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A reference single-cell regulomic and
transcriptomic map of cynomolgus monkeys
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Non-human primates are attractive laboratory animal models that accurately reflect both

developmental and pathological features of humans. Here we present a compendium of cell

types across multiple organs in cynomolgus monkeys (Macaca fascicularis) using both single-

cell chromatin accessibility and RNA sequencing data. The integrated cell map enables in-

depth dissection and comparison of molecular dynamics, cell-type compositions and cellular

heterogeneity across multiple tissues and organs. Using single-cell transcriptomic data, we

infer pseudotime cell trajectories and cell-cell communications to uncover key molecular

signatures underlying their cellular processes. Furthermore, we identify various cell-specific

cis-regulatory elements and construct organ-specific gene regulatory networks at the single-

cell level. Finally, we perform comparative analyses of single-cell landscapes among mouse,

monkey and human. We show that cynomolgus monkey has strikingly higher degree of

similarities in terms of immune-associated gene expression patterns and cellular commu-

nications to human than mouse. Taken together, our study provides a valuable resource for

non-human primate cell biology.
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Non-human primates (NHP) are phylogenetically close to
humans and show various human-like characteristics,
including genetics, organ development, physiological func-

tion, pathological response and biochemical metabolism. Hence
NHP are extremely valuable as experimental animal models for
medical research and drug development1. Macaca fascicularis
(cynomolgus monkeys) are such excellent NHP models for bio-
medical research2. Since cells are the fundamental unit of all life,
direct comparison of cell identities and cell-type compositions in
organs with a similar function between organisms would help to
transfer knowledge in primates to medical research. In this regard,
it is of vital importance to understand the cellular composition
and heterogeneity of organs in the primate model like cynomolgus
monkeys.

Rapid advances in single-cell multi-omics technologies have
enabled molecular quantification of thousands of cells at once,
leading to meticulous insight into organ compositions and
molecular mechanisms driving cellular heterogeneity3. Previous
studies4–8 have mapped the single-cell landscapes across multiple
organs in humans and mice, expanding our knowledge about the
cellular heterogeneity underlying normal development and aging.
Three-dimensional multicellular culture systems combined with
single-cell transcriptome sequencing technology enable to chart
the cellular and molecular dynamic changes during organ growth
and development9–11. In addition, extensive efforts10–13 have
been achieved to investigate how cells are perturbed in various
disease conditions, including cancer and neurological disorders.

Mice have long been used as a representative model organism for
mammalian development and physiology. Recently, extensive
comparative analyses based on single-cell transcriptomics data
have shown that both cell types and associated gene regulatory
networks are conserved between human and mouse4,14–23, which
provides a new perspective for disease mechanism interpretation
and intervention. However, it has been widely recognized that there
are significant differences between mice and humans in terms of
development and physiology24. For example, single-cell tran-
scriptomic analysis revealed remarkable similarities and differences
in lineage marker-associated gene expression and regulatory net-
works during spermatogenesis19 and embryogenesis21 between
human, cynomolgus, and mouse. In a recent study, comparison
of cell subsets of colon neurons in the human and mouse
enteric nervous system (ENS) revealed differences on the basis of
transcriptional programs and neuro-immune interactions22.
The mapped differences may reflect divergent adaptations to
feeding behavior by ENS between human and mouse. Besides,
although the architecture and regulatory role of the immune system
is conserved between mouse and human, it is notoriously difficult
to translate the immunological principles from laboratory mice to
humans2, partially due to their basic immunological differences25

and/or the immunological immaturity of the laboratory mouse26.
In short, these observed differences may limit the immediate
translational value of findings from the mouse model to biomedical
research.

Primate experiments are more valuable as they can better
simulate human diseases and promote scientific research owing to
high genetic similarity between primates and humans27. Although
the potential importance and values of NHP models in basic
research are indispensable, an organism-wide single-cell atlas is still
pending for primates.

Here, we present a compendium of single-cell regulomic and
transcriptomic data in cynomolgus monkeys that comprises 40
distinct cell types from 16 representative organs and tissues,
greatly extending our current view28–30 of single-cell landscapes
in this model species. This cell atlas—which we denote ‘Monkey
Atlas’—represents a new resource for cynomolgus monkey cell
biology.

Results
Mapping a cynomolgus monkey multi-organ cell atlas by
multi-omic analysis. To generate a reference cell map of monkey,
we performed both single-cell RNA sequencing (scRNA-seq; 10x
Genomics; n= 174,233 cells) and scATAC-seq (10x Genomics;
n= 66,566 cells) in 16 tissues and organs from one male or/
and one female cynomolgus monkeys (Fig. 1a, Supplementary
Fig. 1 and Supplementary Table 1). We integrated all of the scRNA-
seq data using canonical correlation analysis (CCA)31 to correct
for potential batch effects. Unsupervised clustering based on
t-distribution stochastic neighbor embedding (t-SNE) resolved
major cell types, including epithelial, ciliated epithelial, mesench-
ymal, immune, endothelial, spermatid, and secretory cell popula-
tions. These cells could be annotated as 40 transcriptionally distinct
clusters with cluster-specific markers (Fig. 1b, c and Supplementary
Table 2). Due to technical and financial constraints, not every
organ was analyzed in each monkey or by both data modalities.
Nevertheless, the overall gene expression patterns and cell com-
positions for the same organ or functional related organs (e.g.,
stomach, liver, spleen, and colon from the digestive system) are
generally consistent (Supplementary Figs. 2, 3), highlighting the
reproducibility of our data. In particular, the analysis of multiple
organs from the same monkey enables us to obtain data that are
controlled for uncertain effects (such as age, sex, diet, environment,
and so on).

The scATAC-seq experiment was performed in relatively few
organs (n= 7), including liver, colon, uterus, spleen, lung, heart,
and kidney. To define cell types based on scATAC-seq data in
these organs, we created a count matrix of fragments across the
genome. We demonstrated the overall high quality of scATAC-
seq data based on the enrichment analysis of accessible DNA
sequences relative to the transcriptional start site (TSS) and the
size distribution of unique fragments (Supplementary Fig. 4).
After batch effect correction with Harmony32 as implemented in
ArchR33 (Supplementary Fig. 5a), t-SNE clustering analysis of the
integrated scATAC-seq data revealed ten major cell types
(Fig. 1d), which were annotated based on chromatin accessibility
at the promoter regions of well-characterized marker genes
(Supplementary Fig. 6).

To confirm the consistency of scATAC-seq and scRNA-seq data
for cell type annotation, we first performed cross-modality
integration analysis in organ-matched samples between RNA and
ATAC (n= 7 organs) using a mutual nearest neighbors (MNNs)
approach (Supplementary Fig. 5b–e; see “Methods”). We then
assigned the cell type of each clusters using labels annotated from
scRNA-seq data and identified twelve major cell types in the RNA-
ATAC integration (Supplementary Fig. 5f). All major cell types
were successfully recovered except the plasma cell (Supplementary
Fig. 5b, f). In this manner, cell types of ATAC clusters can be
predicted from RNA clusters on the basis of cross-modality
integration (Supplementary Fig. 5g). We found that cell types
identified by scRNA-seq and scATAC-seq data are highly
consistent (Fig. 1e), with ten ATAC clusters one-to-one linked to
RNA clusters (Supplementary Fig. 5h). Collectively, the above
results highlight the quality of the dataset.

