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Summary

Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to 

synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a 

comprehensive systems-level understanding of their metabolism, which can be fundamentally 

achieved through large-scale mechanistic models of metabolism. In this study, we present a 

revised and significantly improved genome-scale metabolic model for the widely-studied 

microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over 

previous models, both in content and predictive power. iCre1355 encompasses a broad range of 

metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes 

accounting for 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved 

performance over the previous metabolic model based on comparisons of predictive accuracy 

across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from 

chemostat-grown cells (under 3 conditions). Measurement of macronutrient uptake revealed 

carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared 

to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to 

uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes 

in light intensity. This approach enabled accurate prediction of growth rates, the cessation of 

growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response 

of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an 
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experimentally-validated genome-scale reconstruction of C. reinhardtii metabolism that should 

serve as a useful resource for studying the metabolic processes of this and related microalgae.
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Introduction

Human activities are continually reshaping the global ecosystem. Of particular concern is 

the continually increasing level of atmospheric and dissolved CO2, arising in part, from our 

dependence of fossil fuels for power (Lewis and Nocera, 2006; Sayre, 2010). The predicted 

consequences of these activities such as global warming, climate change and ocean 

acidification, could be detrimental to both terrestrial and aquatic habitats (Feely et al., 2004; 

Lewis and Nocera, 2006; Sayre, 2010; Honisch et al., 2012; McGlade and Ekins, 2015). Due 

to their ability to harness solar energy and fix CO2, photosynthetic organisms are key to 

future goals of building sustainable societies. Photosynthetic microbes, and microalgae in 

particular, hold great potential as bio-factories for the economical production of renewable 

biofuels and a wide variety of other valuable commodities because of their relatively high 

photosynthetic efficiency, capacity for CO2 capture (Spalding, 2008; Sayre, 2010), and rapid 

growth rate. However, the yields of biofuel precursors obtained from microalgae are 

currently too low to be an economically viable replacement for fossil fuels (Scott et al., 

2010; Wijffels and Barbosa, 2010; Reijnders et al., 2014). To overcome this hurdle, an in-

depth understanding of microalgae biology including the key metabolic and regulatory 

components that control relevant processes is required to rationally engineer strains with 

improved characteristics. We are employing systems-level approaches to gain a deeper 

understanding of metabolic and regulatory processes in microalgae, with the aim of 

rationally engineering and enhancing production of value-added commodities.

Chlamydomonas reinhardtii is arguably the best characterized microalga, and has served as 

a model organism for the study of many cellular and plant-specific processes including 

photosynthesis, motility, circadian rhythm and the cell cycle control (Harris, 2001; Rochaix, 

2002; Marshall, 2008). C. reinhardtii has also been used to study the neutral lipid 

accumulation trait displayed by many microalgae when subjected to abiotic stresses such as 

nutrient limitation (Boyle et al., 2012; Urzica et al., 2013). The C. reinhardtii genome, 

which was first sequenced in 2005, is the best annotated and curated of any algal species 

(Merchant et al., 2007; Blaby et al., 2014), placing it at the forefront of algal genomics 

research. These considerations, along with the availability of tools for genetic manipulation 

and a large and growing collection of genome-wide datasets (Miller et al., 2010; Boyle et al., 

2012; Blaby et al., 2013; Duanmu et al., 2013; Hemschemeier et al., 2013; Mettler et al., 

2014; Park et al., 2015), make C. reinhardtii the ideal system for studying algal metabolism.

Constraint-based metabolic modeling, which bypasses the need for kinetic parameters that 

are typically unavailable, provides a useful option for modeling metabolic networks at the 

systems level (Varma and Palsson, 1994; Palsson, 2000). These models have proven useful 
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for the design of strains with improved capacity to produce targeted metabolites (Alper et 

al., 2005; Park et al., 2007; Milne et al., 2009). Furthermore, these models can serve as 

versatile platforms for integration and contextualization of high-throughput datasets, which 

can result in new biological insights (Shlomi et al., 2008; Colijn et al., 2009; Oberhardt et 

al., 2009; Kim and Reed, 2012; McCloskey et al., 2013). Consequently, models of core 

metabolism (Boyle and Morgan, 2009; Kliphuis et al., 2011) and a genome-scale model 

(Chang et al., 2011) have previously been constructed for C. reinhardtii and used to study 

different aspects of microalgal metabolism. However, significant improvements in 

annotation resulting from re-sequencing of the C. reinhardtii genome combined with better 

gene models (Blaby et al., 2014), provide ample data to refine and extend previous C. 

reinhardtii metabolic models. Furthermore, a wide variety of new experimental data 

providing genetic characterization of biosynthetic pathways (Lin et al., 2010; Lecler et al., 

2012; Urzica et al., 2012; Duanmu et al., 2013; Moulin et al., 2013), as well as a growing list 

of high-throughput genome-wide measurements from a diverse set of nutritional, 

environmental and genetic backgrounds (Bolling and Fiehn, 2005; Boyle et al., 2012; 

Msanne et al., 2012; Blaby et al., 2013; Duanmu et al., 2013; Hemschemeier et al., 2013; 

Mettler et al., 2014; Park et al., 2015), provide abundant information for model refinement, 

data integration and systems-level analysis of important biological processes.

In this study, we present a revised and significantly improved genome-scale model for C. 

reinhardtii, iCre1355, which represents a major advance over previous models both in 

content and predictive power. iCre1355 accounts for a large amount of new and previously 

omitted information about C. reinhardtii’s metabolic capabilities obtained from both 

genomic and literature sources. We also show that iCre1355 is a better predictor of gene 

essentiality, growth rate and lipid yield than the previous genome-scale model. By 

integrating data from high-throughput transcriptomics experiments, we used iCre1355 to 

gain insights into key processes including the metabolic response to nitrogen starvation and 

the metabolic adjustments associated with growth under different light regimes. Thus, 

iCre1355 represents a high-quality, experimentally validated genome-scale metabolic model 

and a powerful resource for performing systems-level analysis of C. reinhardtii and related 

microalgae.

Results and Discussion

Reconstructing the C. reinhardtii metabolic network leveraging new genomic and 

metabolic information

Updating the C. reinhardtii metabolic parts list—Prior to generating constraint-

based models for simulating metabolism, the components of the metabolic network 

(reactions, metabolites, proteins and genes) for which evidence exists need to be 

systematically compiled into a metabolic reconstruction (Thiele and Palsson, 2010). Using 

the previously published genome-scale reconstruction for C. reinhardtii (iRC1080) (Chang 

et al., 2011) as a reference, we integrated C. reinhardtii-specific metabolic and genomic 

information from 4 databases: the Plant metabolic network (ChlamyCyc 4.0), KEGG 

(Kanehisa et al., 2002; Kanehisa et al., 2014), NCBI and Phytozome 10.1, to identify a total 

of 586 candidate metabolic genes to be considered for integration into a refined genome-
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scale model (Figure S1). These candidate metabolic genes were then manually curated for 

literature evidence supporting their inclusion in the reconstruction and/or the presence of 

appropriate functional domains to carry out associated reactions (see Experimental 

procedures for reconstruction details). This process led to the pruning of the initial list of 

586 candidates to a set of 312 genes with literature- or sequence-based evidence for their 

inclusion in the model (Table S1, Table S2).

