplementary Table 12). One
Clostridiceae species was the main predictor of 22 of these, which
are also strongly associated with coffee consumption in diet-based
models. Clostridium sp. CAG:138 was the main predictor of five
metabolites, including phenylacetylcarnitine (R = 0.47, P<10%°) and
p-cresol-glucuronide (R = 0.64, P <107%°) as previously reported®.
Other taxa, however, were the main predictors of only one or two top
metabolites, demonstrating that many different bacteriaare required
to accurately predict the levels of different metabolites. Among the
main bacterial predictors of the top 100 metabolites, 89 belonged to
Firmicutes, highlighting the strong predictive power of this phylum.
Itisnotable that, although Bacteroidetes is the second most abundant
phyluminour cohort (Extended Data Fig. 8a), none of its species were
among these main predictors.

To check whether main predictors are sufficient for accurate
prediction, for each metabolite we compared the accuracy of a full
microbiome model to the accuracy of amodel based only on its main
predictor (Fig.3b). We found thata model based on the main predictor
could explain only amedian of 36% of the explained variance of the full
microbiome-based model. Cinnamoylglycine, for example, is signifi-
cantly predicted using microbiome data (R=0.49, P<1072°); however,
amodel based onits main predictor fails to provide a significant pre-
diction. By contrast, some metabolites are exclusively predicted by a
single bacterial species, such as the unidentified metabolite X-16124,
for whichamodel based on an Eggerthellaceae species explained 93%
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Fig.3|Dietand gut microbiome dataindependently explainawide range of
biochemicals. a, Subset of aheat map showing the directional mean absolute
SHAP values (Methods) of various features (x axis) computed from fivefold
cross-validation models that predict metabolite levels (y axis) using two
separatemodels, onebased ondiet and another on gut microbiome data.
Positive (negative) SHAP valuesindicate that higher (lower) feature valueslead,
onaverage, to higher predicted values. Shown are the top 100 predicted
metabolites using dietand gut microbiome, and the top 30 features by

of the variance of a full microbiome-based model. Indeed, in 95% of
theindividualsin whichthis bacteriawas detectable, X-16124 was also
detectableinserum, compared to only 23% of individuals for which this
bacteria was not detected (Mann-Whitney U-test, P<107?°; Extended
DataFig. 8b).

New genetic-metabolomics associations

Several genome-wide association studies have found that human genet-
icsinfluences serum metabolites****, The median serum metabolite
ACE-heritability, using the traditional twin model, was estimated to
be 25%, whereas the median narrow-sense heritability, based only on
discovered genetic loci, was estimated to be 2.1%. Because we meas-
ured several molecules that were not yetidentified in these studies, we
searched for associations between levels of these molecules and single
nucleotide polymorphisms (SNPs; Supplementary Note 4). Notably,
we found 68 statistically significant associations (P <5 x 10™ for all),
of which—to the best of our knowledge (Methods)—22 have not been
previously reported (Supplementary Table 13). These include ethyl-
malonate, abranched fatty acid that has beenreported inassociation
with anorexia nervosa® and that was associated with rs2066938, which
explained 50% of its variance. This SNPis a variant of the 3’-untranslated
region of the gene UNCI119B, which we also found to be associated with
butyrylcarnitine, in line with previous reports® Other examples include
2’-0-methyluridine and 2’-O-methylcytidine—both of which are nucleo-
tidesinvolved in pyrimidine metabolism—which we found to associate
with amissense variantin the PHYHDI gene and have been previously
reported to be negatively correlated with PHYHDI expression®. We fur-
ther found that X-21441-which we predicted as an androgenic steroid
(Supplementary Note 1)—was associated with rs8187710, a missense
variantinthe ABCC2gene, explaining 11% of its variance (Extended Data
Fig.9).rs8187710 was previously demonstrated to be associated with
non-alcoholic fatty liver disease”. Notably, X-21441was also negatively
correlated with age in our cohort (R=-0.3, P<107), independent of
the genotype (Extended Data Fig. 9¢). This suggests that X-21441 might
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maximum mean absolute SHAP value across all metabolites. See extended
heat map in Extended DataFig.7g.b, The EV of every metabolite from
microbiome-based prediction models (xaxis) compared to using only the top
predictor of that metabolite, selected as the feature with the largest mean
absolute SHAP value (yaxis). Dashed red lines mark different y:xratios.

PAGIn, phenylacetylglutamine; hydroxy-CMPF* hydroxy-3-carboxy-4-methyl-
S-propyl-2-furanpropanoicacid.

be anindependent metabolic risk factor that mediates the genetic
susceptibility to non-alcoholic fatty liver disease and age, aknown risk
factor for the disease?.

Proof-of-concept clinical validation

As a proof-of-concept analysis, we examined whether some of the fea-
ture-metabolite interactions we uncovered may be causal. We used
our diet-based models to select the top 5% of metabolites that were
either positively or negatively associated with normal consumption
of white or whole wheat bread (Fig. 4a, b, Methods). We then analysed
the serum metabolome fromthe beginning and the end of a previously
conducted week-long intervention®, in which two randomized groups
oftenhealthyindividualsincreased their consumption of either who-
legrain sourdough bread or industrial white bread (Fig. 4a, Methods).
Notably, we found that metabolites that were positively associated
with the consumption of whole wheat bread in our discovery cohort
increased significantly more after the sourdough bread intervention
(median fold change 1.62) than metabolites that were negatively associ-
ated withit (median fold change 0.66; Mann-Whitney U-test, P<107;
Fig. 4c). Moreover, we found no statistically significant differences
when comparing the mean fold change of these metabolites under the
white bread intervention (P> 0.1; Fig. 4¢).

