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Abstract 

Non-human primates (NHP) are attractive laboratory animal models that accurately reflect 

both developmental and pathological features of humans. Here we present a compendium 

of cell types from the cynomolgus monkey Macaca fascicularis (denoted as ‘Monkey Atlas’) 

using both single-cell chromatin accessibility (scATAC-seq) and RNA sequencing (scRNA-seq) 

data at the organism-wide level. The integrated cell map enables in-depth dissection and 

comparison of molecular dynamics, cell-type composition and cellular heterogeneity across 

multiple tissues and organs. Using single-cell transcriptomic data, we inferred pseudotime 

cell trajectories and cell-cell communications to uncover key molecular signatures underlying 

their cellular processes. Furthermore, we identified various cell-specific cis-regulatory 

elements and constructed organ-specific gene regulatory networks at the single-cell level. 

Finally, we performed a comparative analysis of single-cell landscapes among mouse, 

cynomolgus monkey and human, and we showed that cynomolgus monkey has significantly 

higher degree of cell-type similarity to human than mouse. Taken together, our study 

provides a valuable resource for NHP cell biology.  
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Introduction  

Non-human primates (NHP) are phylogenetically close to humans and show various 

human-like characteristics, including genetics, organ development, physiological function, 

pathological response and biochemical metabolism. Hence NHP are extremely valuable as 

experimental animal models in medical research and drug development1. Since cells are the 

fundamental unit of all life, direct comparison of cell identities and cell-type compositions 

between organisms across organs would help to transfer knowledge in primates to medical 

research. In this regard, it is of vital importance to understand the cellular composition and 

heterogeneity of primate organs.  

 

Rapid advances in single-cell multi-omics technologies have enabled molecular quantification 

of thousands of cells at once, leading to meticulous insight into organ compositions and 

mechanisms driving cellular heterogeneity
2
. Previous studies

3-7
 have mapped the single-cell 

landscapes across multiple organs in humans and mice, expanding our knowledge about the 

cellular heterogeneity underlying normal development and aging. Three-dimensional 

multicellular culture systems combined with single-cell transcriptome sequencing technology 

enables to chart the cellular and molecular dynamic changes during organ growth and 

development
8-10

. In addition, extensive efforts
9-12

 have been achieved to investigate how cells 

are perturbed in various disease conditions, including cancer and neurological disorders.  

 

Mice have long been used as a representative model organism for mammalian development 

and physiology. Recently, extensive comparative analyses based on single-cell 

transcriptomics data have shown that both cell types and associated gene regulatory 

networks are conserved between human and mouse13-20, which provides a new perspective 

for explaining disease mechanisms and finding targets for disease intervention. However, it 

has been widely recognized that there are significant differences between mice and humans 

in terms of development and physiology21. From genetic perspective, primate experiments 

are more useful as they can better simulate human diseases and promote scientific research 

owing to high genetic similarity between primates and humans22. Although the potential 
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importance and values of NHP models in basic research are indispensable, an organism-wide 

single-cell atlas is still pending for primates. Here we present a compendium of single-cell 

regulomic and transcriptomic data from Macaca fascicularis (cynomolgus monkeys) that 

comprises 40 distinct cell types from 16 organs and tissues, greatly extending our current 

view
23-25

 of single cell landscapes in this model species. This cell atlas -- which we denote 

‘Monkey Atlas’ -- represents a new resource for NHP cell biology.  

 

Results 

Mapping a cynomolgus monkey multi-organ cell atlas by multi-omic analysis  

To generate a reference cell map of monkey, we performed both single-cell RNA sequencing 

(scRNA-seq; 10x Genomics; n=174,233) and scATAC-seq (10x Genomics; n=66,566) on more 

than 240,000 high-quality cells from 16 tissues and organs in one male or/and one female 

cynomolgus monkeys (Fig. 1a and Supplementary Fig. 1). We integrated all of the scRNA-seq 

data using canonical correlation analysis (CCA)26 to correct for batch effects. Unsupervised 

clustering based on t-distribution stochastic neighbor embedding (t-SNE) resolved major cell 

types, including epithelial, ciliated epithelial, mesenchymal, immune, endothelial, spermatid, 

and secretory cell populations. These cells could be subdivided into 40 transcriptionally 

distinct clusters with cluster-specific markers (Fig. 1b,c). Due to technical and financial 

constraints, not every organ was analyzed in each monkey or by data modality. Nevertheless, 

the overall gene expression patterns or cell composition for the same organs or functional 

related organs (e.g., stomach, liver, spleen and colon from the digestive system) are quite 

similar (Supplementary Figs. 2 and 3); the analysis of multiple organs from the same monkey 

enable us to obtain data that is controlled for uncertain effects (such as age, sex, diet, 

environment and so on).  

 

To analyze scATAC-seq cells from the organs of liver, colon, uterus, spleen, lung, heart and 

kidney, we created a count matrix of fragments across the genome. We demonstrated the 

overall high quality of scATAC-seq data based on the enrichment analysis of accessible DNA 

sequences relative to the transcriptional start site (TSS) and the size distribution of unique 
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fragments (Supplementary Fig. 4). T-SNE clustering analysis of scATAC-seq data revealed ten 

major cell types annotated based on chromatin accessibility at the promoter regions of 

well-characterized marker genes (Fig. 1d). For the organs with matched scRNA-seq and 

scATAC-seq data, we performed cross-modality integration analysis using mutual nearest 

neighbors (MNNs) approach (Supplementary Fig. 5; see Methods). We assigned cell type 

cluster labels from matched scRNAseq data to scATAC-seq cells. This revealed that cell types 

identified by scRNA-seq and scATAC-seq are highly consistent (Fig. 1e), highlighting the 

quality of the dataset.  

 

Epithelial cell heterogeneity and developmental dynamics across organs  

Epithelial cells account for the largest part in the integrated cell map. To dissect epithelial 

heterogeneity, we extracted epithelial cells and performed unsupervised sub-clustering 

analysis (Fig. 2a). The analysis identified 14 cell clusters (E01-E14), including basal cells, 

secretory cells, ciliated cells and non-ciliated cells, according to distinct pattern of marker 

gene expression (Fig. 2a,b). It is worth noting that we observed a large proportion of ciliated 

epithelial cells in various tissues (Fig. 2c and Supplementary Fig. 6a,b). Ciliated cells play an 

important role in cleaning pathogenic microorganisms and signal transduction27. Gene 

ontology (GO) enrichment analysis based on differentially expressed genes revealed ciliated 

cell subpopulations with different biological functions. For example, subpopulations of E09 

(SCGB1D2
high

 ciliated cells) and E12 (GLIPR1L1
low

) enriched for pathways related to cellular 

response to stimulus, cell communication and intracellular signal transduction, whereas E05 

subpopulation related to RNA biosynthetic process (Fig. 2d).  