The subsystem distribution of these 312 genes shows that they cover a wide array of key 

metabolic functions, ranging from central metabolism and photosynthesis to amino acid and 

cofactor biosynthesis (Figure 1a). Of particular note is the fact that previous C. reinhardtii 

metabolic reconstructions did not consider the biosynthetic pathways relevant for the 

formation of several essential cofactors including NAD(H), NADP(H), FAD, biotin and 

thiamine. These pathways were either incomplete or completely missing from other 

reconstructions, despite the fact that several of them are well characterized in C. reinhardtii 

(Croft et al., 2006; Lin et al., 2010; Moulin et al., 2013). The cofactor biosynthetic pathways 

were carefully curated and fully accounted for in the current reconstruction. Furthermore, 

metabolic genes encoded in the chloroplast and mitochondrial genomes, many of which 

code for essential functions, were also not considered in previous reconstructions. These are 

now captured in the current reconstruction (Table S1). Given that almost all chloroplast and 

mitochondrial genes have been genetically and phenotypically characterized, this 

information was used to establish the gene-protein-reaction (GPR) relationships to nuclear 

encoded genes involved in the same processes. Overall, these 312 genes are associated with 

551 reactions distributed across 8 compartments (Figure 1b).

Refining components from iRC1080—In addition to curating a large number of new 

metabolic genes and their associated reactions for inclusion in the updated model, we 

thoroughly re-evaluated the components included in the previously published genome-scale 

mode for C. reinhardtii, iRC1080. Firstly, the gene and transcript identifiers from version 

4.3.1 of the C. reinhardtii genome used in iRC1080 were updated to the new identifiers used 

in the current version of the genome (version 5.5 at the time of writing) (Table S3). This 

process led to the identification of 12 genes and 24 transcripts from iRC1080 that are now 

obsolete, as they no longer map to any genes (or transcripts) in the current annotated 

genome (Table S4). We then conducted a comprehensive functional domain analysis of the 

1062 genes included in iRC1080, which could be mapped to loci in the new genome 

annotation. This analysis resulted in the identification of 19 genes that had been incorrectly 

assigned to various functions in iRC1080 (Table S4). These genes and their associated 

reactions (in instances where alternative correctly assigned isozymes did not exist) were 

excluded from further consideration (Table S4).

Modifications were also made to several other reactions in iRC1080. In particular, several 

erroneous GPR assignments were corrected (Table S4). For instance, the GPR association of 

the ribulose-1,5-bisphosphate carboxylase oxidase (RuBisCO) reaction in iRC1080 involved 

an ‘AND’ relationship between the two genes encoding isozymes of the small subunit of 

RuBisCO (Cre02.g120100 AND Cre02.g120150), while the chloroplast-encoded large 

subunit was omitted all together. This and other erroneous GPR rules were refined to make 

them consistent with experimental and sequence data (Table S4). In addition, 10 orphan gap-
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filling reactions, which had no GPR associations in iRC1080, were assigned high-scoring 

candidate genes based on sequence analysis, while 10 reactions were orphaned (i.e., lost 

their GPR associations) as previously assigned genes did not have any literature- or 

sequence-based evidence for the assignment or could not be mapped to any loci in the new 

genome annotation (Table S4).

Previous analyses led to the generation of high-quality, experimentally derived biomass 

reactions for simulation of photoautotrophic (CO2 as the sole carbon source in the presence 

of light), mixotrophic (CO2 and acetate used as carbon sources in the presence of light) and 

heterotrophic (acetate used as carbon source in the dark) growth in C. reinhardtii (Boyle and 

Morgan, 2009; Chang et al., 2011). However, the maintenance requirements were not 

quantified and these values were assumed to be similar to those of other well-studied 

organisms (Boyle and Morgan, 2009). Subsequent experimental analysis of photosynthetic 

maintenance energy requirements indicated that these assumed values are likely too low 

(Kliphuis et al., 2011). Consequently, we updated the photosynthetic maintenance energy 

values of the photosynthetic biomass reactions from iRC1080 with the experimentally 

determined growth- and non-growth-associated maintenance energy values (Kliphuis et al., 

2011). Furthermore, several essential cofactors including NAD(H), NADP(H), FAD, biotin 

and thiamine, which were omitted from previous biomass reactions, were added to generate 

more comprehensive biomass reactions for simulating C. reinhardtii growth (Table S5).

iCre1355: a refined and up-to-date genome-scale reconstruction for C. 

reinhardtii—Combining the above-described 312 metabolic genes and their associated 

reactions with the refined metabolic components from iRC1080, we generated a new 

comprehensive genome-scale reconstruction for C. reinhardtii, iCre1355 (Table S5–S7). 

This reconstruction consists of 1,355 genes and 1,460 transcripts, accounting for ~7.5% of 

the annotated genes and transcripts in the C. reinhardtii genome (Table 1), an increase of 

~26% over iRC1080. iCre1355 also contains a total of 2,394 reactions (including 1,862 

transformation reactions) and 1,133 unique metabolites (Table S5 and S6), encompassing a 

broad range of metabolic functions (Figure 1c). Similarly to iRC1080, reactions in iCre1355 

are distributed over 9 intracellular compartments and the extracellular space, with the 

majority of reactions localized to the cytosol, chloroplast and mitochondria (Figure 1d). Of 

the 2,394 reactions in iCre1355, 595 (24.9%) were blocked under the conditions tested and 

these reactions are distributed over a wide variety of subsystems (Figure 1e). Of these 

blocked reactions only 82 (13.8%) were associated with the 312 newly incorporated genes. 

From a global analysis of essential genes, we found that 250 (18.5%), 161 (11.9%) and 173 

(12.8%) of the genes in iCre1355 were predicted to be essential for photoautotrophic, 

mixotrophic and heterotrophic growth, respectively (Figure 1f), with 131 (9.7%) of these 

genes essential for growth under all 3 conditions, representing the core set of predicted 

essential genes in iCre1355.