Heterogeneity and dynamics of main cell components across
organs. Epithelial cells account for the largest part in the inte-
grated transcriptomic cell map. To dissect epithelial hetero-
geneity, we extracted epithelial cells and performed unsupervised
sub-clustering analysis (Fig. 2a). The analysis identified 14 epi-
thelial cell clusters (E01-E14), including basal cells, secretory cells,
ciliated cells and non-ciliated cells, according to the unique pat-
tern of marker gene expression (Fig. 2a, b). As expected, secretory
cells were mostly found in epidermis or parenchymatous organs
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such as spleen, kidney, colon and uterus (Fig. 2c). It is worth
noting that there are a large proportion of ciliated epithelial cells
in various tissues (Fig. 2c and Supplementary Fig. 7a, b). To
explore the developmental and functional dynamics of ciliated
epithelial cell subtypes, we performed pseudotime trajectory
analysis using both Monocle34 and RNA velocity35 in organs with
relatively more ciliated epithelial cells, including bladder, breast,
kidney and uterus (Fig. 2d). We observed similar developmental
trajectories of ciliated epithelial cells in the investigated organs,
differentiation from a progenitor-like cell state to a mature state
(Fig. 2e and Supplementary Fig. 7c), suggesting that ciliated
epithelial cells may share a common differentiation trajectory in
different organs. Accordingly, highly expressed genes along the

pseudotime were enriched in gene ontology (GO) terms related to
metabolic processes, cellular response to stimulus and defense
response in a sequential manner (Fig. 2f, g). The analysis is in
agreement with the knowledge that ciliated epithelial cells play an
important role in cleaning pathogenic microorganisms and signal
transduction36.

Stromal cells are an important component of body tissues37. In
the stromal compartment, we identified 11 clusters (S01-S11)
belonging to four major cell types, including endothelial cells,
fibroblasts, FibSmo cells and smooth muscle cells (Fig. 3a–c and
Supplementary Fig. 8a). Although these cell clusters were generally
identified in all organs, the heterogeneity of stromal cells was
observed in different organs (Fig. 3d, e and Supplementary Fig. 8b).

Fig. 1 Single-cell landscapes across 16 organs in cynomolgus monkeys. a Schematic illustration of the workflow. Single-cell transcriptome (scRNA-seq)
analysis was conducted in 16 organs and chromatin accessibility (scATAC-seq) analysis in seven organs from adult cynomolgus monkeys. b Cell type
identification based on scRNA-seq data. In total 17 major cell types and 40 cell subtypes were identified. T-SNE visualizations of cells were colored either
by the major cell types (left) or by the cell subtypes (right). c Heatmap showing the scaled expression levels of cell type-specific marker genes (left).
Expression patterns of 18 representative marker genes are shown on the right. d T-SNE illustration of cell type annotation based on scATAC-seq data
analysis. Ten major cell types were identified from 66,566 cells. Cells were colored by major cell types (the top panel) or by organs (bottom left) in the
t-SNE plots. The bottom right t-SNE plot shows the clustering of cells based on scRNA-seq data for the seven organs with matched RNA-ATAC samples.
e Sankey diagram showing the consistence of cell type annotations between scRNA-seq and scATAC-seq data. Only the seven organs with matched RNA-
ATAC data were used for the analysis. The color code refers to (d).
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Most mesenchymal cells were generated from kidney; almost all
fibroblasts in testis were from S05 (DCNhighAPODhigh fibroblasts);
there were a large number of TAGLNhighMUSTN1low smooth
muscle cells in the aorta organ but few other smooth muscle cells
were enriched in this organ (Fig. 3d). Considering that stromal
cells have a certain differentiation potential38, we applied RNA
velocity analysis to explore developing states of stromal cells

(Fig. 3f). The results suggest that fibroblasts might have the capacity
of differentiation to smooth muscle cells and endothelial
cells (Fig. 3g, h and Supplementary Fig. 8c–e). GO enrichment
analysis revealed that fibroblasts highly expressed genes involved
in collagen metabolic or collagen catabolic processes (Fig. 3i).
In fact, the cluster S06 may be response for the collagen metabolic
function since cells in this cluster highly expressed collagen-
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associated genes (Supplementary Fig. 8f) including type I collagen
genes COL1A1 and COL1A2 (Fig. 3b). Accordingly, gene signature
scores of the collagen metabolic pathway were significantly higher
(Mann–Whitney test, p-value < 0.05) in S06 than other cell clusters
(Supplementary Fig. 8g). Furthermore, to explore the difference of
the metabolic capacity of the fibroblasts cluster S06 in different
organs, we analyzed the expression pattern and signature scores of
genes from the collagen metabolic pathway in the 16 different
organs (Supplementary Fig. 8f, h). We found that organs such as
adipose, aorta, uterus, bladder, and colon showed relatively higher
expression of collagen metabolic genes as well as gene signature
scores than other organs, suggesting that the metabolic capacity of
fibroblasts (S06) varies in different tissues. Therefore, we speculate
that the high potential metabolic capacity of fibroblasts (S06) may
help to synthesize and to secrete collagen.

Immune cells are essential for maintaining body homeostasis39.
We identified 72,284 immune-related cells from the investigated
organs, including B cells, T cells, and myeloid cells. These cells were
further grouped into 13major clusters (I01-I13) based on known or
novel gene signatures (Fig. 4a, b and Supplementary Fig. 9a, b).
Although the annotated immune cell clusters can be found in
all organs (Fig. 4c, d), the relative proportion of immune cells
varied greatly in different organs. For example, we noticed that
the proportion of NKT_cell_CD3Dhigh_GZMKhigh_GZMBhigh

cells largely varied between muscle and other organs (Fig. 4e).
We therefore analyzed the differentially expressed genes between
muscle and other organs in the NKT_cell_CD3Dhigh_GZM-
Khigh_GZMBhigh cells. We observed that mitochondria-related
genes (ATP6, COX3 and ND1) were top differentially expressed
genes in common among all the pairwise comparisons (Fig. 4f and
Supplementary Fig. 9c). This suggests that the NKT_cell_CD3-
Dhigh_GZMKhigh_GZMBhigh cells may have an energy metabolism
function40.

Dynamics of cell–cell interactome. To decipher the dynamics of
intercellular communications in different organs, we employed
CellPhoneDB41 to identify potential ligand-receptor pairs among
the major cell types. We observed that there are strong inter-
cellular interactions among stromal cells, epithelial cells, and
myeloid cells (Fig. 5a, b). Generally, the intensity and pattern of
intercellular interactions were organ-specific (Fig. 5c). For
example, the organs of tongue and uterus showed stronger cel-
lular interactions, while intercellular interactions in testicular
were weaker than other organs (Supplementary Figs. 10, 11). To
chart the rewiring of molecular interactions regulating cell–cell
interactions, we mapped ligand-receptor pairs in specified cell
subpopulations in different organs (Fig. 5d). In brief, the “CD99-
PILRA” ligand-receptor pair was specific in the interactions
between stromal cells and myeloid cells, particularly in adipose,
aorta, and colon. As an inhibitory receptor of immunoglobulin-
like type 2 receptor (PILR), PILRA has been shown to bind to the
CD99 ligand for immune regulation42. The “CCL4L2-VSIR” pair
occurred exclusively in the interaction of myeloid cells and

T cells. In contrast, the “LGALS9-CD44” pair contributed to most
immune cell-related interactions. Accordingly, CD44 plays a role
in innate immunity and subsequent adaptive responses, and has
extensive inflammatory and proliferative effects on a variety of
cell types43,44. Taken together, these results reveal the potential
molecular mechanisms underlying cell–cell communication in
various monkey organs.