Some metabolites for which levels increased after the sourdough
breadintervention were previously linked to the consumption of who-
legrain wheat flour. A notable example is betaine, an amino acid that
has been shown to improve vascular risk factors®*® and is also highly
abundantinwheatbran and germ*. We found that the mean fold change
in betaine levels in the sourdough bread group was 6.16, as opposed
to 0.82in the white bread group (Mann-Whitney U-test, P < 0.004;
Fig.4d). Another exampleis cytosine, for which the mean fold change
was far greater in the sourdough bread group (78.5) compared to the
white bread group (0.53) (P<0.002; Fig. 4e) To the best of our knowl-
edge, unlike betaine, cytosine levels have not previously been linked
to bread consumption.
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Fig.4|Increasesinlevels of metabolites explained by bread after an
intervention ofincreased bread consumption. a, Schematic of the
measurement of metabolites and of white bread and whole wheat bread
consumption. The prediction models were constructed using samples from
distinct participants who consumed and recorded their normal diet for one
week!® (n=458 participants). We analysed samples from the first week of a
randomized controlled trial®®,inwhich 10 participants increased their
consumption of wholegrain sourdough bread and 10 othersincreased their
consumption of industrial white bread. b, Histogram of directional mean
absolute SHAP values of whole wheat bread consumption for metabolites
computed on the basis of held-out samples from our cohort. The top 5%

Asimilar analysis of metabolites that were associated with white bread
consumptioninour cohortdid not find significant changesin their levels
afterintervention, potentially due to high baseline white wheat consump-
tioninthe typical diet of the study population. Overall, these results
suggest that some of the associations that we found here might be causal.

Discussion

Although our cohort is not the largest in which serum metabolomics
were measured, it is—to our knowledge—the only one in which these
measurements were coupled with such a diverse array of potential
determinants. Still, it has several limitations. First, although drug
intake has been shown to have a large effect on the serum metabo-
lome profile®?, our cohort was healthy and had limited drug intake.
We are therefore likely to be underestimating the potential effect of
drugintake onblood metabolites. Second, replication of results is still
required for predictions by most factors other than the microbiome.
Third, owing to the lack of reliable annotations, we have not associ-
ated metabolites with specific enzymes; this could be addressed in
subsequent experimental studies by focusing on strongly predictive
taxa. Finally, because this study is mainly based on observational data,
interpretation of interactions should be made with caution, and the
associations cannot be considered as causal.

Takentogether, our results reveal acomprehensive list of potential
determinants for circulating blood metabolites. Many of the asso-
ciations and interactions detected here replicate previously reported
findings, supporting the validity of our results. The majority of them,
however, are new, making them a useful resource for future studies,

Mean fold change in metabolite after bread consumption

(n=59;blue) positively associated metabolites and the top 5% (n=59; red)
negatively associated metabolites are used for further analysis. ¢, Box plots
(centre, median; box, IQR; whiskers, 1.5 x IQR) showing the mean fold change in
thetop 5% positively (blue) and negatively (red) associated metabolites,
separated by intervention group. They show asignificantly higher mean fold
change for the top 5% positively associated metabolites compared with the top
5% negatively associated metabolites under the sourdough bread intervention
(two-sided Mann-Whitney U-test, P=5x10™").d, e, The fold changes of
metabolite levels for both betaine (d; two-sided Mann-Whitney U-test,
P=0.0036) and cytosine (e; P= 0.0014) were higher in the sourdough bread
group compared to the white bread group.

either forimproving molecular understanding of health and disease,
or for forming the basis of interventional studies aimed at altering the
levels of blood metabolites.
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Methods

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Description of cohorts

We analysed banked samples from two previously collected cohorts
for a total of 491 Israeli individuals. Studies were approved by Tel Aviv
Sourasky Medical Center Institutional Review Board (IRB), approval
numbers TLV-0658-12, TLV-0050-13 and TLV-0522-10; Kfar Shaul Hospi-
tal IRB, approval number 0-73. All participants signed written informed
consent forms. Full study designs, including inclusion and exclusion
criteriaare described elsewhere!®?. In brief, participants in both stud-
ies were healthy individuals aged between 18 and 70. The participants
answered detailed medical, lifestyle and nutritional questionnaires,
provided stool and serum samples for metagenomic sequencing and
metabolomics, were genotyped, underwent a comprehensive blood
test,and foraperiod of atleast one week, recorded all of their daily activi-
ties and nutritional intake in real-time using their smartphones with a
specialized app provided to them®. Bothblood and stool samples were
nottaken under strict fasting conditions. Sixteen samples of participants
for whichmicrobiome datawas notavailable to us were excluded from
all analyses. Meetings in which participants provided blood samples
took place in two different centres, Weizmann (45% of participants)
and Tel-Aviv (55% of participants). All meetings in Weizmann took place
within the first half of the day, whereas most meetings in Tel-Aviv took
place during the second half of the day (82% of the participants).