Pathways in iCre1355 have characteristic expression profiles—While all the 

genes included in iCre1355 have been manually curated and assigned their known or most 

likely biological function, it is also of value to ensure that these genes are actively expressed 

within the cell, at least under a subset of relevant conditions. A relatively large number of 
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transcriptomics studies have been conducted recently that provide systems-level insights 

into aspects of C. reinhardtii physiology. These gene expression datasets were used to study 

processes ranging from the cellular response to nutrient depletion to oxidative stress. In 

order to assess the expression of genes in the various pathways included iniCre1355, we 

downloaded publicly available processed RNA-seq datasets from Phytozome 10.1, which 

were obtained from 6 studies (Castruita et al., 2011; Boyle et al., 2012; Urzica et al., 2012; 

Urzica et al., 2012; Duanmu et al., 2013; Hemschemeier et al., 2013). We then used the 

fraction of highly expressed genes (the top 5% most highly expressed genes per experiment) 

within each pathway as a metric for assessing the level of expression of pathways across 

conditions (Figure 2). From this analysis, we observed a large amount of condition-

dependent change in pathway-level expression, much of which was consistent with known 

expression patterns that arise in response to changes in the environment (Figure 2). For 

example, changes such as the decrease in mRNA levels of the chlorophyll biosynthetic 

pathway during nitrogen starvation (Boyle et al., 2012), the increased mRNA abundance of 

ascorbate metabolism genes during oxidative stress with H2O2 (Urzica et al., 2012) and the 

increase in oxidative stress response (glutathione and ascorbate metabolism pathways) 

during transition from dark to light (and its attenuation by biliverdin) (Duanmu et al., 2013), 

amongst others, can be easily discerned. Nevertheless, the overall profile of expressed genes 

in each pathway was sufficiently consistent across all conditions in this dataset such that the 

pathways could be partitioned into 4 distinct groups: low, moderate, high and very high 

expression clusters (Figure 2). As might be expected, the very highly expressed pathways 

included central processes such as photosynthesis, TCA cycle and oxidative 

phosphorylation, while the highly expressed pathways included many growth-associated 

pathways such as amino acid and fatty acid metabolism amongst others. On the other hand, 

the lowly expressed pathways included those involved in cofactor biosynthesis, sphingolipid 

metabolism and detoxification processes, functions that are likely not required at high levels 

under most growth conditions. Using low expression thresholds of between 0.5 and 5 

fragments per kilobase of transcript per million mapped reads (FPKM) (Kellis et al., 2014), 

the pathways in iCre1355 had between 98.3% and 77.6%, of their genes expressed above 

these thresholds, respectively, under at least one condition. At an intermediate threshold of 3 

FPKM, greater than 80% of the genes in all pathways were expressed under at least one 

condition except for the callose biosynthesis, sulfur metabolism, nitrogen metabolism and 

polyamine metabolism pathways, where only between 50% and 77% of the genes were 

expressed above 3FPKM across all conditions (Figure S2).

Evaluation of iCre1355 demonstrates significant improvements in prediction accuracy

To assess the predictive accuracy of the constraint-based model (CBM) derived from 

iCre1355, we evaluated its predictions against experimental data obtained from genotype-

phenotype analysis and growth rates of cells cultured in chemostats.

iCre1355 accurately predicts gene deletion phenotypes—A standard approach for 

assessing the predictive performance of constraint-based models is through comparison of 

model predictions to experimentally determined gene deletion phenotypes (Oberhardt et al., 

2009). Unlike model organisms like Escherichia coli and Saccharomyces cerevisiae, C. 

reinhardtii does not have a comprehensive catalogue of known gene deletion phenotypes. 
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Thus, to generate a list of genotype-phenotype relationships for model evaluation, we 

conducted a thorough review of primary literature and the Chlamydomonas Resource Center 

(http://chlamycollection.org/strains/) collection of mutants. This led to the generation of a 

list of 81 well-defined C. reinhardtii mutants of metabolic genes with known phenotypes 

under photoautotrophic, mixotrophic and heterotrophic conditions (Table S8). When 

combined with media supplementation rescue phenotypes, this led to the generation of a 

total of 306 genotype-phenotype relationships for model evaluation (Table S9).

We used the CBM derived from iCre1355 to predict the phenotypes of these 81 mutants 

under photoautotrophic, mixotrophic and heterotrophic conditions and compared these to 

experimental data. We also evaluated the predictions of iRC1080 under the same conditions, 

but for 48 mutants (corresponding to 183 genotype-phenotype relationships), as only this 

subset were represented in that model (Table S8). This analysis showed that iCre1355 

allows for very accurate predictions of gene deletion phenotypes, with an area under the 

receiver operating characteristic curve (AUC) of 0.92 (with a precision of 80%, sensitivity/

recall of 83%, specificity of 92% and an accuracy of 90%) (Figure 3a). On the other hand, 

the 48 mutants evaluated with iRC1080 resulted in an AUC of 0.825 (with a precision of 

54%, sensitivity/recall of 62%, specificity of 84% and an accuracy of 79%), indicating that 

iCre1355 is a better predictor of genotype-phenotype relationships, at least for the dataset 

used in this analysis. We also assessed iCre1355’s predictions on the same set of 48 mutants 

as that used to assess iRC1080. For this dataset, iCre1355 showed an AUC of 0.9 (with a 

precision of 67%, sensitivity/recall of 90%, specificity of 88% and an accuracy of 88%) 

(Figure 3a). To investigate the impact of the modified biomass reactions on the predictions 

of iCre1355, we made an independent set of predictions using the original biomass reactions 

from iRC1080 instead of those developed in this study. Assessing predictions for the 

consequences of mutations in 48 genes present in both models, we found that iCre1355 had 

an AUC of 0.84 (with a precision of 63%, sensitivity/recall of 67%, specificity of 89% and 

an accuracy of 84%) (Figure 3a). Given the larger number of genes and reactions that have 

to be evaluated when assessing iCre1355 and the fact that the AUC does not normalize for 

the total number of genes evaluated (directly or indirectly via associated GPR rules), the 

1.5% increase in AUC for this evaluation could in fact be larger. Thus the improved 

predictive power of iCre1355 is due to a combination of model additions, model refinements 

and refined biomass reactions.

iCre1355 accurately predicts maximum triacylglycerol yields—An interesting 

characteristic of C. reinhardtii and other microalgae is their ability to accumulate large 

stores of neutral lipids such as triacylglycerols (TAGs), particularly when faced with 

environmental stresses that inhibit growth (Chisti, 2007; Scott et al., 2010; Boyle et al., 

2012). This trait has been intensely studied due to its potential biotechnological value. Thus, 

it is important that a model of C. reinhardtii metabolism accurately predicts TAG yields. We 

assessed the predicted maximum yield of TAG on CO2 and light (photons) using iCre1355 

and iRC1080 under photoautotrophic conditions, and found that it was identical for both 

models (at ~0.36 g TAG/g CO2). This value is also identical to the calculated theoretical 

maximum value (Figure 3b) (see Experimental procedures). This indicates that the 
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stoichiometry of the reactions leading from CO2 to TAG biosynthesis in both models is 

accurate.

Conversely, while the predicted maximum TAG yield on light by iCre1355 was 1.43 g 

TAG/mol photon, which is close to the calculated theoretical maximum of 1.38 g TAG/mol 

photon (see Material and methods), that predicted using iRC1080 was significantly higher at 

1.78 g TAG/mol photon (Figure 3b). The slight difference between the iCre1355-predicted 

and the calculated maximum TAG yield likely reflects the uncertainty in the rotational fold 

symmetry (or H+/ATP ratio) of the C. reinhardtii F1F0 ATP synthase (i.e., the number of 

protons required for one complete rotation of the ATP synthase to produce 3 ATP 

molecules, which is dependent on the number of identical c subunits (Stock et al., 2000)). 

