A refined Agler decomposition and geometric applications

Greg Knese
University of Alabama

March 18, 2011

Pick's theorem

Theorem
Suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ holomorphic.
Then, for any n points z_{1}, \ldots, z_{n}, the $n \times n$ matrix

$$
M=\left(\frac{1-f\left(z_{j}\right) \overline{f\left(z_{k}\right)}}{1-z_{j} \bar{z}_{k}}\right)
$$

is positive semi-definite.
Conversely, a function $f: X \rightarrow \mathbb{D}$ on a finite set $X=\left\{z_{1}, \ldots, z_{n}\right\}$, with M positive semi-definite extends to a holomorphic function $f: \mathbb{D} \rightarrow \mathbb{D}$.

Positive semi-definite functions

Definition

A function $K: S \times S \rightarrow \mathbb{C}$ is positive semi-definite if for every finite subset X of S,

$$
(K(z, w))_{z, w \in X}
$$

is positive semi-definite.
The Fundamental Theorem of Positive Semi-definite functions If $K: S \times S \rightarrow \mathbb{C}$ is positive semi-definite, there exists a Hilbert space \mathcal{H} and elements $K_{z} \in \mathcal{H}$ for each $z \in S$ such that

$$
K(z, w)=\left\langle K_{w}, K_{z}\right\rangle
$$

Pick's theorem

$f: \mathbb{D} \rightarrow \mathbb{D}$ holomorphic $\Longrightarrow \frac{1-f(z) \overline{f(w)}}{1-z \bar{w}}$ is positive semi-definite

- Provides an opening for Hilbert space methods to prove function theory results.
- Example: Sarason's approach to the Julia-Carathéodory theorem.

Agler decomposition

$\mathbb{D}^{2}=\mathbb{D} \times \mathbb{D}$
Agler's theorem
If $f: \mathbb{D}^{2} \rightarrow \mathbb{D}$ is holomorphic, then there exist positive semi-definite functions K_{1}, K_{2} on \mathbb{D}^{2} such that

$$
1-f(z) \overline{f(w)}=\left(1-z_{1} \bar{w}_{1}\right) K_{1}(z, w)+\left(1-z_{2} \bar{w}_{2}\right) K_{2}(z, w)
$$

(Conversely, if such a relation holds on a subset of \mathbb{D}^{2}, the relation extends to all of \mathbb{D}^{2}.)

- Can this be used to prove results in function theory on the bidisk via Hilbert space methods?
- Yes!: Ball-Bolotnikov on boundary interpolation, Agler-McCarthy-Young used these ideas to study Julia-Carathéodory problems, and generalizations of Loewner's theorem on operator monotone functions.

Refined Pick theorem

Hermitian-symmetric Pick Theorem
If $f: \mathbb{D} \rightarrow \mathbb{D}$ is holomorphic, then for any
$z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{n} \in \mathbb{D}$ and any $v_{1}, \ldots, v_{n} \in \mathbb{C}$

$$
\begin{aligned}
& \left|\sum_{j, k} v_{j} v_{k} \frac{f\left(z_{j}\right)-f\left(w_{k}\right)}{z_{j}-w_{k}}\right|^{2} \\
& \leq \sum_{j, k} v_{j} \bar{v}_{k} \frac{1-f\left(z_{j}\right) \overline{f\left(z_{k}\right)}}{1-z_{j} \bar{z}_{k}} \sum_{j, k} v_{j} \bar{v}_{k} \frac{1-f\left(w_{j}\right) \overline{f\left(w_{k}\right)}}{1-w_{j} \bar{w}_{k}}
\end{aligned}
$$

- RHS is "Hermitian." LHS is "symmetric."
- Due to de Branges-Rovnyak?
- Inequalities of this type are common in univalent function theory.

Hermitian-symmetric Pick theorem

So,

$$
K(z, w)=\frac{1-f(z) \overline{f(w)}}{1-z \bar{w}}
$$

is a positive semi-definite function, and

$$
L(z, w)=\frac{f(z)-f(w)}{z-w}
$$

is a "symmetric holomorphic kernel function."
Our inequality takes the form

$$
\left|\sum_{j, k} v_{j} v_{k} L\left(z_{j}, w_{k}\right)\right|^{2} \leq \sum_{j, k} v_{j} \bar{v}_{k} K\left(z_{j}, z_{k}\right) \sum_{j, k} v_{j} \bar{v}_{k} K\left(w_{j}, w_{k}\right)
$$

Hermitian-symmetric Agler decomposition

Refined Agler decomposition (GK)