10,29
’

Feature groups

The ‘diet’ feature group includes both answers for a detailed food
frequency questionnaire (FFQ) aimed at capturing long term dietary
habits, and the daily mean consumption of different food types, com-
puted over a week based on real-time logging. In both cases we kept
onlyitemsthat were reported to be consumed at least once by at least
1% of our participants, resulting in 670 different food types from log-
ging, and 141 different items from the FFQ.

The ‘macronutrients’ feature group includes the daily mean con-
sumption of macronutrients (lipids, proteins, carbohydrates), calories
and water, calculated from real-time logging.

The ‘anthropometrics’ feature group includes weight, BMI, waist
and hips circumference, and waist-to-hips ratio.

The ‘cardiometabolic’ feature group includes systolic and diastolic
blood pressure, heart rate in beats per minute and a glycemic status
as previously described®.

The ‘drugs’ feature group includes 30 binary features representing
theintake of 20 common medications asreported in questionnaires, in
additionto 10 medication groups as previously described®. We included
only drugs reported to be used by at least 1% of our participants.

The‘clinical data’ feature group includes the age and sex of the par-
ticipants, and the following feature groups described above: anthro-
pometrics, cardiometabolic and drugs.

Thelifestyle’ feature group includes smoking status (current, past),
stress levels obtained from questionnaires, and the daily mean sleep-
ing time, exercise time and midday sleep time based on real time
logging.

The ‘time of day’ feature is a binary feature indicating whether the
sample was taken during the first half of the day.

The ‘seasonal effects’ feature is the month in which the sample was
taken. In some analyses we also grouped months by season (Winter:
December-February; Spring: March-May; Summer: June-August;
Autumn: September-November).

The ‘microbiome’ feature group includes bacterial relative abundance
calculated both by considering coverage (see the following section
‘Microbiome preprocessing’), and by MetaPhlAn23*, as well as the first

10 principal components computed over the log transformed relative
abundance of a bacterial gene catalogue® as previously described®>¢,
Preprocessing steps are described in the following section.

We further defined a full model that included all of the above.

Metabolomics profiling and preprocessing

Metabolite concentrations were measured in serum samples by Metab-
olon, by using an untargeted liquid chromatography coupled to mass
spectrometry (LC-MS) platform as previously described®*>%, A total
of 540 serum samples were profiled, 19 of which were control samples
(technical replicate) pooled from several individuals. The other 521
serum samples belonged to 491 participants.

Weremoved from further analysis 27 metabolites with fewer than 10
measurements across our cohort, and 54 metabolites that we found to
have significantly different distributions in samples collected in two
different recruitment centres (Mann-Whitney U-test, P < 0.05/1,251;
Bonferroni corrected; Supplementary Table 14). For the remaining
1,170 metabolites, we performed robust standardization (subtract-
ing the median and dividing by the standard deviation) over the log
(base 10)-transformed levels, followed by clipping outlier samples
which were further than 5 standard deviations. We next used two
separate normalization schemes: one for single metabolites,
whichwe subsequently used inthe feature attribution analysis, and the
second for metabolite groups, which we used for global and enrich-
ment analyses.

For single metabolites, we regressed metabolite levels against stor-
age times (only for metabolites present in at least 50 samples), and
finally, imputed missing values as the minimum value per metabolite.
For the second scheme, metabolites were grouped by correlation with
aSpearman’s p threshold of 0.85. This is done in order to handle pos-
sible bias resulting from uncertainty of metabolite assignments and a
highrate of highly correlated mass spectrometry peaks, and resultedin
1,067 metabolite groups, 982 of which are singletons. The value of the
metabolite group was set to the mean. The category of each metabo-
lite group was assigned based on majority vote, where unidentified
compounds were excluded from the vote unless all metabolites in the
group were unidentified.

Microbiome preprocessing

Sample collection, DNA extraction, and sequencing of the samplesin
this study was previously described'®**, In brief, we used only samples
thatwere collected using swabs, filtered metagenomic reads containing
lllumina adapters, filtered low-quality reads and trimmed low-quality
read edges. We detected host DNA by mapping with GEM* to the human
genome (hgl9) withinclusive parameters, and removed human reads.
We subsampled all samples to have 10 million reads.

Bacterial relative abundance estimation was performed by map-
ping bacterial reads to species-level genome bins (SGB) representative
genomes*® (Supplementary Table 15). We selected all SGB representa-
tives from groups with at least five genomes, and for these representa-
tives genomes kept only unique regions as areference dataset. Mapping
was performed using Bowtie2* and abundance was estimated by cal-
culating the mean coverage of unique genomic regions across the 50%
most densely covered areas as previously described®**2. Feature names
include the lowest taxonomy level identified.