Using values between 14 (as observed in spinach chloroplasts (Seelert et al., 2000)) and 12 

(as observed for E. coli (Jones et al., 1998)) resulted in predicted maximal yield values 

between 1.33 and 1.43 g TAG/mol photon. A value of 13, which has been observed in 

cyanobacteria (Pogoryelov et al., 2007), resulted in a yield closest to the calculated 

theoretical maximum. Changes in this value did not alter predictions from iRC1080, 

indicating that the predicted yield values were independent of ATP generated via ATP 

synthase. This erroneous prediction of iRC1080 was due to the presence of cycles involving 

ATP-generating reactions in iRC1080 that result in production of unlimited amounts of ATP 

independent of the ATP synthase. Specifically, the pyruvate carboxylase reaction, which is 

irreversible under physiological conditions (Nelson and Cox, 2005), and ATP:GTP 3′-

diphosphotransferase reaction are both reversible in iRC1080 and this results in the 

generation of ATP independent of ATP synthase. These reactions were made irreversible in 

iCre1355. In addition to resulting in erroneous TAG yield predictions in iRC1080, these 

loops also negatively impact gene essentiality predictions, as the chloroplast ATP synthase 

is not predicted to be required for growth under photoautotrophic conditions, contrary to 

experimental observations. While constraint-based models can be powerful tools to study 

cellular metabolism on a large-scale, they typically contain a large number of futile cycles, 

many of which may not be biologically relevant to due spatial, temporal or other regulatory 

constraints. Thus, analyzing models for such cycles, and eliminating them where necessary, 

can be of value for specific applications.

iCre1355 allows for accurate growth rate predictions—To assess the ability of 

iCre1355 to predict growth rates, we obtained data on macronutrient uptake rates from C. 

reinhardtii cells grown in continuous culture under photoautotrophic, mixotrophic and 

heterotrophic conditions. Uptake rates of carbon (either as dissolved inorganic carbon [DIC] 

or acetate), nitrogen (NH4) and phosphorus (PO4) were measured (Table 2) and used as 

initial input parameters for predicting growth rate with iCre1355. Comparing the measured 

chemostat growth rates to the iCre1355 FBA-predicted growth, when using all 3 measured 

uptakes rates as modeling constraints, showed good overall agreement between the predicted 

and observed values, with an R2 of 0.83 (p-value = 0.0002) (Figure 3c). These observations 

suggest that iCre1355accurately predicts C. reinhardtii growth rates even with minimal 

input data.

To determine how efficiently chemostat-grown C. reinhardtii cells use each of the measured 

macronutrients, the uptake rate for each macronutrient was individually used as a constraint 
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in iCre1355. This analysis revealed that, in general, the carbon and phosphate uptake rates 

served as the most useful predictors of cellular growth rate across all 3 growth modes 

(Figure 3d). On the other hand, we consistently observed significantly higher nitrogen 

uptake rates than what would be predicted to be necessary of optimal biomass production 

(Figure S3). This might indicate some excess uptake of NH4 during steady state growth in 

NH4-replete media, which could be redirected to internal nitrogen reserves. Alternatively, 

this apparent excess of consumed NH4 could point to a nitrogen deficiency in the iCre1355 

biomass reaction definition. Further work will be required to identify the cause(s) of this 

discrepancy. Overall this analysis forms a basis for the use of iCre1355 to study growth rate 

in C. reinhardtii.

Using iCre1355 to study key physiological processes in C. reinhardtii

Having validated iCre1355 at various levels, we then used it to study two key processes in 

C. reinhardtii: (i) the metabolic response to nitrogen starvation; and (ii) the effects of 

changing light regimes on growth. To achieve this, we leveraged available transcriptomics 

datasets. While transcriptome-level data only provides one layer of information about the 

complexities of regulation and information transfer, as metabolic adjustments can occur 

post-transcriptionally and post-translationally (Branco-Price et al., 2008; Krasensky and 

Jonak, 2012), integration of high-throughput genome-wide measurements with constraint-

based models have previously been shown to be valuable for reducing the solution space of 

flux distributions, potentially improving predictive accuracy and allowing for new biological 

insight (Reed, 2012; Kleessen et al., 2015). In order to study the metabolic changes that 

result from shifts in environmental conditions, we used previously published high-resolution 

time-series transcriptomics datasets obtained from C. reinhardtii cells subjected to nitrogen 

starvation (Boyle et al., 2012) and changing light intensity (Mettler et al., 2014) as 

additional constraints on iCre1355.

Integration of these datasets into iCre1355 was accomplished by combining two well-

established approaches: E-flux (Colijn et al., 2009), which imposes gene expression data-

derived bounds on the maximum flux through each reaction in the network, and iMAT 

(Shlomi et al., 2008; Zur et al., 2010), which maximizes the agreement between metabolic 

fluxes and reactions categorized as having a high or low activity based on transcriptomics 

data (see Experimental procedures). It should be noted that predictions derived for 

integration of transcriptomics data into metabolic models will not capture the lag in 

information transfer from transcription to synthesis of active enzymes and this needs to be 

considered during interpretation of results from integration of time series data.

The metabolic response of C. reinhardtii to nitrogen starvation

When faced with a variety of environmental stresses such as nutrient limitation, C. 

reinhardtii accumulates TAGs (Boyle et al., 2012; Urzica et al., 2013). This process has 

been extensively studied under a variety of micro- and macro-nutrient starvation conditions 

(Miller et al., 2010; Boyle et al., 2012; Blaby et al., 2013; Urzica et al., 2013; Iwai et al., 

2014). In particular, the cellular response to nitrogen starvation has been analyzed in several 

studies using system-wide measurements in C. reinhardtii (Miller et al., 2010; Boyle et al., 

2012; Blaby et al., 2013; Park et al., 2015) and other microalgae (Recht et al., 2014). In 
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particular, Boyle et al. (Boyle et al., 2012) analyzed the time course of the transition from 

nitrogen-replete to nitrogen-deplete media at very high resolution using RNA-seq analysis. 

While this dataset was not obtained from cells at growing at steady state (a key assumption 

of constraint-based analysis) due to the nature of the response to this environmental 

perturbation, it is likely that valuable information could still be gleaned from these data by 

incorporating them into a large-scale metabolic model. Thus, we used this dataset as 

constraints on iCre1355 and analyzed the predicted effects on growth, TAG accumulation 

and pathway activity to gain a better understanding of the metabolic state of the cell during 

this transition.

Cessation of growth during nitrogen starvation—Applying these transcriptional 

constraints across the time course spanning 48 hours and maximizing for growth rate at each 

time point (E-flux), we observed a gradual decrease in predicted optimal growth rate (Figure 

4a), with the slowest predicted growth rate at 48 hours. Given that maximization of growth 

is unlikely to be a relevant objective function during nitrogen starvation conditions, we 

extended the E-flux approach by employing an alternative objective function, i.e., 

maximization of the agreement between expression levels and metabolic fluxes (iMAT). 