 

To explore the developmental dynamics of epithelial cells, we performed pseudotime 

trajectory analysis using both Monocle2
28

 and RNA velocity
29

. We determined the cluster E03 

(CYB5A
high

 secretory cells) as the start point of trajectory based on estimated latent time by 

RNA velocity (Fig. 2f). Accordingly, highly expressed genes in E03 are functional related to 

ATP metabolic process and purine ribonucleoside monophosphate metabolic process (Fig. 

2g). Epithelial cells were arranged into a trajectory with two bifurcations and three cell states 

with E03 as the root (Fig. 2e). It is worth noticing that ciliated epithelial cells are in different 
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states of differentiation. For example, cluster E06 was predominant in bifurcation 2 (Fig. 2h 

and Supplementary Fig. 6e). Some marker genes are not in the E06 subgroup, such as CST6, 

PDZK1IP1, KRT19, and PSCA, they had low relative expression in state 3 (Supplementary Fig. 

6d). From the perspective of sample type, almost all of the epithelial cells of testis tissue are 

present in bifurcation 2 (major in state3) (Fig. 2h and Supplementary Fig. 6c). Differential 

genes such as GABRR1, GRIK2, CEP41, CFAP20, TPGS1 in state3 showed enrichment in 

presynaptic membrane potential and protein polyglutamylation (Fig. 2i). This may be due to 

the ability of testis to produce sperm and male hormones. We speculate that GLIPR1L1high 

ciliated cells are the main effector epithelial cells of the testis.  

 

Stromal cellular heterogeneity 

Stromal cells are an important component of body tissues30. In the stromal compartment, we 

identified 11 clusters (S01-S11) belonging to four major cell types including endothelial cells, 

fibroblasts, FibSmo cells and smooth muscle cells (Fig. 3a-c and Supplementary Fig. 7a). 

Although these cell clusters were identified in all organ tissues, the heterogeneity of stromal 

cells was observed in different organs (Fig. 3d,e and Supplementary Fig. 7b). Most 

mesenchymal cells were generated from kidney; almost all fibroblasts in testis are from S05 

(DCNhighAPODhigh fibroblasts); there are a large number of TAGLNhighMUSTN1low smooth 

muscle cells in aorta tissues but few other smooth muscle cells (Fig. 3d). Considering that 

stromal cells have a certain differentiation potential
31

, we applied RNA velocity analysis to 

explore developing states of stromal cells (Fig. 3f). The results show that fibroblasts have the 

capacity of differentiation to smooth muscle cells and endothelial cells (Fig. 3g,i and 

Supplementary Fig. 7c-e). It is worth noting that fibroblasts of cynomolgus monkeys have a 

strong metabolic ability rather than the ability to synthesize collagen (Fig. 3h). 

 

Heterogeneity of immune cells 

Immune cells are essential for maintaining body homeostasis32. We identified 72,284 

immune-related cells from the investigated organs, including B cells, T cells and myeloid cells, 

and these cells were further grouped into 13 major clusters (I01-I13) based on known or 

novel gene signatures (Fig. 4a,b and Supplementary Fig. 8a,b). Although the annotated 
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immune cell clusters can be found in all organs (Fig. 4c,d), the relative proportion of immune 

cells varied greatly in different organs. For example, We noticed that 

NKT_cell_CD3Dhigh_GZMKhigh_GzmBhigh cells vary widely in muscle tissues compared to other 

tissues (Fig. 4e). Subsequently, we analyzed differentially expressed genes of 

NKT_cell_CD3D
high

_GZMK
high

_GzmB
high

 cells in muscle tissues. We observed that 

mitochondria-related genes (ATP6, COX3 and ND1) were the main differentially expressed 

genes in NKT_cell_CD3Dhigh_GZMKhigh_GzmBhigh cells of muscle tissue compared to other 

tissues (Fig. 4f and Supplementary Fig. 8c). 

 

Dynamics of cell-cell interactome 

To decipher the dynamics of intercellular communications in different tissues, we employed 

CellPhoneDB to identify potential ligand-receptor pairs among the major cell types. We 

observed that there are strong intercellular interactions among stromal cells, epithelial cells 

and myeloid cells (Fig. 5a,b). Generally, the intensity and pattern of cellular interactions 

between cells are tissue-specific (Fig. 5c). For example, tongue and uterus tissues show 

stronger cellular interactions, while intercellular interactions in testicular tissue is weaker 

than other tissues (Supplementary Figs. 9 and 10). To chart the rewiring of molecular 

interactions regulating cell-cell interactions, we mapped ligand-receptor pairs in specified 

cell subpopulations in different organs (Fig. 5d). In brief, the “CD99-PILRA” ligand-receptor 

pair is specific in the interaction between stromal cells and myeloid cells, particularly in 

adipose, aorta, and colon. As an inhibitory receptor of immunoglobulin-like type 2 receptor 

(PILR), PILRA has been shown to bind to the CD99 ligand for immune regulation33. The 

“CCL4L2-VSIR” pair occurred exclusively in the interaction of myeloid cells and T cells. In 

contrast, the “LGALS9-CD44” pair contributed to most immune cell related interactions. 

Accordingly, CD44 plays a role in innate immunity and subsequent adaptive responses, and 

has extensive inflammatory and proliferative effects on a variety of cell types
34,35

. Taken 

together, these results predicted the possible molecular mechanisms underlying cell-cell 

communication in various tissues (Fig. 5d).  
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Single-cell chromatin landscape of major organs in cynomolgus monkey 

To deconstruct the gene regulation principles of complex tissues in cynomolgus monkey, we 

examined the single-cell chromatin accessibility landscape of major organs including colon, 

kidney, lung, uterus, heart, liver and spleen by scATAC-seq. In total, we generated scATAC-seq 

profiles from 66,566 cells after quality control. We identified 22 distinct cell clusters in the 

integrated cell map according to cluster-specific cis-elements and visualized single-cell 

profiles with uniform manifold approximation and projection (UMAP) (Fig. 6a and 

Supplementary Fig. 11a). For example, clusters 1-4 demonstrated accessibility at 

cis-elements neighboring B cell genes, including CD22, MS4A1 and TNFRSF13C, while the 

cluster 22 demonstrated accessibility at cis-elements neighboring T cell genes, including 

CD3D and IL7R (Supplementary Fig. 12). We detected 397,773 cis-elements across all 

clusters, ranging from 3,046 to 75,001 peaks in each clusters (Fig. 6b). As expected, most of 

cis-elements were derived from promoters, intronic or distal intergenic regulatory regions. 