Single-cell chromatin landscape of major organs in cyno-
molgus monkey. To deconstruct the gene regulation principles of
complex tissues in cynomolgus monkey, we examined the single-
cell chromatin accessibility landscape of major organs including
colon, kidney, lung, uterus, heart, liver, and spleen by scATAC-
seq. In total, we generated open chromatin profiles from 66,566
individual cells after quality control. We identified 22 distinct cell
clusters in the integrated cell map according to cluster-specific
cis-elements and visualized the single-cell profiles with uniform
manifold approximation and projection (UMAP) (Fig. 6a and
Supplementary Fig. 12a). For example, clusters 1-4 demonstrated
accessibility at cis-elements neighboring B cell genes, such as
CD22, MS4A1, and TNFRSF13C, while the cluster 22 exhibited
accessibility at cis-elements neighboring T cell genes, such as
CD3D and IL7R (Supplementary Fig. 6). We detected 397,773 cis-
elements across all cell clusters, ranging from 3,046 to 75,001
peaks in each cluster (Fig. 6b). As expected, most of cis-regulatory
elements (CREs or ATAC peaks) were derived from promoters,
intronic or distal intergenic regulatory regions. We observed that
most cell clusters were organ-specific (Fig. 6c) and cluster-specific
CREs exhibited organ-specific accessibility accordingly (Fig. 6d),
suggesting that different cell types and organs have distinctive
chromatin landscapes.

Comparison analysis of scATAC-seq and scRNA-seq data
highlighted concordant patterns of chromatin accessibility
and gene expression across clusters, as exemplified by marker
genes (POU2F2 and TCF21) in specific cell types (Fig. 6f).
We also computed the transcription factor (TF) deviation score
(namely motif activity) using chromVAR45, which measured
the accessibility of TF binding “footprint” at genome-wide in
each single cell. Indeed, the motif activity of POU2F2, a B-cell-
specific TF involving in cell immune response by regulating B
cell proliferation and differentiation46,47, was increased in the B
cell cluster (Fig. 6f and Supplementary Fig. 12b). Similarly, the
motif activity for TCF21, an essential regulator of fibroblasts in
development48, was increased in the fibroblast cell cluster
(Fig. 6f and Supplementary Fig. 12b). Furthermore, we applied
Cicero49 to identify co-accessible cis-elements at genome-wide.
As exemplified at the gene locus of EGFL7, we observed
increased enhancer-promoter connections in the endothelial
cell cluster at its promoter (Fig. 6g). The result is consistent
with the role of EGFL7 as an endothelium-specific secreted
factor mostly produced by blood vessel endothelial cells during
development50–52.

Fig. 2 The heterogeneity and developmental state of epithelial cells. a Distribution of 14 epithelial cell subtypes on the UMAP. b Dot plot shows
representative marker genes across the epithelial subtypes. The dot size is proportional to the fraction of cells which express specific genes. The color scale
corresponds to the relative expression of specific genes. c Chord diagram showing the mapping of cells between major cell types and organs. The width of
the arrow represents the proportion of cells in a given cell type. d UMAP showing the distribution of ciliated cell subtypes in bladder, breast, kidney and
uterus. e Monocle2 detects semi-supervised pseudo-temporal trajectories of ciliated cell subtypes in bladder, breast, bladder and uterus. The trajectory is
colored by cell subtypes (top) or pseudotime (bottom). f Heatmap showing the enrichment of pathways in epithelial subtypes of different organs based on
GSEA analyses. Box plots show the distribution of estimated pesudotime of epithelial cells by Monocle2. The boxes indicate the 25% quantile, median
(horizontal line), 75% quantile and Tukey-style whiskers (beyond the box). g Box plots showing the enrichment scores of metabolic-related pathways
(n= 3), stimulus-related pathways (n= 4), and defense-related pathways (n= 3) in different epithelial subtypes of different organs. Each point indicates a
specific pathway. The boxes indicate the 25% quantile, median (horizontal line), 75% quantile.
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Fig. 3 Heterogeneity of stromal cells in different organs. a Distribution of eleven stromal cell subtypes on the UMAP. b Dot plots showing representative
marker genes across the stromal subtypes. Dot size is proportional to the fraction of cells expressing specific genes. Color intensity corresponds to the
relative expression of specific genes. c Feature plot showing the expression of selected marker genes. d Bar plot showing the percentage of cell subtypes in
each organ. e Distribution of stromal cells from different organs on the UMAP. f Unsupervised pseudotime trajectory of the subtypes (S01-S11) of stromal
cells by RNA velocity analysis. Trajectory is colored by cell subtypes. The arrow indicates the direction of cell pseudo-temporal differentiation. g UMAPs
showing the pseudotime differentiation trajectories of fibroblasts, smooth muscle cells and endothelial cells respectively. h Heatmap showing the scaled
expression levels of cell-type-specific marker genes along the pseudotime differentiation trajectory. Examples of marker expression are shown in the right
UMAPs. i Barplot showing the enrichment of functional pathways in fibroblasts (cluster S06). j, k UMAP plot and Box plot showing the distribution of gene
signature scores estimated by UCell based on annotated genes (n= 24) from the collagen metabolic pathway. The boxes indicate the 25% quantile,
median (horizontal line), 75% quantile and Tukey-style whiskers (beyond the box).
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To explore the gene regulatory programs in a specific organ, we
integrated the gene accessibility and gene expression data in colon
using ArchR33. Based on the integration, cell type annotations
from scRNA-seq were transferred to scATAC-seq using the latent
semantic analysis (LSI) (Fig. 7a–c). Therefore, nine cell types were
predicted with a high accuracy in scATAC-seq data (Fig. 7c and
Supplementary Fig. 13a, b). Two rare cell types, monocyte and
cycling B cells, were found in RNA clusters but not in ATAC
clusters. This discrepancy might be due to the integration
algorithm not sensitive enough to rare cells or cells with close
states. We observed that most of ATAC peaks (CREs) demon-
strated differential accessibility among cell clusters (Supplemen-
tary Fig. 13c), confirming distinctive chromatin landscapes in

different cell types. The identities of cell clusters were determined
according to the gene-activity score of known cell-specific
markers (Fig. 7d). For example, the TF HNF4A is a crucial
regulator for enterocyte cell identity53,54. Motif analysis revealed
that different TF binding motifs showed different degree of
enrichment among cell clusters, with the motif enrichment of
HNF4A and HNF4G showing the largest variance (Supplemen-
tary Fig. 13d, e).