Comparing metabolomics to laboratory tests

We compared the levels of both creatinine and cholesterol, which
we previously obtained via standard laboratory tests' with their
metabolomic levels. Because the tests were performed by two dif-
ferent laboratories, we centred the tests by reducing from the value
of each sample the mean of all tests taken in the laboratory in which
itwas performed. We then performed a standardization of the result-
ing measurements. The metabolomic profiling and the laboratory
tests were performed on two samples taken at the same blood draw.
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Correlation of metabolic profiles within and between
individuals

We compared the Spearman’s correlations between standardized
metabolomic profiles of the same participant taken one week apart
(n=20) to correlations between standardized metabolomic profiles
of different individuals (n = 475). Each pair of samples taken from the
same participant was runin the same metabolomicbatch. Inthe group
of differentindividuals, only pairs of individuals from the same batch
wereincluded (resultingin a total of 3,835 such pairs), and were further
stratified by sex.

Predictive models of metabolite groups

We used gradient boosting decision trees from the Light GBM (v.2.1.2)
package', in order to predict the levels 0f 1,067 metabolite groups on
thebasis of 7 feature groups in held-out individuals. In order to estimate
the EV of each metabolite group we ran afivefold cross-validation (CV)
model using each feature group as input, and evaluated the results
using the coefficient of determination (R?). For all prediction results
except those based on human genetics (Methods) we computed 95%
confidence intervals and P values via1,000 iterations of bootstrap-
ping®. In each bootstrap iteration, we performed a random fivefold
cross validation, in which in each fold we randomly sampled (with
replacement) a group of participants from the training set to have
the same size as the current training set. We next used this set to train
our model and evaluated the performance of the model on the set of
participantsin the remaining fold. Finally, we computed the coefficient
of determination between the measured values of the metabolite and
the concatenation of the CV’s predicted values as obtained from the
bootstrappingiteration. We applied the Fisher transformation to the
estimations of the explained variance we got from bootstrapping in
order toinduce normality**, and then computed astandard error, and
estimated the Pvalues via the normal cumulative distribution function
using the Wald test*, such that our null hypothesisis that the explained
variance should distribute normally with zero mean. Confidence inter-
vals were computed empirically from the bootstrapping results. We
corrected Pvalues of predictions for multiple hypotheses using the
Benjamini-Hochberg procedure over all feature groups (10% FDR).
In all CV and bootstrapping runs we used a fixed and predetermined
set of hyperparameters: for the microbiome and diet feature groups:
learning_rate = 0.005, max_depth = default, feature_fraction=0.2,
num_leaves = default, min_data_in_leaf = 15, metric = L2, early_stop-
ping_rounds=None, n_estimators=2000, bagging_fraction=0.8, bag-
ging freq=1;for other feature groups: learning_rate=0.01, max_depth
=5, feature_fraction=0.8, num_leaves =25, min_data_in_leaf=15, metric
=12, early_stopping_rounds=None, n_estimators=200, bagging frac-
tion=0.9, bagging_freq=35.

Human genetics based prediction models

To obtain the predictions based on human genetics, we used a similar
fivefold CVscheme,inwhichinevery fold we calculated the associations
between SNPs and metabolite levels within the training fold, and then
trained amodel on only the top 10 SNPs that reached genome-wide
significance (Bonferroni-adjusted). For folds in which no SNP reached
thesignificance level, we assigned every sample in the test fold with the
mean metabolite level of the training fold. Owing to high complexity and
running time issues, P values and confidence intervals were not com-
puted based onbootstrapping; rather, we estimated the Pvalues of the
Pearson’s correlation betweenthe true and predicted metabolite levels.
Metabolites for which the R was negative were assigned a Pvalue of 1.

Testing for SNP associations with metabolites

Genotype processing and imputation of 413 individuals were described
previously®. We performed genome-wide associations for single
metabolites (n =1,170) and calculated the P value and the estimated

effect sizes using plink (v.1.07). When declaring a genome-wide
significance for the SNP-metabolite associations we used a conserva-
tive Bonferroni adjustment procedure to control for the false discovery
rate due to the large number of SNPs tested (P < (5 x1078)/1,170). We
performed all genome wide associations using imputed genotypes.

For named molecules, their chemical identification, super and sub
pathways are presented as provided by Metabolon. For unidentified
molecules, super and sub pathways are estimated on the basis of our
biological pathway classifier. We did our best to scan the available lit-
erature for known associations between genetic loci and metabolites
before reporting an association as novel. The main resources included
the GWAS Catalog*® and the GWAS server>%,

Pathway category enrichment analysis

For each pathway category we used aMann-Whitney U-test comparing
the prediction accuracy of metabolites from that category compared
to predictionaccuracy of metabolites from other categories. Direction
of enrichment was determined by the sign of the Mann-Whitney U-test
statistic. We considered only metabolite groups for which atleast one
feature group had asignificant prediction (after correcting for multiple
hypotheses), resulting in 819 metabolite groups.