We observed that most cell clusters are organ-specific (Fig. 6c) and cluster-specific 

cis-elements exhibited organ-specific accessibility accordingly (Fig. 6d).  

 

Comparison analysis of scATAC-seq and scRNA-seq data highlighted concordant patterns of 

chromatin accessibility and gene expression across clusters, exemplified by marker genes 

(POU2F2 and TCF21) in specific cell types (Fig. 6e,f). We also computed TF deviation scores 

using chromVAR
36

, which measured the accessibility of TF binding “footprint” genome-wide 

in each single cell. Indeed, TF deviation scores for POU2F2, a B-cell-specific transcription 

factor involves in cell immune response by regulating B cell proliferation and 

differentiation37,38, were increased in B cell clusters (Fig. 6f and Supplementary Fig. 11b). 

Similarly, the TF deviation scores for TCF21, an essential regulator of fibroblasts in 

development
39

, were increased in the fibroblasts cell cluster (Fig. 6f and Supplementary Fig. 

11b). Furthermore, we applied Cicero
40

 to identify co-accessible cis-elements at 

genome-wide, as exemplified at the gene locus of EGFL7 (Fig. 6g), an endothelium-specific 

secreted factor mostly produced by blood vessel endothelial cells during development41-43. 

We observed increased enhancer-promoter connections in endothelial cell clusters at the 

promoter of EGFL7. Overall, our scATAC-seq data provide a rich resource for unbiased 
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discovery of cell types and regulatory DNA elements in cynomolgus monkey.  

 

Cell-type specific and organ-specific transcriptional gene regulatory networks  

TFs are important regulators controlling cell identity and tissue-specific gene expression. To 

infer cell-type and organ-specific transcriptional regulatory programs based on the monkey 

cell transcriptional landscape, we applied SCENIC (single-cell regulatory network inference 

and clustering) to identify TF regulons. We identified several TF regulon modules that were 

active in either cell-type (n=8; Supplementary Fig. 13a,b) or organ-specific manners (n=6; Fig. 

7a,b). Subsequently, we analyzed representative TF regulons across different cell types (n=7; 

Supplementary Figs. 13c and 15) or different organs (n=16; Fig. 7c and Supplementary Fig. 

14). The identified TF regulons are highly cell-type or organ-specific based on regulon activity 

scores (Fig. 7d and Supplementary Fig. 13d). Finally, The representative TF regulons and 

their associated target genes were organized into cell-type specific or organ-specific gene 

regulatory networks (Fig. 7e and Supplementary Fig. 13e).  

 

In the cell-type specific gene regulatory networks, we observed that CREM specifically 

controls proliferation-related target genes such as DAZL and HEY2 in spermatid cells. 

Immune-related TFs such as IRF2, FLI1 and IK2F3 are shown to regulate immune cell identity 

genes such as S100A4 and CD48. FEV, a known TF that regulates the development of 

hematopoietic stem cells
44

, extensively link to target genes actively expressed in immune 

cells and epithelial cells (Supplementary Fig. 13e).  

 

In the organ-specific gene regulatory networks, we found that target genes of ZNF770 and 

CTCF are specifically expressed in tongue. The spermatid cell-specific TF regulon CREM 

regulated genes actively expressed in testis. ETS-factors (ELK3, ERG, and FLI1) together with 

pre-/immature-B TFs (POU2F2) positively regulated genes showed elevated activity in heart 

and muscle (Fig. 7e).  

 

To further confirm the unbiased inference of organ-specific TF regulons based on scRNA-seq 

data (see Fig. 7d), we validated the organ-specific TF regulons using organ-matched 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.22.477221doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.22.477221


scATAC-seq data. We therefore measured chromatin accessibility at cis-elements containing a 

specific TF binding motif using chromVAR36 and accessibility changes were analyzed in 

binding sites for the above identified organ-specific TFs (denoted as TF deviation scores). In 

general, TF deviation scores showed similar organ-specific patterns to regulon activity scores 

(Fig. 7f). For example, the HOXD8 regulon is kidney-specific and showed high TF deviation 

scores in kidney, while the regulon activity and TF deviation scores of ONECUT1 are both 

liver-specific (Fig. 7g). These analyses emphasize the unbiased prediction of organ-specific 

gene regulatory networks at the single-cell level.  

 

Comparison of cell landscapes among human, mouse and cynomolgus monkey 

The cynomolgus monkey cell landscape offers the opportunity to compare the cellular 

components and transcriptomic dynamics across species with similar organ compositions. 

Here we integrated scRNA-seq data from the non-human primate cynomolgus monkey (by 

this study), human16 and mouse45 with matched organs/tissues using orthologous genes for 

cross-species analysis (Fig. 8a and Supplementary Fig. 16a,b). The integrated cell map 

consists of 338,932 cells (Fig. 8b), which were grouped into 15 major cell types (Fig. 8c and 

Supplementary Fig. 16c,d). Although the cell-type compositions largely varied in the three 

species (Fig. 8d,i), the expression patterns of representative marker genes and 

transcriptomic similarity of cell types were overall consistent across species (Fig. 8e,f and 

Supplementary Fig. 14e,f). Consistent with previous single-cell comparative analyses
3,18-20

, 

the gene expression patterns of the major cell types are conserved in all three species, 

including immune, stromal and epithelial cells (Fig. 8g). As expected, cynomolgus monkey 

and human showed significantly higher cell-type similarity in orthologous gene expression 

than comparisons in other species (Fig. 8h).  