CREs and TFs make up the regulatory logic determining the
cell state transition55,56. To study CREs for cell type-specific
transcriptional programs, we identified a total of 44,156 CRE-
gene pairs (peak-to-gene links) in the ATAC-RNA integration
cell clusters (Supplementary Fig. 13f). Similar to the observation

Fig. 4 Immune cell heterogeneity in cynomolgus monkeys. a Distribution of 13 major immune cell types on the UMAP. b Dot plots shows representative
top marker genes across the immune subtypes. c Distribution of immune cells from different organs on the UMAP. d Chord diagram mapping cells
between cell types and organs. The width of the arrow represents the proportion of cell types. e Bar chart showing the proportion of cells from different
organs for each cell subtype. f Scatter plots showing differentially expressed genes (DEGs) between muscle and other organs. Each dot represents a DEG,
and its size is proportional to the fold change.
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of cell-specific CREs (Supplementary Fig. 13c), 36% of the
identified CRE-gene pairs were also specific to a particular cell
type (Supplementary Fig. 14a). Interestingly, we found that CRE-
target genes significantly (hypergeometric test, p-value < 0.001)
overlapped with the differentially expressed genes (DEGs) in each
cell type (Supplementary Fig. 14b), supporting the notion that
CREs regulate the transcription of target genes. In general, CREs
regulated multiple genes, and the number of CREs per target gene
was positively corrected with the CRE-gene association especially
for local associations (Supplementary Fig. 14c–e). These observa-
tions suggest that organ development is subjected to complex
regulation via multiple CREs, in line with recent studies57,58.

Next, we correlated the motif activity with the expression level
of corresponding TFs to systematically deduce either positive or
negative TFs controlling colon development based on whether TF
expression was positively or negatively correlated with their motif
enrichment. Top 30 representative activators were highlighted in

Fig. 7e, including cell identities such as HNF4A, HNF4G and
CDX2 for enterocyte cells (Fig. 7f), POU2F2 and BCL11A for B
cells, and pioneer factors FOXA2, FOXA3 and KLF459 that play
crucial roles in cell fate specification. Generally, the expression of
these factors was closely correlated with the accessibility of open
chromatin regions and their binding motif enrichment (Fig. 7g
and Supplementary Fig. 15).

Furthermore, we sought to demonstrate the power of scATAC-
seq data for reconstructing cellular developmental trajectories in
colon—the analysis would allow to identify key regulators for organ
development at a cell-type level. We focused on the three B cell-
related clusters for trajectory analysis since the B-cell develop-
mental trajectory is a well-defined differential programme in other
model species60–63 that could be used to compare regulatory
mechanisms found in monkey. We set the B cell cluster highly
expressing BCL11A as the start of the trajectory because BCL11A
has been implicated in early B lymphopoiesis60,64–66 (Fig. 7h).

Fig. 5 Dynamics of cell–cell communication networks. a Chordal diagram of the integrated cell–cell interaction network among the major cell types.
b Heatmap showing the interaction intensity of cellular interactome from (a). Block sizes and colors are proportional to the interaction frequency. c Sankey
diagram demonstrating the cell–cell interactions of different cell types in 16 organs. The thickness of lines represents the strength of cell–cell interactions.
d Ligand–receptor interactions between selected cell subtypes in different organs. Each row represents a ligand-receptor pair, and each column defines a
pair of cell–cell interaction. P-values were calculated by CellPhoneDB without multiple comparisons.
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Fig. 6 Single-cell chromatin landscape of major organs in cynomolgus monkeys. a scATAC-seq data analysis revealing 66,566 cells and 22 cell subtypes.
Shown is the t-SNE of cells colored by cell subtypes. b Bar plot showing the number of reproducible peaks identified from each cluster. The peaks are
classified into four categories: distal, exonic, intronic and promoter. c Bar plot dhowing the percentage of cell subtypes in each organ. d Heatmap of 80,270
marker peaks across 22 subclusters identified by bias-matched differential testing (FDR < 0.01 and log2FC > 3). e Heatmap illustrating the chromatin
accessibility and gene expression of 52,229 significantly (Pearson correlation r > 0.45 and adjusted p-value < 0.1, provided by chromVAR) linked peak-gene
pairs. f Profile of POU2F2 and TCF21 chromatin accessibility, gene expression (inferred from scRNA-seq) and TF motif activity. g Visualization of the EGFL7
locus with the maximum number of peak-gene pairs shown by genome browser track (chr15: 1,772,849-1,832,850).
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We analyzed the dynamics of gene scores and expression, CRE
accessibility as well as TF motif enrichment across the differentia-
tion trajectory (Supplementary Fig. 13g). For example, we observed
coordinated sequential activation of JCHAIN based on both the
gene score and gene expression across the trajectory (Fig. 7h).
Consistently, the CRE accessibility in the promoter and distal
enhancers of JCHAIN gradually increased from the early to the

intermediate and then to the effector states (Fig. 7i). To identify
positive TF regulators driving B-cell differentiation, we integrated
motif accessibility with similarly dynamic gene scores or gene
expression patterns across the trajectory. We found that BCL11A,
IRF9, PAX5, EBF1, POU2F2 and FOS, factors that are critical
for B cell lineage specification47,60,67, showed sequential activities
(Fig. 7j).
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Overall, our scATAC-seq data provide a rich resource for
unbiased discovery of cell types and regulatory DNA elements in
cynomolgus monkey.

Cell-type-specific- and organ-specific transcriptional gene
regulatory networks. To infer cell-type and organ-specific tran-
scriptional regulatory networks in a systemic manner, we applied
SCENIC4 to identify TF regulons based on co-expression and
motif enrichment. We identified several TF regulon modules that
were active in either cell-type (n= 8; Supplementary Fig. 16a, b)
or organ-specific manners (n= 6; Fig. 8a, b). Subsequently, we
analyzed representative TF regulons across different cell types
(n= 7; Supplementary Figs. 16c, 18) or different organs (n= 16;
Fig. 8c and Supplementary Fig. 17). The identified TF regulons
were highly cell-type or organ-specific based on regulon activity
scores (Fig. 8d and Supplementary Fig. 16d). Finally, the repre-
sentative TF regulons and their associated target genes were
organized into cell-type-specific or organ-specific gene regulatory
networks (Fig. 8e and Supplementary Fig. 16e).

In the cell-type-specific gene regulatory networks, we observed
that CREM specifically controlled proliferation-related target
genes such as DAZL and HEY2 in spermatid cells68. Immune-
related TFs such as IRF2, FLI1 and IK2F3 were shown to regulate
immune cell identity genes such as S100A4 and CD4869–71. FEV,
a known TF that regulates the development of hematopoietic
stem cells72, extensively link to target genes actively expressed in
immune cells and epithelial cells (Supplementary Fig. 16e).

In the organ-specific gene regulatory networks, we found that
target genes of ZNF770 and CTCF were specifically expressed in
tongue. The spermatid cell-specific TF regulon CREM regulated
genes actively expressed in testis, consistent with its role in
spermatid development68. ETS-factors (ELK3, ERG, and FLI1)
together with pre-/immature-B TFs (POU2F2) positively regulated
genes showed elevated activity in heart and muscle73,74 (Fig. 8e).