Validation of metabolite predictions based on microbiome

We validated the robustness of the associations between the gut micro-
biome composition and the levels of circulating metabolites in two
independent cohorts in which we had access to both metagenomics
sequencing. Serum metabolomics in these cohorts were performed
using the same Metabolon platform that we used for the discovery
cohort. The first validation cohortincluded 1,004 samples of healthy
participants from the TwinsUK cohort’, for which there was an aver-
age of 0.9 + 1.3 years gap between the collection of faecal and blood
samples. The second validation cohort included 245 samples of par-
ticipants of European ancestry with type 2 diabetes (T2D) from the
IMIDIRECT consortium?®. Data from both these validation cohorts
were not available to us while developing the prediction models. The
metagenomics samples from both cohorts went through the exact
same analysis pipeline as our discovery cohort to extract the bacterial
features that our prediction models were based on. We then applied
our models on these datato obtain the metabolite predictions for both
cohorts. Only metabolites that were significantly predicted based only
on microbiome data with R*> 5% (FDR <0.1) in our discovery cohort
were considered for further analysis (107 metabolites out of 678 in
TwinsUK, 50 metabolites out of 261 in IMI DIRECT). Within every vali-
dation cohort, we performed robust standardization (subtracting
the median and dividing by the standard deviation) over the log (base
10) transformed levels, followed by clipping outlier samples which
were further than 5 standard deviations, and finally, imputed missing
values as the minimum value per metabolite. The analysis of these
geographically distinct cohorts holds multiple potential sources of
noise, including different methods, centres and staffinvolved in assem-
bling these cohorts, as well as different cohort demographics, clinical
manifestations, different geneticbackground and dietary and lifestyle
preferences. Therefore, we defined a successful replication as one that
restores the original ranking of the participants as dictated by the true
levels of the metabolite in hand. Hence, for every metabolite, in each
validation cohort, we computed the Spearman’s correlation between
itstrue levels and its predicted levels. A replication was considered
significantif the FDR adjusted P value of the Spearman’s correlation
was lower than 0.1and the correlation coefficient was strictly positive.

Feature attribution analysis

To explain the output of our machine learning models and find specific
associations between features and metabolite levels, we used SHAP
(Shapley additive explanations)*, arecently introduced framework for
interpreting predictions, which assigns each feature animportance value



for a particular prediction. In brief, for a specific prediction, the SHAP
value of a feature is defined as the change in the expected value of the
output of the modelwhenthis featureis observed versus whenit is miss-
ing. Itiscomputed using asumthat represents the effect of each feature
beingaddedto themodel averaged over all possible orderings of features
beingintroduced. Shapley-value-based analysis in gut microbiome data
was recently demonstrated to be useful, as it enabled the estimation of
complex contributions of gut microbiome taxa to functional shifts, while
maintaining global community composition properties*,

Individual SHAP values were computed for held-out individuals in
fivefold CV using the module TreeExplainer (v.0.24.0)**, based on
models trained only on features from the respective feature group.
Before training, we standardized the levels of target metabolites, so
that SHAP values from different models would be comparable (they
are measured in the same units as the target). In each CV fold we ran a
random hyperparameter search consistent of 10 iterations using the
module RandomizedSearchCV fromsklearn (v.0.20.4), and chose the
best model for predicting the held-out individuals and computing
SHAP values. Inall feature attribution analyses we used the ungrouped
list of 1,170 metabolites.

For every feature, we computed the mean absolute SHAP value across
allinstancesin aspecific model, reflecting the mean effect of each fea-
ture onthe predictions and serving as a feature importance measure.
We further used these values to compute directional mean absolute
SHAP values, by multiplying them with the sign of the Spearman cor-
relation between the population feature and the target. Here, positive
values indicate that higher feature values lead, on average, to higher
predicted values, whereas negative values indicate that lower feature
values lead, on average, to higher predicted values.

When performing feature attribution analysis with gut microbiome
data as input, we included only the relative abundance of SGB repre-
sentative genomes as features, taking only features which were present
inover 5% ofthe samples, resulting with 753 bacterial taxa. When using
dietasinput, we considered only features that were presentin at least
5% of the samples, resulting with 398 food types from logging and
items from the FFQ.

Comparing gradient boosting decision trees with alinear model
We compared the EV of every single metabolite obtained for a GBDT
and a Lasso regression model. The EV of all models were calculated
in fivefold CV, where in each fold we ran a hyperparameter search
consistent of 10 iterations as described above. We used Light GBM
as the GBDT model, and Lasso regression (sklearn, v.0.20.4) as the
linear model, since its regularization scheme is better suited for a
large number of features, as in the case of diet and gut microbiome
composition. Because GBDT handles missing values well, we first
imputed all missing values as the median of each feature to assure a
fair comparison. When applying the models on the microbiome data,
we used log,,-transformed values.

Estimating relative predictive power of feature groups

To estimate the relative predictive power of different feature groups
we first applied a principal component analysis over the metabolite
groups data to get the first 400 PCs which constitute more than 99%
ofthe total variance in the data (Extended Data Fig. 5b). We then used
fivefold CV prediction models as described above to predict the PCs
on the basis of the different feature groups independently. As base-
line, we used the full model, which consists of all features combined
to predict the levels of the PCs, and estimated the overall fraction of

nP )
i=1 i

nPC
variance explained by: 21 E%* PG ywhere EV, is the fraction of EV that the
PC
modelrecovers for PCi.PC;isthe fraction of variance that PCiexplains
out of the overall variation in the data. nPC is the number of the first
PCs, those which capture the most variation. For the features we have

collected, we defined this sum obtained for the full model as the total

explainable variance in circulating blood metabolites. Next, for every
feature group we computed a similar expression and calculated the
relative predictive power by dividing this expression by that of the full
model. The estimates we present are for nPC =15, as the overall EV of
the fullmodel that we estimated using the first 15 PCs constitutes over
97% of the overall EV of the full model based on all 400 PCs.