 

We next investigated the transcriptomic dynamics of the same cell types among different 

species, with a specifical focus on varying cell types across species such as hepatocytes and 

ciliated cells (Fig. 8i). To this end, we performed pairwise comparison of gene expression in 

liver for hepatocytes and in stomach for ciliated cells (Fig. 8j). In the differential analysis of 

gastric ciliary cells between human and cynomolgus monkey, we found that LYZ was highly 
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expressed in cynomolgus monkeys
46

. LYZ has a dual role of immune defense and digestive 

function47. As a gastric lipase, LIPF is expressed in human chief cells and promotes lipid 

metabolism48. ORM1, as an acute-phase protein, was highly specifically expressed in human 

hepatocytes and had a certain promoting effect on liver regeneration.  

 

Discussion 

Non-human primates (NHP) are similar to humans in terms of anatomy, physiology and 

biochemical metabolism. Cynomolgus monkeys, a well-established laboratory animal model, 

have outstanding contributions to the scientific field49. Although several single cell 

transcriptomic atlases have recently been established in cynomolgus monkeys based on a 

few organs (including ovary, lung, heart and artery) 23-25, an organism-wide single-cell map is 

still lacking in this model species. Here, we chart a reference cell map of cynomolgus 

monkeys (named ‘Monkey Atlas’) using both scATAC-seq and scRNA-seq data across multiple 

organs, allowing us to gain deeper insights into the molecular dynamics and cellular 

heterogeneity of the cynomolgus monkeys organism.  

 

As a proof of concept, we have performed various analyses based on the Monkey Atlas to 

show its wide uses, including the discovery of new putative cell types, the identification of 

key regulators in organ specification, and the ability to compare cell types across organs and 

species. For instance, our data shows that ciliated cells present in various organs of 

cynomolgus monkeys and the different ciliated cell subpopulations show various functions 

related to metabolic process, signal transduction, and cellular response to stimulus (Fig. 2). 

This observation somehow expands our notion that ciliated cells are generally found in 

respiratory system50 with vital role in cleaning pathogenic microorganisms and signal 

transduction27.  

 

Recently, comprehensive reference cell maps across organs have been established in 

human
3,51

 and mouse
45,52

. Although the Monkey Atlas does not provide exhaustive 

characterization of all organs in cynomolgus monkeys, it does offer a rich dataset of the most 
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populously studied organs in biology. In this regard, we performed cross-species integration 

analysis of cell maps to explore the molecular and cellular differences among the three 

species with comprehensive single cell data. We noticed that cynomolgus monkeys and 

human both have abundant immune cells and epithelial cells and a comparative composition 

of cell types in matched organs. This indicates that cynomolgus monkeys are ideal models to 

study complex diseases.  

 

In conclusion, the Monkey Atlas provides valuable information about the most populous and 

important cell populations in NHP, and presents a foundation for preclinical studies.  

 

Methods  

Organ tissue collection 

The cynomolgus monkey sample collection and research conducted in this study were 

approved by the Research Ethics Committee of the Changchun Biotechnology Development 

Co., Ltd. (Approval Number: 21001). Tissues were collected from 16 organs including trachea, 

spleen, stomach, kidney, uterus, tongue, testis, muscle, lung, liver, heart, colon, breast, 

bladder, adipose and aorta. To be more specific, tissues were cut into 1-2 mm3 pieces in 

RPMI-1640 medium (Gibico) with 12% fetal bovine serum (FBS, Gibico). Then the tissues 

were enzymatically digested with gentleMACS (Miltenyi) according to manufacturer’s 

instruction. Cells were passed through a 70 μm cell trainer (Miltenyi) and centrifuged at 300 

g for 5 min at 4 ℃. The pelleted cells were re-suspended in red blood cell lysisbuffer 

(Beyotime) and incubated 1 min to lyse red blood cells. After wash twice with 1XPBS (Gibico), 

the cell pellets were re-suspended in sorting buffer (PBS with supplemented with 1% FBS). 

The single cells were captured in the 10× Genomics Chromium Single Cell 3’ Solution, and 

RNA-seq libraries were prepared following the manufacturer’s protocol (10× Genomics). The 

libraries were subjected to high-throughput sequencing on the Novaseq6000 platform, and 

150-bp paired-end reads were generated. 
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scRNA-seq and data processing 

Single-cell gene expression data were aligned to the Macaca fascicularis reference genome 

(macFas6) and processed for barcode assignment and unique molecular identifier (UMI) 

counting using the CellRanger v3.1.0 pipeline (10x Genomics). Filtered count matrices from 

the CellRanger pipeline were converted to sparse matrices using Seurat package (v4.0.0) in 

R
53

, and cells expressing more than 4000 genes or less than 200 genes and more than 20% of 

mitochondrial genes expressing in UMI counts were filtered out before downstream analysis. 

Filtered data were then log normalized and scaled, with cell-cell variation due to UMI counts 

and percent mitochondrial reads regressed out. Then, we log normalised and scaled the 

filtered data to avoid cell-to-cell variation caused by UMI counts and percent mitochondrial 

reads removal.  

 

As the samples involved the integration of large multi-organ samples such as trachea and 

spleen, Seurat's Robust Principal Component Analysis (RPCA) method was adopted for data 

integration. Cell clustering was performed at 0.8 resolution using the "FindClusters" function, 

and cell identity were defined using the top 20 principal components (PCs), and 17 clusters 

were identified. Dimensionality was reduced by the "RunUMAP" function and by visual 

Uniform Manifold Approximation and Projection (UMAP). Different types of cells were 

extracted for subgroup cell clustering, and their first 20 PCS were used for clustering. In the 

end, we identified 40 different subgroups. To ensure the accuracy of subsequent analysis, all 

40 different subgroups were processed to remove double cells. Wilcoxon rank-sum test 

(FindAllMarkers function with default parameters) was used to identify markers for each 

cluster. Marker genes for each cluster are shown in Supplementary Table S1.  

 

Creating a reference package for Macaca fascicularis 

First, the FASTA and GTF files of the Macaca fascicularis reference genome were downloaded 

from the Ensembl database (version 6.0). Then, GTF files were filteded since it contains 

entries for non-polyA transcripts that overlap with protein-coding gene models. Because of 

the overlapping annotations, these entries can cause reads to be flagged as mapped to 

multiple genes (multi-mapped). Therefore, these entries were removed from the GTF file. 
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Finally, we create a Reference Package using genome FASTA and filtered GTF files. 

