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between the user-requirements specification
and the software-requirements specification,
mandating complete documentation of each
according to various rules. Other cases em-
phasize this distinction less. For instance,
some groups at Microsoft argue that the dif-
ficulty of keeping a technical specification
consistent with the program is more trouble
than the benefit merits.2 We can find a wide
range of views in industry literature and from
the many organizations that write software.

Is it possible to clarify these various arti-
facts and study their properties, given the
wide variations in the use of terms and the
many different kinds of software being writ-
ten? Our aim is to provide a framework for
talking about key artifacts, their attributes,
and relationships at a general level, but pre-

cisely enough that we can rigorously analyze
substantive properties.

The Reference Model
Reference models have a time-honored

status, and one well-known example is the
ISO 7-Layer Reference Model, which di-
vides network protocols into seven layers.
The model is informal and does not corre-
spond perfectly to the protocol layers in
widespread use but is still discussed in vir-
tually every basic textbook on networks—
the model is widely used by network engi-
neers to describe network architectures.
The ISO 7-layer model is successful because
it draws on what was already understood
about networks, and it’s general enough to
be flexible.
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Our model is
based on five familiar
artifacts broadly clas-
sified into groups
that pertain mostly to
the system versus
those that pertain
mostly to the envi-
ronment. These arti-
facts are

■ domain knowledge that provides pre-
sumed environment facts;

■ requirements that indicate what the cus-
tomer needs from the system, described
in terms of its effect on the environment;

■ specifications that provide enough in-
formation for a programmer to build a
system that satisfies the requirements;

■ a program that implements the specifica-
tion using the programming platform; and

■ a programming platform that provides
the basis for programming a system that
satisfies the requirements and specifica-
tions. (Sometimes the system is construed
to include such things as the procedures
people who use the software employ. In
this case, the people are also program-
mable, and their program is this set of
procedures. Our model primarily focuses
on programming computer platforms.)

We denote these artifacts W, R, S, P, and
M, respectively, and give their classification
in Figure 1’s top Venn diagram. (We chose
W and M for “world” and “machine.”)
Most of our discussion focuses on the special
role of the specification, S, which occupies
the middle ground between the system and
its environment. We give a formal analysis,
describing the relations that S must satisfy
and a comparison of this work to similar at-
tempts to formally analyze this interface.

Designations
We can view the WRSPM artifacts (see

Figure 1) primarily as descriptions written
in various languages, each based on its own
vocabulary of primitive terms. Some of
these terms are common to two or more of
the WRSPM descriptions. To understand
the relationships between the descriptions,
we must understand how the division be-
tween environment and system is reflected
in the terms used in them. This will deter-

mine the key concept of control, which will
form the basis of the refinement theory,
which is the basic set of relations between
the artifacts we describe later.

The distinction between environment and
system is a classic engineering issue that is
sometimes regarded as a matter of taste and
convenience but which has a profound effect
on problem analysis. The reference model de-
mands a clarification of the primitive terms
that we use in the WRSPM artifacts. This
clarification is so important that it is the sixth
artifact in the reference model: the designated
terminology provides names to describe the
application domain (environment), the pro-
gramming platform with its software (sys-
tem), and the interface between them.

Designations identify classes of phenom-
ena—typically states, events, and individu-
als—in the system and the environment and
assign formal terms (names) to them. Some
of these phenomena belong to the environ-
ment and are controlled by it; we will denote
this set e. Others belong to the system and
are controlled by it; we will denote this set s.

At the interface between the environment
and the system, some of the e phenomena
are visible to the system: we will denote this
e subset ev. Its complement in e are hidden
from the system: we will denote this set by
eh. Thus e = eh ∪ ev. The s phenomena are
similarly decomposed into sv and sh. We as-
sume that e and s are disjointed—an as-
sumption we will analyze later.