To further confirm the unbiased inference of organ-specific TF
regulons based on scRNA-seq data (Fig. 8d), we validated the
organ-specific TF regulons using organ-matched scATAC-seq
data. Chromatin accessibility were measured at cis-elements
containing a specific TF binding motif using chromVAR45 and
accessibility changes were analyzed in binding sites for the above-
identified organ-specific TFs (denoted as TF deviation scores). In
general, TF deviation scores showed similar organ-specific
patterns to regulon activity scores (Fig. 8f). For example, the
HOXD8 regulon was kidney-specific and the TF deviation scores
of HOXD8 showed relatively high levels in kidney (Fig. 8g).
Interestingly, the CRE accessibility and the expression level of the
gene HOXD8 itself exclusively increased in kidney (Supplemen-
tary Fig. 19a, b). These observations indicate that HOXD8 may be
important for regulating the kidney function. Supporting this line
of notion, the defection of HOXD8 is reminiscent of polycystic
kidney disease in mouse75. We also observed that both the
regulon activity and the TF deviation scores of ONECUT1 were

liver-specific (Fig. 8g). ONECUT1 has been shown to play an
important role in liver development and was tightly linked to
hepatic TF networks that include FOXA376–78. These analyses
emphasize the unbiased prediction of organ-specific gene
regulatory networks at the single-cell level.

Comparison of cell landscapes among human, mouse and
cynomolgus monkey. The cynomolgus monkey cell landscape
offers the opportunity to compare the cellular components and
transcriptomic dynamics across species with similar organ com-
positions. Here we integrated scRNA-seq data from the non-
human primate cynomolgus monkey (by our study), human4 and
mouse6 with matched organs/tissues using orthologous genes for
cross-species analysis (Fig. 9a and Supplementary Fig. 20a, b). The
integrated cell map consists of 338,932 cells (Fig. 9b), which were
grouped into 15 major cell types (Fig. 9c). While the proportions of
non-immune cell types were generally stable in the three species,
the compositions of certain types of immune cells largely varied
among the species (Fig. 9d). In particular, monocytes were rare cells
but exclusively detected in monkey. We could rule out the potential
bias due to cross-species integration analysis by checking the cell-
type annotation in the original cell maps (without integration) of
each species (Supplementary Fig. 21 and Supplementary Fig. 22).
Instead, the discrepancy might be related to a bias using different
platforms to capture rare cell types or selecting sample parts for
sequencing. Nevertheless, the expression patterns of representative
marker genes and transcriptomic similarity of cell types were
overall consistent across species (Fig. 9e, f and Supplementary
Fig. 20c, d). Indeed, the gene expression patterns of the major cell
types were conserved in all three species, including immune,
stromal and epithelial cells (Fig. 9g). This observation is consistent
with previous single-cell comparative analyses4,16–18. As expected,
monkey and human showed significantly higher (Mann–Whitney
test, p-value < 0.001) cell-type similarity in terms of orthologous
gene expression than other comparisons (Fig. 9h). Intriguingly,
immune-related cell types (such as macrophages, B cells and
plasma cells) showed higher similarities of gene expression between
human and monkey than non-immune cells (such as ciliated and
epithelial cells). In contrast, stromal cells (including fibroblasts and
FibSmo cells) demonstrated the highest similarities in human-
mouse and monkey-mouse comparisons (Fig. 9h and Supple-
mentary Fig. 20g). These findings indicate that monkeys share
overall highly similar transcriptional programs in the immune
system with human, and thus may provide an ideal benchmark for
investigating the immune response to diseases such as cancer79 and
the current coronavirus disease 2019 (COVID-19)80–86.

Next, we investigated the transcriptomic dynamics of the same
cell types between monkey and other species, with a specific focus
on varying cell types in compositions across species. Particularly,
hepatocytes and ciliated cells showed the lowest similarity
between human and monkey (Fig. 9h and Supplementary Fig. 20c,
d) and were mainly enriched in the monkey organs of liver and

Fig. 7 Integrative analysis of scRNA-seq and scATAC-seq data in colon. a UMAP plot showing the cell types identified by scRNA-seq data in colon.
b UMAP plot showing the joint clustering of scRNA-seq (blue) and scATAC-seq (red) data in colon. Cells in the right UMAP are colored based on cell
types annotated by scRNA-seq data. c UMAP plot showing the colon scATAC-seq cell types, which are inferred by scRNA-seq data. Note that cycling B cell
and monocyte are not captured in scATAC-seq assay. d The heatmap showing the enrichment of the TF motif in cell-type-specific peaks. e Dot plot
showing the identification of positive TF regulators through correlation of chromVAR TF deviation scores and gene expression in cell groups (Pearson
correlation r > 0.5, adjusted p-value < 0.01 and deviation difference in the top 25th percentile). f TF footprint for the HNF4A and HNF4G motif with the
subtracting the Tn5 bias normalization method. g Profile of the HNF4A and HNF4G gene chromatin accessibility, gene expression (inferred from scRNA-
seq), and TF motif activity. h The dynamic of chromatin accessibility (left) and gene expression (right) of the JCHAIN gene along the B cell pseudo-time
trajectory. i Genome track visualization of the JCHAIN locus (chr5: 63,526,764–63,676,765). Inferred peak-to-gene links for distal regulatory elements are
shown below. j Heatmap showing the positive TF regulators for which gene expression is positively correlated with TF deviation (inferred by chromVAR)
across the B cell trajectory.
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stomach, respectively (Supplementary Fig. 20e, f). However,
compared to human and mouse, both cell types were under-
represented in monkey (Fig. 9i). Therefore, hepatocytes and
ciliated cells were two representative cell types that largely
different between monkey and human or mouse. We performed
pairwise comparison of gene expression in liver for hepatocytes
and in stomach for ciliated cells (Fig. 9j). In the differential

analysis of gastric ciliary cells between human and monkey, we
found that LYZ was highly expressed in monkey87. As LYZ has a
dual role of immune defense and digestive function88, this
observation may highlight that monkey has enhanced function of
immune response and digestive system. As a gastric lipase, LIPF is
expressed in human chief cells and promotes lipid metabolism89

and it may help for the fat digestion processes occurring in
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human. ORM1, as an acute-phase protein, was highly specifically
expressed in human hepatocytes and had a certain promoting
effect on liver regeneration90, which might provide a potentially
therapeutic target in hepatopathy.

Finally, we explored conserved and divergent patterns of cell–cell
communications among the three species. We performed inter-
cellular ligand-receptor interaction analyses between each pair of
cell types in each organ using CellPhoneDB41. The number of
significant cell–cell interactions were counted in each species and
then scaled to the range between 0 and 1 for inter-species
comparison (Fig. 10a). Interestingly, the frequency of intercellular
interactions was positively correlated between different species
(Fig. 10b), suggesting that these species generally share common
intercellular signaling pathways mediating cell–cell communica-
tions. The overall intercellular interaction pattern was more similar,
albeit slightly, between human and monkey than that between
human and mouse (Spearman correlations 0.30 versus 0.27;
Fig. 10b). Indeed, the interaction intensities of immune-related
cell–cell interactome and the corresponding top ligand-receptor
pairs were more consistent between human and monkey in the
investigated organs such as kidney and spleen (Fig. 10c, d). In
contrast, intercellular interactions among non-immune cells
preferred to be more consistent between monkey and mouse
(Supplementary Fig. 23).