Biological sub pathway prediction

We used gradient boosting decision trees from the LightGBM (v.2.1.2)
package®, inorder to build amulticlass classifier to predict the biological
sub pathways of metabolites as annotated by Metabolon. When develop-
ing the classifier, we considered only named metabolites from biological
sub pathways whichinclude over 10 metabolites eachin our data, result-
ing with 28 sub pathways covering a total of 572 named molecules (sub
pathway size range 11-44). The rationale behind this is that we tried to
find the balance between covering as many metabolites and types of
metabolites possible while keeping the number of classes reasonable.

We trained our modelinaleave-one-out CVscheme, in whichinevery
training fold we used 20% of the training samples as internal valida-
tion to perform an early stopping of 50 rounds. We then obtained a
soft max of size 28 per metabolite, representing the probabilities of
every metabolite being labelled as one of the 28 sub pathways. For
the prediction of the unidentified molecules, we used amodel trained
once using all 572 metabolites. The features used for the training of
the model included the normalized levels of metabolites across our
main discovery cohort, the mean raw count of the metabolite and the
fraction of missing values across the discovery cohort. In addition, to
capture the associations between metabolites and their predictive
features, we included the directional mean absolute SHAP values for
every pair of metabolite-feature computed from the ‘full model’ as
described above. The final vectors of probabilities were determined
as an ensemble of three models: the first, trained only on the SHAP
values; the second, trained only on metabolite levels, means and frac-
tion of missing values; and the third, trained on all combined. Finally,
the mean of these three models was computed.

When evaluating the performance of our classifier on the named
labelled molecules, we concatenated all vectors of probabilities result-
ing fromtheleave-one-out procedure. For every sub pathway we com-
putedaclassification reportincluding the classification precision (TP/
(TP +FP)), recall (TP/(TP + FN)) and f1-score (2 x (precision x recall)/
(precision +recall)), to account for the imbalanced class sizes. The
overall accuracy was computed as the fraction of metabolites with
correctly assigned labels out of all metabolites from all sub pathways
which were included in the training phase. In all runs we used a fixed
and predetermined set of hyperparameters (objective = multiclass,
num_leaves =25, max_depth=4,learning_rate =0.005, bagging_frac-
tion=0.8, feature_fraction=0.8, bagging_freq=1,bagging seed=2018,
class_weight=balanced, n_estimators =2000, early_stopping_rounds
=50). TP, true positive; FP, false positive; FN, false negative.

Characterization of unidentified metabolites by metabolon
Characterization of unidentified metabolites was done as previously
described?. In brief, identification of tentative structural features for
unidentified biochemicalsincorporates a detailed analysis of mass spec
data, thatis, gathering information such as the accurate monoisotopic
mass, the elutiontime and fragmentation pattern of the primaryion, and
correlationto other molecules. The accurate monoisotopic massis used
toidentify aprobable structural formula for the unidentified biochemi-
cal, whichisthen used to searchagainst chemical structure databases.
When a candidate structure fits the accurate monoisotopic mass and
fragmentation data, anauthentic standard is commercially purchased
orsynthesized (when possible). Conformation of aproposed structure
isbased onamatchtothree primary criteria, including co-elution with
the unidentified molecule of interest, and a high degree matchto both
the accurate monoisotopic mass and fragmentation pattern.
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Interaction networks

We used agraphical layoutin order to visualize the associations of fea-
tures withthe levels of metabolites. The nodes are either metabolites or
features, and the edges are the directional mean absolute SHAP values
computed from models trained only on features from the respective
feature group as described above. All networks were constructed using
Cytoscape®™. The threshold for presenting SHAP values as edges was
determined as 0.12, keeping the network sparse enough for conveni-
ence of visualization.

Analysis of bread intervention

In order to find the associations between metabolite levels and the
consumptionofboth types of breadin the study cohort we computed
the directional mean absolute SHAP values of the reported consump-
tionof both white and whole-wheat bread for all metabolites. The SHAP
values were computed in cross validation from models based only
on the reported consumption of each type of bread. We ranked the
metabolites according to their directional mean absolute SHAP value
for each type of bread and used the top 5% positively and negatively
driven metabolites for further analysis. The prediction models were
constructed using 458 samples of distinct individuals, asubset of our
cohort from which we excluded all samples of individuals which par-
ticipated in the intervention study.

Foreach metabolite in every individual, we computed the fold change
of metabolite levels between the samples taken at the end of the first
week of intervention and the start of that week. Before computing
fold change we imputed missing values with the minimum per metabo-
lite and standardized their log (base 10) transformed levels. Further-
more, for eachintervention group, we computed the mean fold change
ofevery metabolite based onthe 10 samples from that group. We then
compared the mean fold change of the top 5% positively and negatively
associated metabolites mentioned above within each intervention
group by performing a rank sum test (two-sided Mann-Whitney U-test)
over the mean fold change.

For comparingthe fold change of betaine and cytosine between the
two intervention groups, we used a two-sided Mann-Whitney U-test.