Terms denoting phenomena in eh, ev, and
sv are visible to the environment and used in
W and R. Terms denoting phenomena in sh,
sv, and ev are visible to the system and used
in P and M. Therefore, only ev and sv are
visible to both the environment and the sys-
tem. We restrict S to using only these terms.
The Venn diagram at the bottom of Figure 1
shows the relationships among the four sets
of phenomena. A small example will help
with understanding some of the ideas in the
reference model. We describe a simple ver-
sion of the Patient Monitoring System in
our terms. The requirement R is a warning
system that notifies a nurse if the patient’s
heartbeat stops. To do this, there is a pro-
gramming platform M with a sensor to de-
tect sound in the patient’s chest and an ac-
tuator that can be programmed P to sound
a buzzer based on data received from its
sensor. There is also some knowledge of the
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ware artifacts with
visibility and control
for designated terms.



world W, which says that there is always a
nurse close enough to the nurse’s station to
hear the buzzer, and that if the patient’s
heart has stopped, the sound from the pa-
tient’s chest falls below a threshold for a cer-
tain time. The designated terminology falls
into four groups (see Figure 1):

■ eh: the nurse and the heartbeat of the
patient.

■ ev: sounds from the patient’s chest.
■ sv: the buzzer at the nurse’s station.
■ sh: internal representation of data from

the sensor.

The specification S, which is expressed in
the language common to the environment
and system, says that if the sound the sensor
detects falls below the appropriate threshold,
then the system should sound the buzzer.

The WRSPM reference model is inde-
pendent of the choice of language for ex-
pressing the various artifacts. However, for
uniformity, we assume all the artifacts are
described using formulas of Church’s
higher-order logic. If eh = {x1, …, xn}, then a
formula ∀ eh. φ means the same as ∀ x1, …,
xn. φ. We use HOL notational conventions
in the article and hope they are sufficiently
obvious that readers don’t need background
beyond what we give here together with
some general knowledge of logic. In the
“dot” notation, a dot following a quantifi-
cation means that the quantification’s scope
goes as far to the right as the parentheses al-
low. For instance, (∃ x. A ⇒ B) ∧ C is the
same as (∃ x. (A ⇒ B)) ∧ C.

Relationship between Environment
and System

The program and the world each have a
capacity for carrying out events. W restricts
the actions that the environment can perform
by restricting e or the relationship between e
and sv. The requirements, R, describe more
restrictions, saying which of all possible ac-
tions are desired. P, when evaluated on M, de-
scribes the class of possible system events. (Of
course, we do not usually present programs
and programming platforms as formulas.
Here, we should think of P and M as the for-
mulations of these artifacts in logic.) If R al-
lows all the events in this class, then the pro-
gram is said to implement the requirements.
In logic, this means

∀ e s. W ∧ M ∧ P ⇒ R . (1)

That is, the requirements allow all the
events the environment performs (eh, ev) and
all the events the system performs (sv, sh)
that can happen simultaneosly.

We call this property adequacy. Ade-
quacy would be trivially satisfied if the as-
sumptions about the environment meant
that there is no set of events that could sat-
isfy its hypothesis. We therefore need some
kind of nontriviality assumption. First, we
want consistency of the domain knowledge.
The desired property is

∃ e s. W . (2)

(This is the same as ∃ eh ev sv. W, because the
variables sh do not appear in W.) Clearly, we
want consistency of W, P, and M together.
However, we need something more: a prop-
erty that says that any choice of values for
the environment variables visible to the sys-
tem is consistent with M ∧ P if it is consis-
tent with assumptions about the environ-
ment. (This assumption is too strong for
some cases where we expect the system to
prevent the environment from doing some
events that are controlled by the environ-
ment but visible to the system. The precise
reformulation of this criteria for such cases
is a topic of ongoing research.) The desired
property is called relative consistency:

∀ ev. (∃ eh s. W) ⇒
(∃ eh s. W ∧ M ∧ P) . (3)

The witness to the existential formula in the
conclusion can be the same as the witness in
the hypothesis.