With this approach, we used E-flux to set “hard constraints” on the upper and lower bounds 

on each reaction, while iMAT was used to impose “soft constraints” on which reactions 

carry flux. Using this combined approach, the predicted growth rate showed a similar trend, 

however, by 8 hours, a complete cessation of growth is predicted (Figure 4a) that is 

maintained until the end of the time course. These predictions are consistent with the 

experimentally observed cessation of growth during nitrogen starvation, wherein C. 

reinhardtii cells are typically observed to undergo 1 to 2 doublings before a halt in growth 

(Boyle et al., 2012). The predicted halt in growth at 8 hrs by E-flux+iMAT also coincides 

with the first time point at which significant TAG accumulation is observed (Boyle et al., 

2012). It should be noted that only transcriptomics-based constraints were applied for these 

simulations, while nutrient and light uptake rates were left unconstrained. Nevertheless, the 

predicted growth rate at the 0 minute time point (~0.06 h−1) is well within the range of 

mixotrophically grown C. reinhardtii cells (Table 2) (Mettler et al., 2014), while the 

predicted uptake rates of acetate (3.9 mmol gDW−1 h−1), NH4 (0.31 mmol gDW−1 h−1) and 

PO4 (0.047 mmol gDW−1 h−1) are also within range of the experimentally measured values 

(Table 2). These observations suggest that transcriptional constraints can be sufficient for 

making accurate growth rate predictions, in lieu of measured uptake rates.

Transcriptome-predicted TAG production potential is highest in early stages 

of nitrogen starvation—A similar analysis for TAG production predicted that early 

stages of the nitrogen starvation response have the greatest potential for TAG production. 

Maximizing for TAG production using E-flux reveals a gradual increase in TAG production 

potential starting at 4 minutes after nitrogen depletion and reaching a maximum value at 30 

minutes before a gradual decline (Figure 4b). This suggests that while significant TAG 

accumulation is not observed until 4 hours after the onset of nitrogen starvation, C. 

reinhardtii cells may begin preparations for this state transition much sooner. Eflux+iMAT 

also predicted a similar trend, although the predicted peak is very early (12 minutes) and the 
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predicted TAG flux is about an order of magnitude smaller than when maximizing for TAG 

production.

Nitrogen starvation results in altered pathway activity levels—Stress induced by 

nitrogen starvation results in systems-level changes in gene expression and metabolism 

(Miller et al., 2010; Boyle et al., 2012; Park et al., 2015). To gain insight into these global 

changes in metabolism, we assessed the transcriptome-predicted changes in reaction 

activities across the various pathways included in iCre1355. By applying thresholds that 

enabled division of genes into high and low expression groups, we combined 

transcriptomics data with iCre1355’s GPR rules to categorize the model reactions into 

“high” and “low” activity states (see Experimental procedures). We then assessed how 

nitrogen starvation causes pathway-level changes in activity by using changes in the number 

of highly active reactions as a measure of overall change pathway activity.

From this analysis, we observed that pathways could largely be categorized into 3groups 

(Figure 5). Group I (growth-associated pathways) consists of pathways for which the 

constituent reaction activity levels were predicted to gradually decrease over the time course 

of the nitrogen starvation experiment (Figure 5). Unsurprisingly, this group included several 

pathways involved in biosynthetic processes such as amino acid biosynthesis, purine and 

pyrimidine biosynthesis and cofactor biosynthesis. In addition, consistent with results from 

previous reports, reactions involved in porphyrin and chlorophyll biosynthesis, as well as 

photosynthesis, also showed significant reduction in predicted activity during nitrogen 

starvation. Despite the observed accumulation of TAGs during nitrogen starvation, fatty acid 

and glycerolipid biosynthetic pathways showed a significant reduction in transcriptome-

predicted activity, suggesting that de novo fatty acid biosynthesis is reduced during 

starvation. This is consistent with previous reports indicating that recycling of membrane 

fatty acids may make a significant contribution of fatty acids used for TAG accumulation 

(Fan et al., 2011), limiting the need for de novo fatty acid biosynthesis. The lowering of 

activity of all these biosynthetic pathways is also consistent with the cessation of growth 

during nitrogen starvation.

Group II (stress response and carbon storage pathways) consists of pathways that showed an 

initial increase in predicted activity in the early stages of nitrogen starvation (within the first 

30 minutes), followed by a gradual decrease in predicted activity (Figure 5). This group 

included several cofactor/vitamin biosynthesis pathways (e.g., folate biosynthesis, 

pantothenate/CoA biosynthesis and ascorbate biosynthesis), and the carotenoid biosynthetic 

pathway. Increase in ascorbate, folate and other antioxidant biosynthetic genes has 

previously been linked to the response to oxidative stress in C. reinhardtii (Mittler, 2002; 

Muller-Moule et al., 2003; Urzica et al., 2012), while carotenoids are known to provide 

protection to the cell from reactive oxygen species that arise as a consequence of oxygenic 

photosynthesis (Muller-Moule et al., 2003; Perez-Perez et al., 2012). The predicted transient 

increase in the activity of these pathways could indicate a state of increased oxidative stress 

in the early stages of N-starvation, possibly resulting from an excess in reducing power 

produced during photosynthesis, which can no longer be channeled to biomass as growth 

rate reduces. In contrast to most other amino acid biosynthetic pathways, which are found in 

Group I, histidine biosynthetic and glycine/serine/threonine biosynthetic pathway activities 

Imam et al. Page 11

Plant J. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are predicted to increase transiently early in N-starvation. An increase in glycine 

biosynthetic genes in response to starvation has also been observed in yeast cells and could 

also be linked to the oxidative stress response (Petti et al., 2011).

Starch metabolism is predicted to increase in activity early in nitrogen starvation before a 

gradual decrease, consistent with previous reports (Boyle et al., 2012; Blaby et al., 2013; 

Park et al., 2015). A similar pattern is also observed with glycerophospholipid metabolism 

pathway. The early activation of these pathways may prime cells for storage of starch and 

lipids later during the course of N-starvation. The early increase in the predicted activity of 

the glycerophospholipid pathway is also consistent with the predicted early increase in TAG 

production capacity (Figure 4b).

Group III (stress response and nitrogen scavenging pathways) consists of pathways that 

showed a predicted increase in activity into the later stages of N-starvation. This included 

the transport reactions, the pentose phosphate pathway, nitrogen metabolism and the 

arginine biosynthetic pathway. The increase in NH4 and related transporters in response to 

nitrogen starvation has previously been reported and our analysis also revealed a similar 

trend, with a wave of transporters being induced sequentially from the onset of N-starvation 

(Figure 5). First, the polyamine (putrescine and spermidine) transporters become highly 

active, followed by the NH4 transporters, uric acid transporters, and then a series of 

transporters involved in the transport of amino acids between cellular compartments and/or 

from the environment. These likely represent mechanisms used by the cells in an attempt to 

scavenge any nitrogen-containing compounds in their environment, as well as shuttle amino 

acids to compartments were they are most required. The predicted increase in the nitrogen 

metabolism pathway is attributable to the nitric oxide oxidoreductase (Cre01.g000350), 

which catalyzes the conversion of NO to NO3, and glutamate synthase (Cre13.g592200), 

which catalyzes the conversion of glutamine and α-ketoglutarate to two molecules of 

glutamate. The cells could potentially use these reactions as routes for consuming excess 

reducing power from photosynthesis, as well as generating usable nitrogen sources. 