Discussion
Non-human primates (NHP) are similar to humans in terms of
anatomy, physiology and biochemical metabolism. Cynomolgus
monkeys, a well-established laboratory animal model, have out-
standing contributions to the scientific field91. Although several
single-cell transcriptomic atlases have recently been established in
cynomolgus monkeys based on a few organs (including ovary,
lung, heart and artery)28–30, an organism-wide single-cell map is
still lacking in this model species. Here, we charted a reference
cell map of cynomolgus monkeys (named ‘Monkey Atlas’) using
both scATAC-seq and scRNA-seq data across multiple organs,
allowing deeper insights into the molecular dynamics and cellular
heterogeneity of the cynomolgus monkeys organism.

As a proof of concept, we have performed various analyses
based on the Monkey Atlas to show its wide uses, including the
discovery of new putative cell types, the identification of key
regulators in organ specification, and the ability to compare cell
types across organs and species. For instance, our data demon-
strated that ciliated cells present in various organs of cynomolgus
monkeys and the different ciliated cell subpopulations showed
various functions related to metabolic process, signal transduc-
tion, and cellular response to stimulus (Fig. 2). This observation
somehow expands our notion that ciliated cells are generally
found in respiratory system92 with vital role in cleaning patho-
genic microorganisms and signal transduction36. We also pre-
dicted key regulatory factors controlling gene expression patterns
of different cell types. Consistent with previous studies93–95, SPIB,
POU2F2, SPI1, CEBPD and IRF4 were key regulators in myeloid
cells and the motifs of these TFs were overrepresented in
Monocytes_IL1Bhigh cells than other cells in the SCENIC

analysis. In addition to the discovery of known immune-related
TFs regulating S100A4 and CD48, we also found FEV, a known
TF that regulates the function of hematopoietic stem cells72, has
shown extensive regulation of other TFs in immune cells and
epithelial cells in our study.

Recently, comprehensive reference cell maps across organs
have been established in human4,5 and mouse6,96. Although the
Monkey Atlas did not provide exhaustive characterization of all
organs in cynomolgus monkeys, it does offer a rich dataset of the
most populously studied organs in biology. In this regard, we
performed cross-species integration analysis of cell maps to
explore the molecular and cellular differences among the three
species (human, cynomolgus monkeys and mouse) with com-
prehensive single-cell data. We noticed that cynomolgus monkeys
and human both have abundant immune cells and epithelial cells
and a comparative composition of cell types in matched organs.
This indicates that cynomolgus monkeys are ideal models to
study complex diseases. The differences in cell compositions and
gene expression of human, mouse and monkey cells may provide
scientists with a guide basis for selecting experimental animals.

Although we have provided relatively rich single-cell multi-
omics data in cynomolgus monkey, there are still several limita-
tions of the current study. First, only one male and one female
monkeys were included in the analysis. It is therefore challenging
to explore genes with sex-biased expression and other sex-related
differences in our analysis. Second, the majority of the samples
were taken from a single individual monkey. We cannot assess
the impact of substantial cellular heterogeneity within the same
organ or tissue. Nevertheless, there is a good match of expression
patterns and cell compositions between male and female monkeys
in the organs of liver, heart and colon. Third, there are still many
functionally important organs or tissues (such as ovary, pancreas,
and cerebellum) that have not yet been included in our study due
to limited resources. In addition, some scRNA-seq samples do not
have matched scATAC-seq data, which may restrict unbiased
exploration of DNA regulatory elements in specific organs.

During the revision of our manuscript, we acknowledge that a
very recent study by Han et al. provided a large-scale cell tran-
scriptomic atlas in cynomolgus monkeys97. Both this study and
ours bear striking similarities in terms of investigated organs/
tissues and annotated cell components. Regardless of the differ-
ences of analytical focuses between the two studies, there are at
least three aspects to demonstrate that the two studies are com-
plementary to each other. First, although Han et al. included
more tissue samples (n= 45), there are some organs / tissues
(including breast and muscle) not covered but included in our
data. Second, Han et al. mainly adopted single-nucleus RNA
sequencing (snRNA-seq) to profile frozen tissues. However,
nuclei have lower amounts of mRNA and less complexity of cell
types compared to cells98. In contrast, our scRNA-seq data gen-
erated from fresh tissues provide more information including
both cytoplasmic and nuclear transcripts, allowing to annotate
potential new but rare cell types (such as neutrophils and sper-
matid cells) which were not mentioned by Han et al.98. Lastly,
Han et al. provides only one scATAC-seq sample in kidney, while

Fig. 8 Organ-specific transcriptional regulatory networks. a Identification of regulon modules using SCENIC. Heatmap (left) shows the similarity of
different regulons (n= 87) based on the AUCell score. Eight regulon modules were identified based on regulon similarity. UMAPs (right) illustrate the
average AUCell score distribution for different regulon modules (in different colors). b Wordcloud plots showing enrichment of organs in different regulon
modules. c Representative transcription factors (TFs) and corresponding TF binding motifs in different regulon modules. d Heatmap showing TFs enriched
in different organs. Color depth represents the level of regulon-specific scores. e Integrated gene-regulatory networks of the regulons. Regulon-associated
TFs are highlighted in blue rectangles and target genes in circles. Target genes (in circles) are colored according to their highly expressed organs.
f Heatmap showing gene-activity scores of marker genes in the indicated organs. g Violin plots showing motif activity (measured by TF chromVAR
deviations) of TF regulons highlighted in (f). Box plots indicate the median (horizontal line), second to third quartiles (box).
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the eight samples in seven different organs provided in our study
is a well complement to the cynomolgus monkey database.

In conclusion, our Monkey Atlas together with the cell tran-
scriptomic atlas by Han et al.98 provide valuable information
about the most populous and important cell populations in
cynomolgus monkey, which are stepping stones for preclinical
studies in future.

Methods
Organ tissue collection. Two healthy four-year-old cynomolgus monkeys were
raised from the monkey breeding base of Changchun Biotechnology Development
Co., Ltd., Guangxi, China. The managing protocols of the monkeys were carried
out in accordance with the standard procedures referring to Guide for Care and
Use of Laboratory Animal (2010) and the principles on Animal Welfare Man-
agement (Public Law 99-198). The sample collection of cynomolgus monkey and
research conduction in this study were approved by the Research Ethics Committee
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of the Changchun Biotechnology Development Co., Ltd. (Approval Number:
21001). Tissues were collected from 16 different organs, including trachea, spleen,
stomach, kidney, uterus, tongue, testis, muscle, lung, liver, heart, colon, breast,
bladder, adipose and aorta. Specifically, tissues were firstly cut into 1-2 mm3 pieces
in RPMI-1640 medium (Gibico) with 12% fetal bovine serum (FBS, Gibico), then
enzymatically digested with gentleMACS (Miltenyi) according to manufacturer’s
instruction. Cells were passed through a 70 μm cell trainer (Miltenyi) and cen-
trifuged at 300 g for 5 min at 4 °C. The pelleted cells were re-suspended in red
blood cell lysisbuffer (Beyotime) and incubated 1 min to lyse red blood cells. After
wash twice with 1XPBS (Gibico), the cell pellets were re-suspended in sorting
buffer (PBS with supplemented with 1% FBS). Single cells were captured by the
10 × Genomics Chromium Single Cell 3’ Solution. scRNA-seq library was con-
ducted by Shanghai Xuran Biotechnology and scATAC-seq library was conducted
by LC-Biotechnology (Hangzhou, China) and prepared following the manu-
facturer’s protocol (10 × Genomics). The libraries were subjected to high-
throughput sequencing on the Novaseq6000 platform, and 150-bp paired-end
reads were generated.