Relative consistency merits some appreci-
ation, because there are a variety of ways to
get the wrong property. It is a significant con-
tribution of the Functional Documentation
Model,3 which asserts the relative consis-
tency of the requirements with the domain
knowledge. Let M′ = M ∧ P, and consider the
property ∃ e s. W ∧ M′.

This says that there is some choice of the
environment events that makes the system
consistent with the environment. This is too
weak, because the environment might not
use only this consistent set of events. How-
ever, this formula should hold, and it does
immediately follow from the domain-
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knowledge consistency (Formula 2) and rel-
ative consistency (Formula 3). ∀ e s. W ⇒
M′ is much too strong, because it means
that any choice of potential system behavior
(s) that W accepts, the system to be built
(M′) must also accept. An apparently mod-
est weakening, ∀ e ∃ s. W ⇒ M′, is too weak,
because given an environment action, it lets
the system do anything it chooses if there is
a corresponding value for the system actions
that invalidates the domain knowledge.

One step closer to Formula 3, ∀ e. (∃ s.
W) ⇒ (∃ s. W ∧ M ∧ P), is again too strong.
The environment actions hidden from the
system include reactions to the machine’s
behavior. The machine is not allowed to re-
strict any of the possible environmental re-
actions. In the patient-monitoring example,
it is consistent with the domain knowledge
for the patient’s heart to stop beating (ev)
without the nurse being warned (eh)—this
is the undesirable possibility that the pro-
gram is supposed to prevent. The formula
states that, if this can happen, then the pro-
gram must allow it!

Specifications
Let’s suppose now that we wish to de-

compose the process of implementing a re-
quirement into two parts: first, when re-
quirements are developed, and second,
when the programming is carried out. Two
different groups of people might do these
tasks: users and programmers, respectively.
It is often desirable to filter out the knowl-
edge of W and R that truly concerns the
people who will work on developing P (for
M) and deliver this as a software specifica-
tion. We rely on a kind of transitive prop-
erty to ensure the desired conclusion: if S
properly takes W into account in saying
what is needed to obtain R, and P is an im-
plementation of S for M, then P implements
R as desired. There are several reasons for
wanting such factorization—for example,
the need to divide responsibilities in a con-
tract between the needs of the user and sup-
plier. They build their deal around S, which
serves as their basis of communication. But
how can we represent this precisely? Is it all
right just to say that S and W imply R, while
M and P imply S? This is close and provides
a good intuition, but the situation is not
that simple. We must properly account for
consistency and control.

Before we begin to describe proof obliga-
tions, we make one stipulation: S must lie in
the environment and system’s common vo-
cabulary. In other words, the free variables
of S must be among those in ev and sv and,
therefore, cannot include any of those in eh
or sh. Because the specification is to stand
proxy for the program with respect to the
requirements, it should satisfy the same ba-
sic properties as the program. First, we re-
quire there to be adequacy with respect to S:

∀ e s. W ∧ S ⇒ R . (4)

Second, we require a strengthened version
of relative consistency for S:

∀ ev. (∃ eh s. W) ⇒
(∃ s. S) ∧ (∀ s. S ⇒ ∃ eh. W) . (5)

These two formulas, together with Formula
2, are the environment-side proof obligations.

On the other side, the specification is to
stand proxy for the requirements (and the
domain knowledge) with respect to the pro-
gram. The system-side proof obligation is a
similarly strengthened version of relative
consistency for M ∧ P with respect to S:

∀ e. (∃ s. S) ⇒ (∃ s. M ∧ P) ∧ 
(∀ s. (M ∧ P) ⇒ S) . (6)

In summary, if the software buyer is re-
sponsible for the environment-side obliga-
tions and the “seller” is responsible for the
system-side obligations, then the buyer must
satisfy Formulas 2, 4, and 5, and the seller
must satisfy Formula 6. The fundamental
obligations described by Formulas 1, 2, and
3 follow from this. We omit detailed proof
of this, but Formula 1 is a consequence of
Formulas 5 and 6, and Formula 3 is a con-
sequence of Formulas 4, 5, and 6. Formula
2 was a direct responsibility of the buyer.