Increased glutamate synthase enzyme activity has been observed in nitrogen-starved C. 

reinhardtii cells (Menacho and Vega, 1989). Nitric oxide oxidoreductase may also act to 

attenuate NO signaling, which inhibits the high-affinity NH4 uptake induced during nitrogen 

starvation (Sanz-Luque et al., 2013).

Our analysis also indicates that a portion of the arginine biosynthetic pathway increases in 

activity in response to nitrogen starvation. This included 7 reactions required for the 

conversion of glutamate into ornithine, potentially linking the product of the glutamate 

synthase reaction to arginine biosynthesis. An increase in arginine biosynthetic genes was 

also reported in (Park et al., 2015), however no accumulation of intracellular arginine or 

ornithine was observed.

Assessing the number of lowly expressed reactions per pathway across time also provides an 

interesting complementary view to the changes in pathway activity linked to N-starvation 

(Figure S4). Overall, these analyses provide a comprehensive overview of the pathway-level 

changes that occur during the metabolic response to nitrogen starvation.
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The metabolic response of C. reinhardtii to changing light intensity

To thrive in nature, photosynthetic microbes need to respond appropriately to changes in 

light intensity, which can occur over a wide range of time scales from a few seconds (such 

as shading events) to days (such as diurnal cycles) or months (seasonal cycles) (Mettler et 

al., 2014). Changes in light intensity directly impact the growth of phototrophs, affecting 

their ability to fix CO2 and thus requiring photosynthetic cells to adjust their metabolism. To 

assess the changes that occur in the transition from light-limiting conditions to higher light 

intensities, Mettler et al. (Mettler et al., 2014) obtained global mRNA abundance 

measurements from C. reinhardtii cells growing at steady state at 0, 40, 120 and 480 

minutes after a switch from low light (41 μmol photons m−2 s−1) to a higher light intensity 

(145 μmol photons m−2 s−1). We used these data as constraints on iCre1355 to study how 

transcriptional changes affect flux distributions during this transition.

Transcriptional constraints alone are insufficient to predict differences in 

growth due to changing light intensity—Applying these transcriptional constraints 

across the time course and maximizing for growth rate (E-flux) or agreement between 

transcriptome data and flux (E-flux+iMAT), we observed very little difference in the 

predicted growth rate between conditions (Figure S5a). While the predicted growth rates 

between 40 and 480 minutes were very similar to the reported experimental growth (0.08 

h−1) for both approaches, the predicted growth rate at low light (0 m) was much higher than 

the reported value of 0.02 h−1. This suggests that the subtle transcriptional changes that 

occur during this transition were insufficient to constrain the model to permit accurate 

prediction of growth rate. Thus, to assess changes in metabolic flux distribution associated 

with light-limited growth, we additionally adjusted the photon uptake rate to a value that 

resulted in a predicted growth rate of 0.02 h−1 (~8 mmol photon/gDW−1 h−1).

Changes in light intensity result in distinct temporal changes in flux capacity 

across pathways—Using a similar approach to that used to study pathway level changes 

in activity during nitrogen starvation; we assessed the predicted changes in pathway activity 

resulting from a change in light intensity. Given the relatively subtle changes in gene 

expression during this transition, only a few pathways were predicted to show significant 

changes in reaction activity via this approach (Figure S5b). The greatest observed changes 

were for pathways involved in fatty acid and nucleotide biosynthesis, which increased upon 

changing from low to higher light, consistent with cells increasing in growth rate, as these 

macromolecules are major components of biomass.

To gain a more detailed view of the potential impact of transcriptional changes on the 

metabolic state of the cell during this transition, we assessed the differences in predicted flux 

capacity across conditions using flux variability analysis (Mahadevan and Schilling, 2003). 

With transcriptomic constraints imposed on the CBM, we determined the minimum and 

maximum allowable flux through each reaction in the network. The flux capacity through 

each reaction was then used to explore the effects of changing light intensity on potential 

pathway usage (see Experimental Procedures). A comparison of the correlation of flux 

capacities across conditions shows that the higher light conditions a more similar to each 

other than to the low light condition (Figure S5c). This is consistent with the equivalent 
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growth rate of the cells at higher light (0.08 h−1), which is four times faster than at time 0 

minutes. It should be noted that a similar correlation analysis using raw gene expression data 

for the metabolic genes in iCre1355 did not group higher light experiments together 

particularly well (Figure S5c), consistent with a previously conducted principal component 

analysis (Mettler et al., 2014). This suggests that the predicted flux capacity might be a 

useful metric to assess transcriptome-predicted changes in metabolic activity.

Assessing the changes in flux capacity on a pathway level, we observed that the pathways 

could in general be divided into four broad categories based on how and when they 

responded to changes in light intensity. Group I was made up of pathways wherein reactions 

showed an increased flux capacity by the first higher light time point (40 minutes) compared 

to the initial time point (0 minutes) and remained high throughout the rest of the time course 

(Figure 6). Unsurprisingly Group I included many pathways associated with growth 

including amino acid biosynthesis, fatty acid and lipid biosynthesis, carbon fixation, central 

metabolism, nucleotide biosynthesis and photosynthesis-related pathways. These appear to 

be the “first responders” to increased light intensity pointing to their important contribution 

to biomass composition, maintenance of redox balance and bioenergetics during 

photosynthetic growth. The predicted quick response of these pathways is also consistent 

with metabolite data collected by Mettler et al. (Mettler et al., 2014), which shows 

metabolites involved in the Calvin-Benson cycle carbon fixation reactions and central 

carbon metabolism increasing rapidly on the switch to higher light intensity. Of the 17 

metabolites observed to show statistically significant increases in abundance (Mettler et al., 

2014), and which are present in iCre1355, 15 were metabolic intermediates in pathways 

grouped among the “first responders” including carbon fixation intermediates (5 

metabolites), glycolysis intermediates (3 metabolites), amino acids (5 metabolites), TCA 

cycle intermediates (1 metabolite) and nucleotide sugar (1 metabolite). These predictions are 

also consistent with metabolite data collected from C. reinhardtii cells subjected to high 

light stress, as well as those acclimated to high light conditions (Davis et al., 2013), which 

show significant increase in amino acid pools that align well with the predicted pathway 

activities.

Group II pathways did not show an increase in flux capacity until the 120 minutes or 480 

minutes time point. These “late responders” consist of pathways for the biosynthesis of 

amino acids such as lysine and histidine, which make up a relatively small proportion of 

amino acids found in C. reinhardtii proteins (Boyle and Morgan, 2009). This group also 

included several pathways involved in vitamin/cofactor biosynthesis, which are also 

typically required in small quantities, thus their delayed response might be expected, as 

these metabolites may not become limiting until a substantive amount of dilution by cell 

division has occurred.

Group III pathways showed an initial decrease in flux capacity at 40 minutes, but an 

increase in flux capacity by 120 minutes (or 480 minutes in the case of pyruvate and 

propanoate metabolism). These can also be thought of as “late responders”. In addition to 

pathways in these three categories, a fourth group consisting of 20 pathways showed no 

change in flux capacity relative to 0 minutes. These pathways were broadly distributed 

across subsystems. Overall, these analyses provide insights into the time-dependent response 
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and usage of pathways, as photosynthetic cells adjust their metabolism in response to 

increased light.