If $f: \mathbb{D}^{2} \rightarrow \mathbb{D}$ is holomorphic,

- $\exists K_{1}, K_{2}$ on \mathbb{D}^{2}, positive semi-definite and
- \exists holomorphic kernels $L_{1}, L_{2}: \mathbb{D}^{2} \times \mathbb{D}^{2} \rightarrow \mathbb{C}$, such that
- $1-f(z) \overline{f(w)}=\left(1-z_{1} \bar{w}_{1}\right) K_{1}(z, w)+\left(1-z_{2} \bar{w}_{2}\right) K_{2}(z, w)$
- $f(z)-f(w)=\left(z_{1}-w_{1}\right) L_{1}(z, w)+\left(z_{2}-w_{2}\right) L_{2}(z, w)$
- there is a Hermitian-symmetric inequality between K_{1} and L_{1}, and between K_{2} and L_{2}.

In particular, $\left|L_{1}(z, w)\right|^{2} \leq K_{1}(z, z) K_{1}(w, w)$, which implies

$$
\left|\frac{\partial f}{\partial z_{1}}(z)\right|=\left|L_{1}(z, z)\right| \leq K_{1}(z, z)
$$

Why am I interested in this decomposition?

- Shows further surprising similarities between function theory on \mathbb{D} and \mathbb{D}^{2}.
- (My) Proof uses a detailed Agler decomposition for rational inner functions on \mathbb{D}^{2}. Comes from work of Cole-Wermer or Geronimo-Woerdeman.
- It's not clear that there is an easier proof.
- Application: a new proof of a theorem of Guo et al, related to holomorphic retracts on the polydisk.

Rational inner functions

In one variable, rational inner function $=$ finite Blaschke product.

$$
\prod_{j=1}^{n} \frac{z-a_{j}}{1-\bar{a}_{j} z}=\frac{z^{n} \overline{p(1 / \bar{z})}}{p(z)}=\frac{\tilde{p}(z)}{p(z)}
$$

In two variables,

$$
\text { regular rational inner function }=\frac{\tilde{p}\left(z_{1}, z_{2}\right)}{p\left(z_{1}, z_{2}\right)}
$$

where $p \in \mathbb{C}\left[z_{1}, z_{2}\right]$ has no zeros in $\overline{\mathbb{D}^{2}}$, and $\tilde{p}\left(z_{1}, z_{2}\right)=z_{1}^{n} z_{2}^{m} p\left(1 / \bar{z}_{1}, 1 / \bar{z}_{2}\right)$.

Decompositions for rational inner functions

One variable:
Christoffel-Darboux formula

$$
\frac{p(z) \overline{p(w)}-\tilde{p}(z) \tilde{p}(w)}{1-z \bar{w}}=\sum_{j=1}^{n} A_{j}(z) \overline{A_{j}(w)}
$$

where $A_{1}, \ldots, A_{n} \in \mathbb{C}[z]$.
Two variables: $z=\left(z_{1}, z_{2}\right), w=\left(w_{1}, w_{2}\right)$
Cole-Wermer formula

$$
\begin{aligned}
p(z) \overline{p(w)}-\tilde{p}(z) \overline{\tilde{p}(w)} & =\left(1-z_{1} \bar{w}_{1}\right) \sum_{j=1}^{n} A_{j}(z) \overline{A_{j}(w)} \\
& +\left(1-z_{2} \bar{w}_{2}\right) \sum_{j=1}^{m} B_{j}(z) \overline{B_{j}(w)}
\end{aligned}
$$

where $A_{j}, B_{j} \in \mathbb{C}\left[z_{1}, z_{2}\right]$.

Reflection of formulas

Both of the previous formulas can be reflected!
One variable

$$
\frac{\tilde{p}(z) p(w)-p(z) \tilde{p}(w)}{z-w}=\sum_{j=1}^{n} \tilde{A}_{j}(z) A_{j}(w)
$$

Two variables

$$
\begin{aligned}
\tilde{p}(z) p(w)-p(z) \tilde{p}(w) & =\left(z_{1}-w_{1}\right) \sum_{j=1}^{n} \tilde{A}_{j}(z) A_{j}(w) \\
& +\left(z_{2}-w_{2}\right) \sum_{j=1}^{m} \tilde{B}_{j}(z) B_{j}(w)
\end{aligned}
$$

Approximation

- Holomorphic functions $f: \mathbb{D} \rightarrow \mathbb{D}$ or $f: \mathbb{D}^{2} \rightarrow \mathbb{D}$ can be approximated locally uniformly by rational inner functions.
- Refined Pick and Agler theorems follow by approximation.