scRNA-seq and data processing. The reference genome sequence of Macaca
fascicularis in FASTA format and gene annotation in GTF format were down-
loaded from the ENSEMBL database. Raw scRNA-seq data were aligned to the
M.fascicularis reference genome (macFas6), and subjected to barcode assignment
and unique molecular identifier (UMI) counting using the CellRanger v3.1.0
pipeline (10x Genomics). Filtered count matrices from the CellRanger pipeline
were converted to sparse matrices using Seurat package (v4.0.0)99. Potential
doublets were detected and filtered using DoubletFinder100 based on the expression
proximity of each cell to artificial doublets. Cells which expressed either more than
4000 genes or less than 200 genes, as well as the ones who has more than 20% of
mitochondrial gene expression in UMI counts were removed from the analysis.
Filtered data were then log normalized and scaled to avoid cell-to-cell variation
caused by UMI counts and the percent mitochondrial reads. Specifically, the top
3000 most variably expressed genes were determined using the “vst” method in the
“FindVariableFeatures” function and scaled using “ScaleData” with regression on
the proportion of mitochondrial UMIs (mt.percent).

We used the Robust Principal Component Analysis (RPCA) method in Seurat
for integration of scRNA-seq data from different organs. The “RunPCA” function
was used to compute the top 20 principal components (PCs) using variably
expressed genes. We used UMAP (Uniform Manifold Approximation and
Projection) for visualization of cell clusters. Clustering was performed for
integrated expression values based on shared-nearest-neighbor (SNN) graph
clustering (Louvain community detection-based method) using “FindClusters”
with a resolution of 0.8. We used the “FindAllMarkers” function with default
parameters to identify markers for each cluster. Marker genes for each cluster were
provided in Supplementary Table 2.

Pathway analysis. Gene-set enrichment analysis on differentially expressed genes
(DEGs) in this study was performed by the clusterProfiler package101 in R. Gene-
set variation analysis (GSVA) was conducted using the GSVA102 package.
Expression differences between different cell groups were calculated by the
‘FindMarkers’ function in the Seurat package. UCell103 was used to calculate the
gene signature scores of the collagen metabolic pathway, which includes 24 genes
(CST3, CTSK, CTSS, FAP, MMP14, MMP16, MMP9, VSIR, ADAMTS3, COL1A2,
CREB3L1, F2, F2R, HIF1A, IL6, LARP6, P3H1, RGCC, SERPINF2, SERPINH1,
SMPD3, TNS2, TRAM2, and VIM) annotated in the genome of M.fascicularis.

Trajectory inference using Monocle. Monocle2 (version 2.99.3)34 was used to
infer the epithelial cells state transition. The UMI count matrix of epithelial cells,
gene and cell annotation information derived from Seurat analysis were used to
create a CellDataSet object. Variable genes identified among epithelial cell

subsets were used to sort cells in the pseudotime analysis. We used the
DDRTree method and orderCells function for dimensional reduction and cell
ordering. The ciliated_cell_SCGB1D2high (E09 for the bladder organ) or cilia-
ted_cell_PTGR1high clusters (E12 for other organs) were defined as the root state
of the inferred trajectory.

RNA velocity analysis. The generated bam files by CellRanger were sorted by
SAMTools. The sorted bam files were then used to run the ‘run10x’ command from
Velocyto to generate a loom file. RNA velocity analysis was independently per-
formed in epithelial cells and stromal cells.

Cell–cell interaction analysis. Cell–cell interactions among different cell types
were estimated by CellPhoneDB (v2.1.1)41 with default parameters (10% of cells
expressing the ligand/receptor). In order to run CellPhoneDB analysis in cyno-
molgus monkeys, theM.fascicularis genes were converted to human genes based on
homologous gene mapping. Interactions with p-value < 0.05 were considered to be
significant. We considered only ligand-receptor interactions based on the anno-
tation from the CellPhoneDB database, and discarded receptor-receptor and other
interactions without a clear receptor.

Create a cisTarget database for Macaca fascicularis. We followed the instruc-
tion by SCENIC (https://github.com/aertslab/create_cisTarget_databases) to con-
struct cisTarget database. Since there are no well annotated TF motifs in
M.fascicularis, we instead used the annotated human motifs from the CIS-BP
website (http://cisbp.ccbr.utoronto.ca/) to create cisTarget databases for
M.fascicularis.

Gene-regulatory network. To identify cell-type and organ-specific gene regulatory
networks, we performed Single-cell Regulatory Network Inference and Clustering
(v0.10.0; a Python implementation of SCENIC)3 in our M.fascicularis dataset.
Firstly, the original expression data were normalized by dividing the gene count for
each cell by the total number of cells in that cell and multiplying by 10,000,
followed by a log1p transformation. Next, normalized counts were used to generate
the co-expression module with GRNboost2 algorithm implemented in the arboreto
package (v.0.1.3). Finally, we used pySCENIC with its default parameters to infer
co-expression modules using the above-created RcisTarget database. An AUCell
value matrix was generated to represent the activity of regulators in each cell. The
final cell-type and organ-specific gene regulatory networks (GRNs) consisted of 86
and 87 regulons for our M.fascicularis dataset as shown in Supplementary Fig. 16a
and Fig. 8a. GRNs were visualized by the igraph package in R.

Cross-species analysis of multiple-organ scRNA-seq data. For cross-species
comparison analysis of scRNA-seq data, we only included the one-by-one ortho-
logous genes (n= 12,971) for subsequent analysis. Specifically, cell count matrices
of the orthologous genes were extracted from the integrated scRNA-seq data from
cynomolgus monkey, human and mouse, respectively. Only cells in matched
organs/tissues were considered in the analysis. We then performed cross-species
scRNA-seq data integration using the Seurat’s reciprocal PCA (RPCA) integration
strategy. Downstream cell-cluster-based cell-type annotation and marker gene
analyses were carried out in a similar way as described above.

To compare the cell-type similarity among the three species, we computed the
Spearman’s rank correlation of average expression values of the top 20 marker
genes between different species in a specific cell type (Fig. 9h). We also
validated the correlation analysis by using different sets of top marker genes
(Supplementary Fig. 20g).