Linear mixed models-based estimates of the explained variance
of metabolites using gut microbiome

For the in-sample estimation of EV for metabolites based on gut micro-
biome we used a linear mixed model framework that we had recently
developed®. Inbrief, we used GCTA®, atool used in statistical genetics for
the estimating of SNP-based genetic kinship. Instead of amatrix of host
SNPs, asis commonly used in GCTA, we used akinship matrix computed
over the presence-absence of microbial species which were also used as
featuresin the out-of-sample prediction models. We added the storage
timeasacovariate to the model. Pvalues were computed using RL-SKAT*,

Statistical analysis

For all statistical analysis and prediction models we used Python 2.7.8
with the following packages: pandas 0.23.4, numpy1.14.2, scikit-learn
0.20.4, scipy 1.1.0, shap 0.24.0, Light GBM 2.1.2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The raw metagenomic sequencing data are available from the Euro-
pean Nucleotide Archive under accession numbers PRJEB11532,
PRJEB17643, and for TwinsUK PRJEB32731. The raw metabolomics data
and the phenotypic data are available from the European Genome-
phenome Archive (EGA; https://ega-archive.org/) with accession

number EGAS00001004512. Known links between genetic loci and
serum metabolites were taken from the GWAS Catalog*® (https://
www.ebi.ac.uk/gwas/) and the GWAS server®* (http://metabolomics.
helmholtz-muenchen.de/gwas/).

Code availability

Source code for analysis is available at https://github.com/noambar/
SerumMetabolomePredictions.
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Extended DataFig.2|Biological sub pathway prediction ofunidentified
molecules. Figure panelsrefer to the results of aleave-one-out cross validation
prediction model of sub pathways of metabolites based on their normalized
levels, raw mean, percentage of missing values, and SHAP values (Methods).
Results shown are for amodel trained using only sub pathways thatinclude
over10 moleculesin our data (28 sub pathways, 572 named metabolites).

a, Theoverall accuracy of the sub pathway classifier (y axis) whenasuccessis
considered as having the true label in one of the top k predictions (x axis).

b, Thelogloss of the classifier (y axis) computed over the resulting soft max
(raw probabilities; blue) and a dichotomous matrix in which for every
metabolite we only keep the top predicted sub pathway as 1and zero-out all
other predictions (red). ¢, The overall accuracy of the model (left y axis; blue)
and the corresponding fraction of metabolites (right y axis; red) when
considering only metabolites for which the classifier predicted amaximal
probability above some threshold (xaxis). d, A confusion matrix showing the

predicted sub pathways (x axis), determined as the label with the highest
probability per metabolite, versus the true annotated sub pathways (y axis).
Each cellin the matrix counts the number of metabolites of a certain true sub
pathway (yaxis) which were assigned with some predicted sub pathway (x axis)
by our model. Therightmost columnis the sum of every row and represents the
number of metabolites annotated for every sub pathway. The matrix is ordered
by the higher order biological pathway (super pathway). Cell colours arelog
scaled. e, Classification results summarizing the f1-score, precision and recall
per sub pathway. Rows correspond to the sub pathway annotationind. f, For
every sub pathway (yaxis) shown are the fraction of metabolites truly
annotated as such (black), predicted as such by the classifier (blue; out of the
named moleculesinthe support of the model), and the fraction of unidentified
molecules predicted as such (out of all unidentified molecules). M.,
metabolism; Xeno., xenobiotics; Ptds, peptides; AAs, amino acids.
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Extended DataFig. 3 | Comparative analysis of linear versus nonlinear
models and in-sample versus out-of-sample predictions. a, Metabolite
prediction R?of GBDT versus Lasso regression models using diet data. Shown
areonly metabolites for which at least one model achieved significant
predictions with R*greater than 0.05. b, Histogram of the differences between
the R?of GBDT compared to Lasso regression using the diet data. ¢, The levels
of the metabolite hydroxy-CMPF* (yaxis: centre, median; box, IQR; whiskers,
1.5x1QR) versus the monthly consumption of cooked, baked or grilled fish as
reportedinafood frequency questionnaire. The comparison of Spearman’s
and Pearson’s correlation coefficients suggests that the relationship between

the metabolite and the numerical values of the question are monotonic yet
nonlinear, which explains why GBDT performs better in predicting the levels of
hydroxy-CMPF*from diet data. The xaxisisnottoscale.d, e, Sameasa, b for
microbiome.f, Estimations of gut microbiome explainability (b of metabolite
levels obtained viaapplying alinear mixed model on the bacterial species
composition as previously described (y axis) versus the explained variance (R?)
of metabolites from out-of-sample prediction models based on the same gut
microbiome data. Shown are only metabolites with significant b* estimates (5%
FDR).g, Histogram of the differences between the b*estimates and the R? of
out-of-sample prediction using the gut microbiome data.
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Extended DataFig. 5| Comparative analysis of different feature groups.
a,Spearman correlations computed between the EV of metabolites for every
pair of feature groups. b, The proportion of variance explained by each of the
first400 principal components (left y axis; black) and their cumulative EV
(rightyaxis; blue). ¢, R multiplied by the sign of the Pearson correlation
coefficient (x axis) between metabolite levels and BMIin our study, versus the
mean R?>multiplied by the sign of the Pearson correlation coefficient (yaxis) of
BMIlassociated metabolites recently reported by a different group®. Shown are
36 (out of 49) BMI associated metabolites that were also measured in this

Microbiome & Diet R?