 

Gene-set enrichment analysis 

Gene-set enrichment analysis (GSEA) is a gene-based enrichment analysis method. The 

clusterProfiler package
54

 in R was performed in all the gene-set enrichment analyses in this 

study. 

 

Gene-set variation analysis 

Gene-set variation analysis (GSVA)55 starts from gene expression amount and multiple 

pathway information. Unsupervised samples were classified according to pathway activity 

changes. Three states defined by pseudo time analysis were choose as groups and genes 

corresponding to the three states were utilized to conduct Gene-set variation analysis in R. 

 

Trajectory analysis using Monocle v.2 

R package Monocle2 (version 2.99.3) was used to illustrate the epithelial cells state transition. 

In general, UMI count matrix of epithelial cells, cell phenotype information and gene 

annotation information, and the negbinomial.size() parameter were used to create a 

CellDataSet object. The variable genes obtained from epithelial cell types were detected by 

Seurat to sort cells in pseudotime. We used the DDRTree method and orderCells function for 

dimensional reduction and cell ordering. The secretory_cell_CYB5Ahigh cluster (E03) was 

defined as the root state argument and aligned via the “orderCells” function. 

 

Trajectory analysis using RNA velocity 

We sorted the possorted_genome_bam.bam file in the outs folder generated after each 

organ sample ran CellRanger, and then use Velocyto's run10x function to generate loom files. 

To run run10x, we needed to prepare rmsk.gtf and the genes.gtf of the genome as input files. 

In this paper, RNA Velocity was used for trajectory analysis of epithelial cells and stromal 

cells. 
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Cell-cell interaction analysis 

Cell-cell interactions among the cell types were estimated by CellPhoneDB (v2.1.1)56 with 

default parameters (10% of cells expressing the ligand/receptor) and using version 2.0.0 of 

the database. We converted the normalized Macaca fascicularis genes into human 

homologous and used them as inputs. Interactions with p-value < 0.05 were considered 

significant. We considered only ligand-receptor interactions based on the annotation from 

the database, for which only and at least one partner of the interacting pair was a receptor, 

thus discarding receptor-receptor and other interactions without a clear receptor. 

 

Create cisTarget databases for Macaca fascicularis 

Firstly, chromosomes were cut at start and stop sites. EnsemblID, SymbolID, and annotation 

information from the GTF file were extracted to make the genes.bed file. The fasta file was 

generated from genes.bed file (10kb up- and 10kb downstream of the TSS) with 'bedtools 

getfasta'. Human motifs were downloaded from the CIS-BP database. Then, we extracted 

Motif_ID and TF_Name from the motifs file and outputted them as motifs_list. After, we 

converted all motif files in the pwms_all_motifs folder into motif.cb files. Finally, the fasta file, 

motifs_list file, and motif.cb files were used as input files to create cisTarget databases for 

Macaca fascicularis(macFas6).  

 

Gene regulatory network  

To identify cell type-specific gene regulatory networks, we performed Single-cell Regulatory 

Network Inference and Clustering (v0.10.0; a Python implementation of SCENIC)3 in our 

Macaca fascicularis dataset. First, the original expression data were normalized by dividing 

the gene count for each cell by the total number of cells in that cell and multiplying by 

10,000, followed by a log1p transformation. Next, we used the normalized counts to 

generate the co-expression module, using the GRNboost2 algorithm implemented in the 

arboreto package(v.0.1.3). Finally, we used pySCENIC with its default parameters to infer 

co-expression modules, cis-regulatory were used to filter motif analysis (RcisTarget, using 

macFas6 motif set), in order to only retain the corresponding transcriptional speculative 

direct binding target module enrichment factor (TF). The rest of the modules were trimmed 
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due to the lack of motif target support. An AUCell value matrix was generated to represent 

the regulators in each cell with different activity. The final gene regulatory networks 

consisted of 86 regulons for our Macaca fascicularis dataset as shown in figure 7a. GRNs can 

be visualized using igraph package in R. 

 

scATAC-seq data pre-processing 

The scATAC-seq sequencing data are pre-processed by cellranger-atac (v1.2.0) with the count 

command line. The running parameters are used by default except for “--force-cells=”. The 

“--force-cell” is 10000 for liver, lung and colon, 8000 for spleen, and the rest of the organs 

have no restriction on this parameter. For the subsequent scATAC-seq data processing and 

analysis, we used the ArchR (v1.0.1) package
57

. Macaca fascicularis genome were 

constructed and annotated by createGenomeAnnotation and createGeneAnnotation 

function respectively. Then arrow file were created by createArrowFiles function with the 

default parameters. We used the addDoubletScores function to infer the doublet, 

filterDoublets function was used to remove the potential doublets with the “filterRatio = 1.0” 

parameter. ArchR project was created by ArchRProject function with the default parameters. 

For dimensionality reduction, we use the addIterativeLSI function in ArchR with the following 

parameters: “iterations = 4, clusterParams = list (resolution = c(0.2, 0.4, 0.6), sampleCells = 

10000, n.start = 10, maxClusters = 6), varFeatures = 20000, dimsToUse = 1:50, 

scaleDims=FALSE”. Next, the Harmony package were utilized to remove the batch effect by 

addHarmony function
58

. AddClusters function was used to cluster cells by its default 

parameters. For single cell embedding, we selected the reducedDims object with harmony 

and used addTSNE function with the parameter “perplexity = 30” for visualization. 

 

Marker genes identification and cluster annotation  

To identify the marker gene, gene scores were calculated when the ArchR project was 

created and stored in the arrow file. Then getMarkerFeatures function was used to identify 

the cluster-specific “expressed” genes with the default parameters. To visualize the marker 

genes in embedding, we used addImputeWeights function to run the MAGIC59 to smooth 

gene scores across the nearby cells. For track plot, we used the plotBrowserTrack function 
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with the default parameters except for “tileSize = 100”. 

 

Peak calling and TF binding motif analysis. 

Before peak calling, we used addGroupCoverages function with default parameters to make 

pseudo-bulk replicates. Then addReproduciblePeakSet function was used with its default 

parameters except for “genomeSize = 2.7e09” to call accessible chromatin peaks using 

MACS2(v2.2.7.1)60. For cell type specific peak analysis, firstly, getMarkerFeatures function 

was applied with peak matrix to identify marker peaks. Then getMarkers function with 

parameter “cutOff = FDR <= 0.01 & Log2FC >= 1” was conducted to get the differential peaks. 