We have referred to Formulas 5 and 6 as
strengthened versions of relative consis-
tency. Without the strengthening, what we
would expect for Formula 5, by comparison
with Formula 3, would be

∀ ev. (∃ eh s. W) ⇒
(∃ eh s. W ∧ S) (7)

which is a direct consequence of Formula 5.
The strengthening comes in the added con-
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straint that ∀ s. S ⇒ ∃ eh. W, instead of simply
having ∃ eh. s. W ∧ S. The added constraint
means that W must hold everywhere that S
holds. The weaker constraint only requires
that there is somewhere that they both hold.

It might seem that the weaker Formula 7
should suffice in place of Formula 5. To see
why it does not, consider a “good” specifi-
cation S1 that satisfies Formula 5 and guar-
antees R. But suppose that we are also given
a “bad” specification S2 that is everywhere
inconsistent with W. If we let S = S1 ∨ S2,
then S satisfies Formula 4 and the weaker
Formula 7, but not Formula 5. An imple-
mentor could satisfy his obligation Formula
7 by implementing S2. Yet an implementa-
tion of S2 would behave unpredictably when
deployed. The extra strength of Formulas 5
and 6 prevent this.

Comparing Approaches
Our reference model is a more formal and

complete version of some of our earlier
work.4–6 Let’s look in some detail at some of
the most well-known formulations similar to
the WRSPM artifacts and their relationships.

In the functional-documentation model,3,7

there are four distinct collections of variables:
m for monitored values, c for system-con-
trolled values, i for values input to the pro-
gram’s registers, and o for values written to
the program’s output registers. There are also
five predicates formally representing the nec-
essary documentation: NAT(m, c) describing
nature without making any assumptions
about the system, REQ(m, c) describing the
desired system behavior, IN(m, i) relating the
monitored real-world values to their corre-
sponding internal representation, OUT(o, c)
relating the software-generated outputs to ex-
ternal system-controlled values, and SOF(i, o)
relating program inputs to program outputs.

There are three major proof obligations
in the functional documentation model. The
first is called feasibility and requires that
∀ m. (∃ c. NAT(m, c)) ⇒ (∃ c. NAT(m, c) ∧
REQ(m, c)). The second states that IN must
handle all cases possible under NAT: ∀ m.
(∃ c. NAT(m, c)) ⇒ (∃ i. IN(m ,i)). The third
is called acceptability, and requires that ∀ m
i o c. NAT(m, c) ∧ IN(m, i) ∧ SOF(i, o) ∧
OUT(o, c) ⇒ REQ(m, c).

Although widely accepted, these proof
obligations are not sufficient, as we can see
from a small example. Let all the variables

be real-valued functions of time, and let the
five predicates be defined as

NAT: (∀ t. c(t) > 0) ∧ (∀ t. m(t) < 0)
REQ: ∀ t. c(t + 3) = −m(t)
IN: ∀ t. i(t + 1) = m(t)
SOF: ∀ t. o(t + 1) = i(t)
OUT: ∀ t. c(t + 1) = o(t) .

Each predicate is internally consistent. All
the predicates besides NAT are readily imple-
mentable, because all establish relationships
between their inputs at one time and their
outputs at a later time. The predicates satisfy
all the proof obligations of the Functional
Documentation Model, yet they are not real-
izable, because ¬ (∃ m i o c. NAT(m, c) ∧
IN(m, i) ∧ SOF(i, o) ∧ OUT(o, c)). If the pro-
gram flipped the sign of its input to get the
delayed output, all would be well. The ac-
ceptability obligation is satisfiable only be-
cause the antecedent of its implication is al-
ways false.

Our reference model supplies what is
missing in the functional-documentation
model. To show how, we must match corre-
sponding parts of the two models. The corre-
spondence is not completely determined be-
cause it is not clear whether IN and OUT
should be considered the system or environ-
ment parts. We consider them system parts,
but our reference model still supplies the
missing obligation, even if we interpret them
as being in the environment instead.