Diet & permuted MB R?

cohort. Pvalue for the Pearson correlation, P=7 x10 ™, Line and shaded
colouring represent the fitting of alinear model and the 95% confidence
interval.d, The EV of every metabolite from prediction models based on the
gut microbiome (x axis) versus diet (y axis). Dashedred lineisy=x. e, Same for
prediction models based on both gut microbiome and diet (x axis) compared to
using only diet (y axis). f, Same for prediction models based on diet and
permuted gut microbiome (xaxis) compared to using only diet (y axis). MB,
microbiome.
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Extended DataFig. 6 | Networks ofinteractions between phenotypes
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directional mean absolute SHAP values (Methods) computed from models
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than 0.12.a, Network of associations for the following feature groups:
macronutrients, diet, microbiome, lifestyle, drugs and seasonal effects.

b, Alarge group of metabolites for which predictions are mainly driven by the
reported consumption of coffee and the relative abundance of abacteria from
the Clostridiales order. ¢, Metabolites explained by seasonal fruit
consumption.d, Selected examples of interactions between metabolites and
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Extended DataFig.7|Specific dietary features and bacterial taxa underlie
theaccurate prediction of circulating metabolites. a-f, Predicted (y axis)
versus measured (xaxis) levels (arbitrary units) of X-16124 (a; Pearson’s R=0.77,
P<107%), phenylacetylglutamine (b; R=0.63, P<107%°), p-cresol-glucuronide
(c;R=0.64,P<107), caffeine (d; R=0.68, P<107?°), hydroxy-CMPF (e;R=0.72,
P<107°) and stachydrine (f;R=0.5,P<1072°). Predictions of a-care based only
onmicrobiome data, and coloured by the relative abundance of the bacterial
taxa having the highest mean absolute SHAP value for each metabolite.
Predictions of d-farebased only ondiet data, and coloured by the reported
consumption of the dietary item having the highest mean absolute SHAP value

foreach metabolite. Pvalues for prediction were estimated viabootstrapping.
g, Heat map showing the directional mean absolute SHAP values (Methods) of
various features (x axis) computed from fivefold cross validation models that
predict metabolite levels (yaxis) using two separate models, one based on diet
and another ongut microbiome data. Positive (negative) SHAP values indicate
thathigher (lower) feature values lead, on average, to higher predicted values.
Shownare the top 150 predicted metabolites using diet and gut microbiome,
and the top 40 features by maximum mean absolute SHAP value across all
metabolites.
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Extended DataFig. 8| Distribution of phylaand ataxafromthe

Eggerthellaceae family. a, Stacked bar plots per sample (xaxis) showing the
relative abundance of bacterial phyla (y axis). Samples are sorted by the relative
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iscomputed as the sum over relative abundances of all bacterial features
belonging to that phylum.b, The levels of the unidentified compound X-16124
inindividuals for which the bacterial taxa from the Eggerthellaceae family was
detectableinstool versus individuals for which it was not (P<1072°, two-sided
Mann-Whitney U-test).
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rs8187710 independent of age. a, Atable showing the coefficients, standard
errorsand Pvaluesresulted from amultiple linear regression model with
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Extended Data Table 1| Basic characteristics and demographics of our main and validation cohorts

Characteristics Main cohort (n=475) TwinsUK (n=1004) IMI-DIRECT (n=245)
Age (years) 440 +-13.13 64.96 +- 7.77 61.81 +- 8.09

Sex, Males (%) 38.70% 3.90% 61.22%

BMI 26.3+- 5.0 26.2 +-4.71 30.59 +- 5.39

Smokers (%) 9.80% 42.40% 13.55%
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Sample size Repeated subsampling of subjects for full-model predictions of metabolomic PCs showed saturation of model accuracy at 300 individuals. The
cohort size was set at 500 to allow for increased accuracy.

Data exclusions  No data was excluded.

Replication Replication was performed on three fronts. First, we replicated microbiome-based predictions in 2 independent cohorts with different
geography, age, and disease state. The first validation cohort included 1,004 samples of healthy participants from the TwinsUK cohort
(Moayyeri et al. 2013), while the second validation cohort included 245 samples of participants of northern European ancestry (Sweden,
Denmark, UK and the Netherlands) with type 2 diabetes (T2D) from the IMI-DIRECT consortium (Koivula et al. 2014). In the TwinsUK cohort,
95 out of 107 associations replicated (FDR<10%), while in the IMI-DIRECT cohort, 28 out of 50 associations replicated (FDR<10%). Data from
these additional cohorts were not available to us while developing the prediction models. Second, we replicated BMI related associations
which were reported by a different group [Cirulli et al. Cell Metabolism 2018]. Here, for 36 metabolites, we replicated the effect sizes in the
TwinsUK cohort with a correlation of 0.85 (p=7e-11). Third, we replicated 46 genetic associations between specific SNPs and the levels of
metabolites which were reported in different studies [GWAS Catalog, GWAS server].

Randomization  This study used a healthy cohort and there was no allocation to experimental groups, thus no randomization.
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Clinical trial registration NCT02936362
Study protocol Available at https://www.clinicaltrials.gov/ct2/show/NCT02936362 and https://doi.org/10.1016/j.cmet.2017.05.002
Data collection Detailed in https://doi.org/10.1016/j.cmet.2017.05.002
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