For TF motif enrichment analysis, Macaca fascicularis motif was downloaded from the 

CIS-BP database (http://cisbp.ccbr.utoronto.ca/). Then motif annotation were added to 

ArchR project by addMotifAnnotations function and TF motif enrichment in differential 

peaks were compute by the peakAnnoEnrichment function with “cutOff = FDR <= 0.1 & 

Log2FC >= 0.5” parameter. For motif footprint analysis, we first used getPositions function to 

locate relevant motifs, then getFootprints function was used to compute our interest motif 

footprints with its default parameters. At last footprint patterns were illustrated in plot by 

plotFootprints function with the following parameters: “normMethod = Subtract, 

smoothWindow = 10”.  

 

Integrative analysis of scRNA-seq and scATAC-seq data 

In order to better align and integrate the scATAC-seq data, we extracted and annotated the 

scRNA-seq data of the 7 organs corresponding to scATAC-seq. We first used the 

FindTransferAnchors function from the Seurat package and aligned the data with 

addGeneIntegrationMatrix function in ArchR with “unconstrained integration” mode. We 

found in our result that most of the predicted scores > 0.5. To improve the accuracy of the 

predictions and better integrate the two datasets, we applied the “constrained integration” 

mode again to integrate the scATAC-seq and scRNA-seq data. Briefly, we annotated the 

scATAC-seq data with cell types based on the gene scores of scATAC-seq. Then, a restricted 

list were created such that gene expression similarity was calculated only in the same cell 

type for both scATAC-seq and scRNA-seq. For peak to gene linkage analysis, we used the 
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addPeak2GeneLinks function to compute peak accessibility and gene expression with the 

parameters “corCutOff = 0.45, resolution = 1”. 

 

Data availability  

The raw files are available from China National GeneBank (CNGB) (https://db.cngb.org/): 

RNA: CNP0002427; ATAC: CNP0002441. Gene counts and metadata are available at Zenodo 

(https://zenodo.org/): DOI: 10.5281/zenodo.5881495.  
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Figure Legends  

Figure 1. Single-cell landscapes of 16 organs from cynomolgus monkeys  

(a) Workflow of sample collection and single-cell transcriptome analysis for 16 organs and 

chromatin accessibility analysis for 7 organs from normal cynomolgus monkey. (b) Cell type 

identification (scRNA-seq), including 174,233 cells, 17 major cell types, and 40 cell subtypes. 

TSNE of cells were either colored by major cell types (left) or colored by cell subtypes (right). 

(c) Heatmap with the scaled expression levels of cell type-specific marker genes (left). 18 

marker genes expression were randomly selected to exemplify the specificity of marker gene 

in the right. (d) Overview of cell type identification in scATAC-seq analysis. 66,566 cells and 

10 major cell types were identified and cells were colored by major cell types. (e) Sankey 

diagram of scRNA-seq and scATAC-seq data cell-type mapping. 

 

Figure 2. The heterogeneity and developmental state of epithelial cells 

(a) Distribution of 14 epithelial cell subtypes on the UMAP. (b) Dot plot shows representative 

differentially expressed genes (DEGs) across epithelial subtypes. The size of dot is 

proportional to the fraction of cells which express specific genes. Color intensity corresponds 

to the relative expression of specific genes. (c) Bar plot shows the percentage of cell 

subtypes in each organ. (d) Heatmap shows functional pathways of ciliated epithelial cell 

enrichment, darker color represents a higher enrichment score. (e) Semi-supervised 

pseudotime trajectory of subtypes (E01-E14) of epithelial cells by monocle2. Trajectory is 

colored by cell states (left) and pseudotime (right). (f) Unsupervised pseudotime trajectory 

of subtypes (E01-E14) of epithelial cells by RNA velocity. Trajectory is colored by cell subtypes. 

Arrowhead direction represents the trend of cell pseudo-temporal differentiation. (g) Bar 

plot shows functional pathways of E03 subtype. (h) Heatmap showing the scaled expression 

of differentially expressed genes across pseudotime from (e). Genes (on the right of the 

heatmap) are assigned to specific cell states based on their expression levels. Bar plots at the 

top of the heatmap are scale diagrams of different cell types, samples and cell states during 

pseudotime differentiation trajectory. (i) Heatmap showing functional pathways enriched in 

three cell states (S1, S2, S3) by GSVA analysis. 
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Figure 3. The heterogeneity of stromal cells  

(a) Distribution of 11 stromal cell subtypes on the UMAP. (b) Dot plots showing 

representative top differentially expressed genes (DEGs) across stromal subtypes. Dot size is 

proportional to the fraction of cells expressing specific genes. Color intensity corresponds to 

the relative expression of specific genes. (c) Feature plot shows the expression of marker 

genes. (d) Bar plot showing the percentage of cell subtypes in each organ. (e) Distribution of 

stromal cells in different organs on the UMAP. (f) Unsupervised pseudotime trajectory of 

subtypes (S01-S11) of stromal cells by RNA velocity. Trajectory is colored by cell subtypes. 

The arrow direction is the trend of cell pseudo-temporal differentiation. (g) The UMAPs 

showing the pseudotime differentiation trajectory of fibroblasts, smooth muscle cells and 

endothelial cells. (h) Bar plot shows functional pathways of fibroblasts. (i) Heatmap showing 

the scaled expression levels of cell cell type-specific marker genes along pseudotime 

differentiation trajectory. Examples of marker expression are shown in the right UMAPs. 

 

Figure 4. Immune cell heterogeneity  

(a) Distribution of 13 major immune cell types on the UMAP. (b) Dot plots shows 

representative top differentially expressed genes (DEGs) across stromal subtypes. Dot size 

varies synchronously with the fraction of cells expressing specific genes. Color intensity 

corresponds to the relative expression of specific genes. (c) Distribution of immune cells in 

different organs on the UMAP. (d) Chord diagram maps the different cell types in all organs 

as a whole. The width of the arrow represents the proportion of cell types. (e) The bar chart 

shows the proportion of different cell types in the same organ. (f) Scatter plots shows 

pairings of gene expression between muscle and other organs. Each point represents a DEG, 

and its size is proportionate to the fold change.  