Application

The following theorem is due to Kunyu Guo, Hansong Huang, and Kai Wang.
Theorem
Let $V \subset \mathbb{D}^{n+1}$ and suppose $z_{n+1} \mid v$ has a non-trivial, norm 1 , holomorphic extension to \mathbb{D}^{n+1}. Then, there exists $f: \mathbb{D}^{n} \rightarrow \mathbb{D}$ holomorphic such that

$$
V \subset\left\{(z, f(z)): z \in \mathbb{D}^{n}\right\}
$$

- Original proof involves interesting use of one variable Denjoy-Wolff theorem.
- Used to build on work of Agler-McCarthy on subvarieties of the bidisk with the "norm preserving holomorphic extension property."

The Guo-Huang-Wang Theorem

- Nice application: the fixed point set of a holomorphic mapping $G: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$, is the graph of a holomorphic function (of less than n variables).
- New proof of Heath and Suffridge's characterization of holomorphic retracts of the polydisk.
- " $V \subset \mathbb{D}^{n}$ is a retract" means there is a holomorphic $\rho: \mathbb{D}^{n} \rightarrow \mathbb{D}^{n}$ such that $\rho \circ \rho=\rho, \rho\left(\mathbb{D}^{n}\right)=V$.
- Key aspect of using the refined Agler decomposition in my proof: use positive kernels to control derivatives! (and use the Schwarz lemma)

Recap

- Operator related function theory on the bidisk bears a close similarity to the theory on the disk.
- The "refined Agler decomposition" is an application of the extremely detailed Agler decomposition for rational inner functions.
- The decomposition has applications to geometric function theory on the polydisk.

FIN

Subliminal proof

Given $F: \mathbb{D}^{2} \rightarrow \mathbb{D}$ holomorphic. Consider the set

$$
V=\left\{\left(z_{1}, z_{2}\right): F\left(z_{1}, z_{2}\right)=z_{2}\right\} \text { Is this a graph? }
$$

Assume $\varnothing \neq V \neq \mathbb{D}^{2}$.

- If $\frac{\partial F}{\partial z_{2}}=1$ at point of V, Schwarz lemma $\Longrightarrow F\left(z_{1}, z_{2}\right)$ depends only on z_{2}.
- Assume $\frac{\partial F}{\partial z_{2}} \neq 1$ at every point of V.

Subliminal proof continued

Given $F: \mathbb{D}^{2} \rightarrow \mathbb{D}$ holomorphic. Consider the set

$$
V=\left\{\left(z_{1}, z_{2}\right): F\left(z_{1}, z_{2}\right)=z_{2}\right\} \text { Is this a graph? }
$$

Assume $\varnothing \neq V \neq \mathbb{D}^{2} . \frac{\partial F}{\partial z_{2}} \neq 1$ on V.

- Refined Agler decomposition:

$$
\begin{aligned}
& 1-F\left(z_{1}, z_{2}\right) \overline{F\left(w_{1}, w_{2}\right)}=\left(1-z_{1} \bar{w}_{1}\right) K_{1}(z, w)+\left(1-z_{2} \bar{w}_{2}\right) K_{2}(z, w) \\
& F\left(z_{1}, z_{2}\right)-F\left(w_{1}, w_{2}\right)=\left(z_{1}-w_{1}\right) L_{1}(z, w)+\left(z_{2}-w_{2}\right) L_{2}(z, w) \\
& \left|L_{1}(z, w)\right|^{2} \leq K_{1}(z, z) K_{1}(w, w) \\
& \text { Restrict to } V \text { : }
\end{aligned}
$$

$$
\begin{gathered}
1-z_{2} \bar{w}_{2}=\left(1-z_{1} \bar{w}_{1}\right) K_{1}+\left(1-z_{2} \bar{w}_{2}\right) K_{2} \\
z_{2}-w_{2}=\left(z_{1}-w_{1}\right) L_{1}+\left(z_{2}-w_{2}\right) L_{2}
\end{gathered}
$$

Subliminal proof continued

- Restrict to V :

$$
\begin{aligned}
1-z_{2} \bar{w}_{2} & =\left(1-z_{1} \bar{w}_{1}\right) K_{1}+\left(1-z_{2} \bar{w}_{2}\right) K_{2} \\
z_{2}-w_{2} & =\left(z_{1}-w_{1}\right) L_{1}+\left(z_{2}-w_{2}\right) L_{2}
\end{aligned}
$$

- If $K_{2}=1$ then $K_{1}=0$, then $L_{1}=0$, then $L_{2}=1$, then $\frac{\partial F}{\partial z_{2}}=1$ contrary to assumption.
- So, $K_{2}<1$,

$$
\frac{1-z_{2} \bar{w}_{2}}{1-z_{1} \bar{w}_{2}}=\frac{K_{1}}{1-K_{2}}=K_{1} \sum_{j=0}^{\infty} K_{2}^{j}
$$

Pick's theorem $\Longrightarrow z_{2}$ is a function of z_{1}.