In this context, both the phenomena i
and o belong to our category sh. The moni-
tored phenomena m are the same as our ev,
the controlled phenomena c are the same as
our sv, and there are no eh phenomena in the
functional-documentation model.

The predicate NAT corresponds to our W,
and the predicate REQ corresponds to our R.
NAT and REQ are more restricted than W
and R, however, because they can only make
assertions about those phenomena of the envi-
ronment that are shared with the system. In
fact, REQ corresponds to the specification S as
well as to R. The predicate SOF corresponds
to the program P. IN and OUT together cor-
respond to the M, except that once again they
are more restricted, being limited to the special
purposes of sensing and actuating.

Because these correspondences make S irrel-
evant, we shall use our original Formulas 1
through 3. Translated into their terms, our
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Formula 1 is exactly the same as their accept-
ability. Our Formula 2 translates to ∃ m c.
NAT(m, c), which is not made explicit in the
functional-documentation model because it is
assumed to be true by construction. Our For-
mula 3 translates to ∀ m. (∃ c. NAT(m, c)) ⇒
(∃ i o c. NAT(m, c) ∧ IN(m, i) ∧ SOF(i, o) ∧
OUT(o, c)), which would have revealed the
programming bug in the earlier example. It
also subsumes their second (unnamed) obliga-
tion. Translated into our terms, their feasibility
obligation is ∀ ev. (∃ eh sv. W) ⇒ (∃ eh sv. W ∧
R), which is implied by our Formulas 1 and 3.

Like our reference model, the functional-
documentation model insists on a rigid divi-
sion between system and environment control
of designated terminology. Some other sys-
tems, such as Unity8 and TLA,9,10 leave to the
user such matters as distinguishing environ-
ment from system and domain knowledge
from requirements, but support shared control
of a designated term by system and environ-
ment. For example, in the Unity formalism, we
can express that both E and M control a
Boolean variable b, but E can only set it to true
while M can only set it to false. Our restricted
notion of control, in which each phenomenon
must be strictly environment or system con-
trolled, is easier to document and think about
than shared control. When necessary, we can
model shared control by using two variables—
one controlled by the system and the other by
the environment—together with an assertion
in W that they must be equal.

The composition and decomposition the-
orems of TLA are particularly valuable
when parts of the formal documentation are
not complete and unconditional (as the func-
tional-documentation model requires them
to be). For example, we can use the TLA
composition theorem to prove adequacy of a
specification even when all of the domain
knowledge, requirements, and specification
components are written in an assumption
and guarantee style.

As part of a benchmark problem for
studying the reference model, we used the
model checker Mocha11,12 to prove the de-
sired properties of the relationship between
specification and program (see Formula 5).
The Mocha concept of a reactive model is
extremely similar to our reference model,
because it allows for interface variables con-
trolled by the environment or system and
system-controlled variables that are hidden

from the environment. The model’s appro-
priateness to the reactive module assump-
tions partially inspired Formula 5.

O ur reference model is meaningful
whether or not you are using a for-
malization such as a theorem prover

or a model checker. The proof obligations
are just as sensible for natural-language
documentation as they are for formal speci-
fications. Moreover, there is no absolute re-
quirement that the proof obligations be met
in the sense of automated theorem proving.
On the contrary, the applications we studied
have benefited significantly just from the
clarity of knowing what the objective of a
model’s component should be, even without
formalization, let alone machine-assisted
proof. However, our description is precise
enough to support formal analyses. For ex-
amples of such formal analyses and a more
in-depth discussion of some of the logic
connections, see our technical report from
the University of Pennsylvania.13

Our current and future research involves
extending and applying the reference model.
We are interested in extensions that unify it
with game-theoretic modeling of our system
and environment. Such extensions might
make the model more complex to describe
but might offer better guidance when using
it for applications. We are applying the
model to problems networking and teleph-
ony. In networking, we are using it to de-
scribe attributes of routing protocols; for 
telephony, we are using it to model distrib-
uted feature composition. 
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