 

Figure 5. Dynamics of cell-cell communication networks 

(a) Chordal diagram of the integrated cell-cell interaction network among the major cell 

types of 16 organs. (b) Heatmap shows interaction intensity of cellular interactome from (a). 

Block sizes and colors are proportional to the interaction frequency. (c) Sankey diagram 
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shows the cell-cell interactions of different cell types in 16 organs. The thickness of lines 

represents the strength of cell-cell interactions. (d) Dot plot of interactions between selected 

cell subtypes in different organs. Each row represents a ligand-receptor pair, and each 

column defines a cell-cell interaction pair. 

 

Figure 6. Single-cell chromatin landscape of major organs of cynomolgus monkeys  

(a) Cell type identification (scATAC-seq), including 66,566 cells, and 22 cell subtypes. Shown 

is the tSNE of cells colored by cell subtypes. (b) Bar plot shows the number of reproducible 

peaks identified from each cluster. The peaks are classified to four category: distal, exonic, 

intronic and promoter. (c) Percentage of cell subtypes in each organ shown by bar plot. (d) 

Heatmap of 80,270 marker peaks across 22 subclusters identified by bias-matched 

differential testing (FDR <= 0.01 and Log2FC >= 3). (e) Chromatin accessibility and gene 

expression of 52,229 significantly (R >0.45 and FDR < 0.1) linked peak-gene pairs illustrated 

by heatmap. (f) Profile of POU2F2 and TCF21 gene accessibility, gene expression (inferred 

from scRNA-seq) and TF motif activity. (g) Visualization of the EGFL7 locus with the maximum 

number of peak-gene pairs shown by genome browser track (chr15: 1,772,849−1,832,850). 

 

Figure 7. Organ-specific transcriptional regulatory networks  

(a) Identification of regulon modules using SCENIC. Heatmap (left) shows the similarity of 

different regulons (n=87) based on the AUCell score. Eight regulon modules were identified 

based on regulon similarity. UMAPs (right) illustrate the average AUCell score distribution for 

different regulon modules (in different colors). (b) Wordcloud plots shows enrichment of 

organs in different regulon modules. (c) Representative transcription factors and 

corresponding binding motifs in different regulon modules. (d) Heatmap showing 

transcription factors enriched in different organs. Color depth represents the level of 

regulon-specific score. (e) Integrated gene-regulatory networks of the regulons. 

Regulon-associated TFs are highlighted in blue rectangles and target genes in circles. Target 

genes (in circles) are colored according to their highly expressed organs. (f) Heatmap 

showing gene-activity scores of marker genes in the indicated organs. (g) Violin plot showing 

motif activity (measured by TF chromVAR deviations) of TF regulons highlighted in (f). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.22.477221doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.22.477221


 

Figure 8. Comparison of cell landscapes of human, mouse and cynomolgus monkey 

(a) Integration of data from 16 organs from cynomolgus monkey, 11 organs from human, and 

9 organs from mouse. (b) Distribution of cells from cynomolgus monkey, human and mouse 

on the UMAP. (c) Distribution of 15 major cell types on the UMAP. (d) Bar plot showing the 

percentage of cell types in cynomolgus monkey, human and mouse. (e) Dot plots showing 

representative top differentially expressed genes (DEGs) across cell types. Dot size is 

proportional to the fraction of cells expressing specific genes. Color intensity corresponds to 

the relative expression of specific genes. (f) Feature Plot showing the expression of marker 

genes. (g) Correlation of orthologous gene expression between human, mouse and monkey 

pseudo-cell types (n=212) based on AUROC scores. The AUROC scores are calculated by 

MetaNeighbor to measure the similarity of cell type. The hierarchical clustering is calculated 

with pseudo-cell types. (h) Box plot showing correlation of top genes expression in 

cynomolgus monkey, human and mouse integrated data (Spearman method). Dots represent 

different cell types. (i) The proportion of hepatocytes in liver and ciliated cells in stomach of 

cynomolgus monkey, human and mouse samples. (j) Scatter plots showing a pairwise 

comparison of gene expression across species organs. Each point represents a DEG, and its 

size is proportionate to the fold change. Two scatter dots on the left show DEGs of 

Hepatocyte in the cynomolgus monkey, human and mouse samples, and Ciliated cells on the 

right. 
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Supplementary Fig. 1: Data quality of scRNA. Related to Figure 1. (a-b) Box plot showing the number of UMIs and
genes in major cell types respectively. (c-d) Bar plot showing the number of cells in major cell types and in samples.
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Supplementary Fig. 2: Data quality of scRNA. Related to Figure 1. (a) Distribution of 20 samples of cells on the
tSNE. (b) Violin diagram showing the expression of marker genes in major cell types. (c) Heatmap showing correlation of highly
expressed genes in 20 samples. (d) Circle diagram showing the cell proportions of seven cell types. (e) Bar plot showing the
percentage of cells in each sample. (f) Bar Plot showing the proportion of cells in different clusters from repeated samples of liver,
colon, testis and uterus.
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Supplementary Fig. 3: The UMAPs of all organs and bar plots of the proportion of different cell types (scRNA).
Related to Figure 1. Distribution of different clusters on the UMAP in 20 samples, and bar plot shows the cell proportion of
20 samples of major cell types.
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Supplementary Fig. 4: Data quality of scATAC. Related to Figure 1. (a) Box plot showing the distribution of TSS
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Supplementary Fig. 5: Data quality of scATAC. Related to Figure 1. (a) (left) TSNE of ArchR iterative LSI and
(right) ArchR iterative LSI with Harmony-based batch correction for all samples. (b) TSNE embedding showing the subset of seven
organs from scRNA-seq. Colored by cell type in Fig.1b. (c) TSNE embedding showing the subset of seven organs from scRNA-seq.
Colored by organ. (d) Heatmap showing the spearman correlations between scATAC-seq and scRNA-seq samples. Correlations
are calculated from the top 5,000 expressed genes for each sample. (e) UMAP co-embedding of scATAC-seq and scRNA-seq cell.
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Supplementary Fig. 6: Pseudotime trajectory analysis by monocle2. Related to Figure 2. (a) Distribution of 4
epithelial cell subtypes on the UMAP. (b) Bar plot showing the percentage of cell subtypes in each organ. (c) Distribution of
marker genes on branches during pseudotime differentiation trajectory. The shade of the color represents high or low gene scores.
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Supplementary Fig. 9: Cell-cell interactions and network diagram. Related to Figure 5. (a) Bar chart showing
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thickness represents the strength of cell-cell interaction.