To compare the pattern of cell–cell communications among the three species,
potential intercellular ligand-receptor interactions between each pair of cell types in
each organ of each species were predicted by CellPhoneDB. The number of

Fig. 9 Comparison of single-cell landscapes in human, mouse and cynomolgus monkey. a Integration of scRNA-seq data for 16 organs from cynomolgus
monkey, eleven organs from human, and nine organs from mouse. b UMAP showing the distribution of cells from cynomolgus monkey, human and mouse.
c UMAP illustrating the distribution of annotated 15 major cell types. d Bar plot showing the percentage of cells from the three species (left) and the
number of cells in each cell type (right). e Dot plot showing representative marker genes of different cell types. Dot size is proportional to the fraction of
cells expressing specific genes. Color intensity corresponds to the relative expression of specific genes. f Feature Plot showing the expression of selected
marker genes. g Correlation of orthologous gene expression between human, mouse and monkey pseudo-cell types (n= 212) based on the AUROC scores.
The AUROC scores were calculated by MetaNeighbor to measure the similarity of different cell types. The clustered heatmap was plotted using the
‘pheatmap’ function in R, where the complete linkage method was used for hierarchical clustering. h Box plots showing the Spearman correlation of average
gene expression between two different species using top 20 marker genes in a specific cell type. Each dot represents a major cell type (n= 13). Statistical
significance of difference between comparisons was calculated by the two-sided Mann–Whitney U test. The boxes indicate the 25% quantile, median
(horizontal line), 75% quantile. i The proportion of hepatocytes in liver (left) and ciliated cells in stomach (right). j Scatter plots showing a pairwise
comparison of gene expression across species in a specific organ. Left two scatter plots are for comparisons of hepatocyte cells in liver and right for
comparisons of ciliated cells in stomach. Differentially expressed genes (DEGs) are highlighted and representative DEGs are labeled. The size of dots is
proportional to the fold change for a specific gene.
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Fig. 10 Conserved and divergent cell–cell interactions in human, mouse and cynomolgus monkey. a Box plot indicating the relative frequency of cell–cell
interactions among human, monkey and mouse. Each point denotes a specific intercellular interaction in a specific organ. The number of significant cell–cell
interactions are scaled to a range from 0 and 1 for inter-species comparison. b Scatter plots show the Spearman’s rank correlation of cell–cell interaction
frequencies between human and monkey (left) or between human and mouse (right). P-values are provided (two-sided Spearman’s correlation test). The
fitted line and standard errors with 95% confidence intervals are shown. c The heatmaps showing the strength of interactions among the common major
cell types in kidney and spleen in the three species. The size and color of the blocks are proportional to the frequency of interactions. P-values were
calculated by CellPhoneDB without multiple comparisons. d Dot plot of interactions between major cell subtypes in kidneys and spleens of different
species. Each row represents a ligand-receptor pair, and each column defines a cell–cell interaction pair in a species.
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significant cell–cell interactions (p-value < 0.05) were counted in each species for
inter-species comparison.

scATAC-seq data pre-processing. The scATAC-seq sequencing data were pre-
processed by cellranger-atac (v1.2.0). The running parameters were used by default
except for “--force-cells”. The “--force-cell” was set as 10000 for liver, lung and
colon, 8000 for spleen, and default for the rest organs. Subsequent scATAC-seq
data analysis was performed by ArchR (v1.0.1)33. Specifically, the M.fascicularis
genome was constructed and annotated by createGenomeAnnotation and create-
GeneAnnotation function respectively. Then arrow file was created by create-
ArrowFiles function with default parameters. We used the addDoubletScores
function to infer potential doublets, and the filterDoublets function was used to
remove the potential doublets with the “filterRatio= 1.0” parameter. ArchR project
was created by ArchRProject function with default parameters. For dimensionality
reduction, we used the addIterativeLSI function in ArchR with the following
parameters: “iterations= 4, clusterParams= list (resolution= c(0.2, 0.4, 0.6),
sampleCells= 10,000, n.start= 10, maxClusters= 6), varFeatures= 20,000, dim-
sToUse= 1:50, scaleDims= FALSE”. Next, the Harmony method was utilized to
remove the batch effect by the addHarmony function32. AddClusters function was
used to cluster cells by its default parameters. For single-cell embedding, we
selected the reducedDims object with harmony and used addTSNE function with
the parameter “perplexity= 30” for visualization.

Marker genes identification and cluster annotation. To identify the marker
gene, gene scores were calculated when the ArchR project was created and stored in
the arrow file. Then getMarkerFeatures function was used to identify the cluster-
specific “expressed” genes with default parameters. To visualize the marker genes in
the embedding, we used addImputeWeights function to run the MAGIC104 to
smooth gene scores across the nearby cells. For track plot, we used the plot-
BrowserTrack function with default parameters except for “tileSize= 100”.

Peak calling and TF binding motif analysis. Before peak calling, we used the
addGroupCoverages function with default parameters to make pseudo-bulk
replicates. Then the addReproduciblePeakSet function was used with its default
parameters except for “genomeSize= 2.7e09” to call accessible chromatin peaks
using MACS2(v2.2.7.1)105. For cell type-specific peak analysis, the getMarkerFea-
tures function was firstly applied to identify marker peaks. Then the getMarkers
function with the parameter “cutOff= FDR < = 0.01 & Log2FC > = 1” was con-
ducted to get the differential peaks. Motif annotation was added to the ArchR
project by the addMotifAnnotations function. The TF motif enrichment in dif-
ferential peaks was computed by the peakAnnoEnrichment function with the
parameter “cutOff= FDR < = 0.1 & Log2FC > = 0.5”. For motif footprint analy-
sis, we first used the getPositions function to locate relevant motifs; then the
getFootprints function was used to compute interested motif footprints with its
default parameters. Lastly, footprint patterns were illustrated by the plotFootprints
function with the parameter of “normMethod= Subtract, smoothWindow= 10”.

Integrative analysis of scRNA-seq and scATAC-seq data. In order to align and
integrate scATAC-seq data from different organs, we extracted and annotated the
scRNA-seq data with matched scATAC-seq data in the same organ. We first used
the FindTransferAnchors function from the Seurat package and aligned the data
with the addGeneIntegrationMatrix function in ArchR with “unconstrained inte-
gration” mode. Most of the predicted scores were > 0.5 in the result, indicting a
relatively high prediction accuracy. To improve the accuracy of the prediction and
to better integrate the two datasets, a “constrained integration” mode was applied
to integrate the scATAC-seq and scRNA-seq data. Briefly, we annotated the
scATAC-seq data with cell types based on the gene scores of scATAC-seq. Then, a
restricted list was created to make sure that gene expression similarity was calcu-
lated only in the same cell type for both scATAC-seq and scRNA-seq data. For
peak-to-gene linkage analysis, we used the addPeak2GeneLinks function to com-
pute peak accessibility and gene expression with the parameters of “corCutOff=
0.45, resolution= 1”.

Statistical and reproducibility. If not specified, all statistical analyses and data
visualization were done in R (version 4.0.0). We state that no statistical method was
used to predetermine sample size. No data were excluded from the analyses and the
experiments were not randomized. The Investigators were not blinded to allocation
during experiments and outcome assessment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study have been deposited into CNGB
Sequence Archive (CNSA) of China National GeneBank DataBase (CNGBdb) with
accession numbers “CNP0002427” for scRNA-seq data and “CNP0002441” for scATAC-

seq data. Gene counts and metadata are available at “Zenodo [https://doi.org/10.5281/
zenodo.5881495]”. The Gene Expression Omnibus (GEO) accession number for scRNA-
seq is “GSE196792”. The GEO accession number for scATAC-seq is “GSE196791”. We
also provided an interactive website [https://biobigdata.nju.edu.cn/MonkeyAtlas/] for
exploration of marker gene expression based on scRNA-seq data. The public dataset used
in this study for cross-species comparisons between humans, mice, and monkeys can be
accessed as below: the human count matrix is available at “human count matrix [https://
figshare.com/articles/HCL_DGE_Data/7235471]”; the mouse count matrix is available at
“mouse count matrix [https://figshare.com/articles/MCA_DGE_Data/5435866]”. All
other relevant data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corresponding author upon
reasonable request.
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