Conclusions

Microalgae will likely play a pivotal role as we strive to build more sustainable societies due 

to their ability to produce a suite of chemicals of socio-economic value with low 

environmental impact. C. reinhardtii, being the best characterized microalga, will 

undoubtedly play a leading role in informing genetic strategies aimed at the rational design 

of algal strains with improved properties. In this study, we conducted a systems-level 

analysis of C. reinhardtii metabolism beginning with the assembly of a refined genome-

scale metabolic reconstruction iCre1355. Our assessment and experimental validation of the 

predictions from iCre1355 highlight its predictive accuracy and its potential value as a tool 

for generating hypothesis to guide future experimental design. We further illustrated the 

value of iCre1355 through the integration of disparate gene expression datasets, combining 

analyses of network structure with constraint-based approaches to gain systems-level 

insights into the metabolic responses of C. reinhardtii to changing environmental conditions. 

Our analysis of the response to nitrogen starvation yielded several predictions that were 

consistent with previous analyses, providing an additional level of validation for iCre1355. 

Furthermore, this analysis pointed to an early concerted response to oxidative stress 

potentially faced by the starved cells as photosynthesis continues despite a reduction in 

growth rate. In addition, the early priming of the starved cells for both starch and lipid 

storage is predicted, though starch storage typically precedes lipid storage. Our analysis of 

the metabolic response to increasing light intensity identified the temporal response of 

pathways, with the “first responder” pathways being involved in the synthesis of metabolites 

that make large contributions to overall biomass, consistent with the observed increased 

growth rate. Overall, the improved genome-scale metabolic reconstruction and 

comprehensive analysis conducted in this study provides an enhanced framework for future 

systems-level analysis of C. reinhardtii and microalgae metabolism.

Experimental procedures

Strains and growth conditions

C. reinhardtii strain CC-1690 obtained from the Chlamydomonas Resource Center (http://

chlamycollection.org) was used for all growth experiments. Starter cultures for the 

bioreactors were grown in shaker flasks at 22° C at 120 rpm, illuminated with cool white 

light bulbs at ~80 μmol photons m−2 s−1. Photoautotrophic cultures were grown at ambient 

CO2 in modified Artificial Seawater Media (MASM) (NH4Cl – 7.5mM, MgSO4 – 10mM, 

KCl – 8.05mM, CaCl2.H2O – 2.04mM, KH2PO4 – 0.37mM, tris base –8.25mM, trace 

elements (Na2EDTA.2H2O – 0.0161mM, FeCl3.6H2O – 0.0043mM, MnCl2.4H2O – 

0.0022mM, ZnSO4.7H2O – 0.00092mM, Na2MoO4.2H2O – 0.00031mM, CoCl2.6H2O – 

0.0001mM)), while mixotrophic and heterotrophic cultures were grown in tris acetate 

phosphate medium (TAP). For heterotrophic cultures, the acetate concentration was reduced 

from ~17 mM to ~10.625 mM to prevent any growth inhibition (Chen and Johns, 1994).
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Bioreactor setup

C. reinhardtii cells were grown in continuous culture using a New Brunswick BioFlow/

CelliGen 115 bioreactor (Eppendorf inc). For photoautotrophic experiments, cells were 

grown on MASM and bubbled with air enriched with 0.2% CO2. For mixotrophic 

experiments, cells were grown on TAP and bubbled with air enriched with 0.2% CO2, while 

for heterotrophic experiments, cells were grown on TAP and bubbled with air. All 

chemostats were agitated at 75 rpm. Photoautotrophic and mixotrophic experiments were 

illuminated at ~150 μmol photons m−2 s−1 with cool white light bulbs. For heterotrophic 

experiments, the bioreactor was wrapped in foil to keep it in the dark. Independent one-liter 

reactors were set up for each biological replicate, which were initially started in batch mode 

and run for 2–5 days (depending on growth condition) until the cell density within the 

bioreactor was ~1×106 cells/mL. The bioreactors were then switched to continuous mode at 

the target dilution rate (Table 2). Bioreactors were run in continuous mode for 4 to 5 

chemostat volumes (4 to 5 L) when steady state was typically achieved. Steady state was 

assumed when constant cell counts were achieved over a 24- to 48-hour time period. 

Samples were sterilely taken from the bioreactor with a syringe from the sampling port to 

keep track of cell counts.

Uptake rate measurement

When steady state was achieved, the chemostats were harvested to quantify cell dry weight 

and nutrient uptake. The concentrations of macronutrients left over in the filtered media 

from each chemostat were determined and compared to the concentrations in the starting 

media to determine uptake rates. NH4 concentrations were determined using the ammonia 

assay kit (AA0100; Sigma-Aldrich), phosphate concentrations were determined using the 

SensoLyte MG colorimetric phosphate assay kit (AS-71103; AnaSpec) and acetate 

concentrations were determined using the acetate colorimetric assay kit (MAK086; Sigma-

Aldrich). Dissolved inorganic carbon (DIC) was assayed using a DIC Analyzer (Apollo 

Scitech Inc) attached to a LI-7000 Gas Analyzer (LI-COR). To determine, DIC uptake rates, 

chemostats were run in batch mode without bubbling for ~90 minutes after initial harvesting 

of samples for uptake rate measurement. Samples were then taken at ~15 minute intervals 

and analyzed for a change in DIC concentration. Changes in the DIC concentration over 

these time intervals were averaged to determine the DIC uptake rates per hour. Five to 

fifteen milliliters of cells (depending on chemostat cell density) were harvested to determine 

the chemostat cell dry weight. The ash free dry weight was calculated by subtracting 5.68% 

from the measured dry weight based on previous analysis of ash content of C. reinhardtii 

cells (Kliphuis et al., 2011).

Yield calculations

TAG yields were calculated using one of the most abundant TAG species observed in C. 

reinhardtii cells (tag16018111Z180 – 16:0/18:1(11Z)/18:0, see Table S5). The balanced net 

reaction for the formation of this TAG species would be:
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This reaction accounts for all the reducing power consumed (in the form of NADPH) and 

produced (in the form of NADH, which is assumed to be converted to NADPH) during the 

formation of one molecule of TAG. To calculate the theoretical maximum TAG yield on 

CO2 uptake, we can see from the reaction equation that 1 mol of CO2 would generate 

0.018182 mol of tag16018111Z180 (i.e., 1/55). Thus, given the molecular weights of CO2 

(44 g) and tag16018111Z180 (860 g), the theoretical maximum TAG yield on CO2 would be 

0.355375 g TAG/g CO2. To calculate the theoretical maximum TAG yield per mol photon, 

we followed the established stoichiometry of photochemistry i.e., 8 photons results in the 

production of 2 molecules of NADPH (and 3 molecules of ATP). Based on this, 624 photons 

would be required to produce the 156 molecules of NADPH needed for the synthesis of 1 

mol of tag16018111Z180. Thus, given the molecular weight of tag16018111Z180 (860 g), 

the theoretical maximum TAG yield on photons would be 1.378 g TAG/mol photon.