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted January 23, 2022. ; https://doi.org/10.1101/2022.01.22.477221doi: bioRxiv preprint 

https://doi.org/10.1101/2022.01.22.477221


0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Adipose

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Aorta

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Bladder

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Breast

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Colon

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Heart

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Kidney

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Liver

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Lung

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Muscle

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Spleen

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Stomach

0.00

0.25

0.50

0.75

1.00

Epit
he

lia
l_c

ell
.Spe

rm
ati

d

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
pe

rm
ati

d

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Spe
rm

ati
d.S

pe
rm

ati
d

Stro
mal_

ce
ll.P

las
ma_

ce
ll

N
or

m
al

iz
ed

 n
um

be
r

Organ Testis

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

N
or

m
al

iz
ed

 n
um

be
r

Organ Tongue

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Plas

ma_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Trachea

0.00

0.25

0.50

0.75

1.00

B_c
ell

.B_c
ell

B_c
ell

.Epit
he

lia
l_c

ell

B_c
ell

.M
ye

loi
d_

ce
ll

B_c
ell

.Plas
ma_

ce
ll

B_c
ell

.Stro
mal_

ce
ll

B_c
ell

.T_c
ell

Epit
he

lia
l_c

ell
.B_c

ell

Epit
he

lia
l_c

ell
.Epit

he
lia

l_c
ell

Epit
he

lia
l_c

ell
.M

ye
loi

d_
ce

ll

Epit
he

lia
l_c

ell
.Stro

mal_
ce

ll

Epit
he

lia
l_c

ell
.T_c

ell

Mye
loi

d_
ce

ll.B
_c

ell

Mye
loi

d_
ce

ll.E
pit

he
lia

l_c
ell

Mye
loi

d_
ce

ll.M
ye

loi
d_

ce
ll

Mye
loi

d_
ce

ll.P
las

ma_
ce

ll

Mye
loi

d_
ce

ll.S
tro

mal_
ce

ll

Mye
loi

d_
ce

ll.T
_c

ell

Plas
ma_

ce
ll.B

_c
ell

Plas
ma_

ce
ll.E

pit
he

lia
l_c

ell

Plas
ma_

ce
ll.M

ye
loi

d_
ce

ll

Plas
ma_

ce
ll.P

las
ma_

ce
ll

Plas
ma_

ce
ll.S

tro
mal_

ce
ll

Plas
ma_

ce
ll.T

_c
ell

Stro
mal_

ce
ll.B

_c
ell

Stro
mal_

ce
ll.E

pit
he

lia
l_c

ell

Stro
mal_

ce
ll.M

ye
loi

d_
ce

ll

Stro
mal_

ce
ll.P

las
ma_

ce
ll

Stro
mal_

ce
ll.S

tro
mal_

ce
ll

Stro
mal_

ce
ll.T

_c
ell

T_c
ell

.B_c
ell

T_c
ell

.Epit
he

lia
l_c

ell

T_c
ell

.M
ye

loi
d_

ce
ll

T_c
ell

.Plas
ma_

ce
ll

T_c
ell

.Stro
mal_

ce
ll

T_c
ell

.T_c
ell

N
or

m
al

iz
ed

 n
um

be
r

Organ Uterus

Supplementary Fig. 10: Cell-cell interactions. Related to Figure 5. Bar chart showing the normalized number of
interaction pairs of different cell-cell interaction types in 16 organs.
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Supplementary Fig. 11: The UMAPs of all organs and Donut charts of the proportion of different cell types
(scATAC). Related to Figure 6. (a) Distribution of different clusters on the UMAP in 7 organs (scATAC-seq), and donut
chart shows the cell proportion of 7 organs of cell types. (b) Tn5 bias-adjusted TF footprint analysis of the POU2F2 and TCF21
transcription factors.
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Supplementary Fig. 12: The TSNEs of marker genes expression (scATAC). Related to Figure 6. Distribution of
marker genes in cell types such as B cells (MS4A1, CD22, HVCN1, TNFRSF13C, IGKC, TNFRSF13B, ENAM), macrophages
(C1QC, C1QA, CD163), T cells (CD3D, IL7R), endothelial cells (VWF), fibroblasts (TAGLN, MYH11, DCN, COL3A1, COL1A1),
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PSCA) on the TSNEs.
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Supplementary Fig. 13: Transcriptional regulatory network of cells from cynomolgus monkey. Related to Figure
7. (a) Identification of regulon modules using SCENIC. Heatmap (left) shows the similarity of different regulons (n=86) based
on the AUCell score. Eight regulon modules were identified based on regulon similarity. UMAPs (right) illustrate the average
AUCell score distribution for different regulon modules (in different colors). (b) Wordcloud plots shows enrichment of cell types in
different regulon modules. (c) Representative transcription factors and corresponding binding motifs in different regulon modules.
(d) Heatmap showing transcription factors enriched in different cell types. Color depth represents the level of regulon-specific
score. (e) Integrated gene-regulatory networks of the regulons from (a). Regulon-associated TFs are highlighted in blue rectangles
and target genes in circles. Target genes (in circles) are colored according to their highly expressed cell types.
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Supplementary Fig. 14: Regulons and modules. Related to Figure 7. Scatter plot showing top regulons of 16 organs
ordered by regulon specific score and red dots represent the highest activity.
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Supplementary Fig. 15: Regulons and modules. Related to Figure 7. (a) Scatter plot showing top regulons of 7 major
cell types ordered by regulon specific score and red dots represent the highest activity. (b) Scatter plot showing major cell types of
8 regulon modules ordered by regulon activity score. (c) TSNEs displaying the AUCell score distribution for the selected regulons
(above) and gene expression patterns for the corresponding TFs (below).
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Supplementary Fig. 16: Data quality across species. Related to Figure 8. (a) Box plot showing the number of genes
and UMIs in human organs. (b) Box plot showing the number of genes and UMIs in mouse organs. (c) Distribution of cynomolgus
monkey, human and mouse cells by organs on the UMAP. (d) Bar plot showing the percentage of cell types in each organ. (e)
Heatmap showing correlation of top gene expression in cell types in mouse and human (Spearman method). (f) Heatmap showing
correlation of top genes expression in cell types cynomolgus monkey, and human (Spearman method).
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