Metabolic network reconstruction

Candidate identification and manual curation—The previously reconstructed 

genome-scale model for C. reinhardtii iRC1080 served as the reference point for model 

reconstruction. The process of model refinement began with the extraction of all C. 

reinhardtii specific metabolic and genomic information from four public databases: the 

Plant metabolic network (ChlamyCyc 4.0), KEGG (Kanehisa et al., 2002; Kanehisa et al., 

2014), NCBI and Phytozome 10.1. ChlamyCyc 4.0 and KEGG served as the main data 

sources for metabolic information, NCBI for the chloroplast and mitochondrial genomic 

information, while the most up-to-date nuclear genomic information was obtained from 

Phytozome 10.1 (v5.5 as of this writing). This process led to the identification of 586 

candidate metabolic genes, which could not be mapped to any genes in iRC1080 and served 

as the initial set of genes for manual curation. The process of manual curation involved: (i) 

primary literature searches for evidence a candidate gene performs the assigned function; (ii) 

functional domain analysis on the predicted protein sequence of candidate genes using Pfam 

(Bateman et al., 2004) and BLAST to verify possession of appropriate functional domains to 

catalyze assigned reactions, as well as to verify GPR relationships obtained from 

ChlamyCyc 4.0; (iii) assessing connectivity of candidate genes (through its associated 

reaction(s)) to the rest of the network, with disconnected genes omitted from consideration). 

These curation steps resulted in the generation of a high confidence list of 312 candidate 

genes (320 transcripts) and 153 associated transformation reactions (Table S1).

Determination of subcellular localization—The subcellular localizations of candidate 

genes and reactions were determined based on the following criteria: (i) experimental 

evidence in literature from compartment specific proteomics analysis for the mitochondria 

(van Lis et al., 2003; Cardol et al., 2005; Atteia et al., 2009), chloroplast (Terashima et al., 

2010; Terashima et al., 2011), or flagella (Pazour et al., 2005); or (ii) the consensus 

predictions of two subcellular localization prediction algorithms (TargetP (Emanuelsson et 

al., 2007) and Predotar (Small et al., 2004)). In the absence of evidence from either of these 

sources, genes and their associated reactions were assigned to the cytosol. The reactions 

were manually balanced for charge and mass, while reaction directionality was assigned 

based on heuristic rules (Henry et al., 2009) where applicable, or were made reversible.
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Updating components from iRC1080—Genes from iRC1080 in JGI v4 Aug5 

annotation of the C. reinhardtii genome were mapped to JGI v5.5 using the algal functional 

annotation tool (http://pathways.mcdb.ucla.edu/algal/index.html) and these mappings were 

manually curated to correct erroneous mappings. Of the 1086 transcripts in iRC1080 only 

1062 could be mapped to the JGI v5.5 annotation after manual curation. The remaining 24 

transcripts (12 genes), which could not be mapped to any JGI v5.5 annotation, were dropped 

from the model (Table S4). We applied similar manual curation steps as described for the 

312 newly identified candidate genes to genes and reactions included in iRC1080. Based on 

these, 19 genes with incorrect functional assignments were dropped, 12 reactions lacking 

evidence were removed and several erroneous GPR rules for several reactions were 

corrected (Table S4). PsbW, an experimentally characterized nuclear-encoded gene (Bishop 

et al., 2003), is currently not annotated in JGI v5.5. PsbW was retained in iCre1355 using its 

gene symbol (Table S5).

Gap filling—Gap filling was done manually and only when required for model 

functionality. Overall only 3 additional strictly gap filling reactions (for which no GPRs 

could be assigned) were added to iCre1355: MALCOAMT, PMEACPE, DBTS. Each of 

these reactions occurs in the biotin biosynthesis pathway. C. reinhardtii is capable of de 

novo biosynthesis of biotin (Croft et al., 2006) and the enzymes catalyzing the reactions 

upstream and downstream of these gap filling reaction are known or can be inferred from 

genomic information. Thus, these 3 reactions were included in iCre1355 to complete the 

biotin biosynthetic pathway.

Biomass reaction and maintenance energy—The biomass reaction from iRC1080 is 

very detailed and based on experimental data, thus we used these biomass reactions as the 

starting point for refinement. The following modifications were made to the iRC1080 

biomass reaction: (i) Growth and non-growth maintenance energy requirements (i.e., GAM 

and NGAM respectively) were based on assumed or fitted values (Boyle and Morgan, 

2009). Subsequent efforts to determine maintenance energy requirements under 

photosynthetic conditions indicated that this assumption was far from accurate. Thus, 

maintenance energy values of the photoautotrophic and mixotrophic biomass reactions were 

modified to the experimentally determined values (GAM – 92.43 mmol ATP gDW−1, 

NGAM – 2.85mmol ATP gDW−1 h−1), while the heterotrophic maintenance energy values 

from iRC1080 were maintained; (ii) co-factors necessary for growth including NAD(H), 

NADP(H), FAD, glutathione, biotin and thiamine were included in each of the 3 biomass 

reactions in trace amounts (Table S5).

Constraint-based modeling

The genome-scale metabolic reconstructions iRC1080 and iCre1355 were used to generate 

separate stoichiometric matrices Smxn, where the rows, m, represent metabolites, and the 

columns, n, represent reactions in each reconstruction. The entries in the matrices represent 

the stoichiometric coefficients for metabolites involved in each reaction. In silico growth 

was predicted using FBA by solving the linear programming problem:
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where S is the stoichiometric matrix, vobj is the flux through the objective function (typically 

one of the 3 biomass reactions); v is the vector of steady state reaction fluxes; and Vmin and 

Vmax are the lower and upper bounds for each flux, respectively. For reversible reactions, 

Vmin and Vmax were set to −100 and 100 mmol gDW−1 h−1, respectively, while for 

irreversible reactions Vmin and Vmax were set to 0 and 100 mmol gDW−1 h−1, respectively. 

In general, exchange reactions were made irreversible to only permit secretion of 

metabolites. However, exchange reactions for known media components were either set to 

measured values (e.g., for measured DIC, NH4, PO4 or acetate uptake rates) or allowed to 

permit free exchange with the extracellular space (i.e., -100 ≤ v ≤ 100). Simulations were 

conducted in the GAMS programming environment (GAMS Development Corporation, 

Cologne, Germany) using the CPLEX solver. iCre1355 in GAMS format along with specific 

modeling constraints used to simulate growth under each condition are provided in Dataset 

S1. In addition, iCre1355 in SBML format is provided in Data S2.

Flux variability analysis (Mahadevan and Schilling, 2003) was used to determine minimum 

and maximum allowable flux through each reaction in the network under optimal growth 

conditions.

Integration of transcriptomics datasets

To make predictions about condition-dependent growth and flux distributions, we used a 

combination of E-flux (Colijn et al., 2009) and iMAT (Shlomi et al., 2008; Zur et al., 2010). 

E-flux linearly scales the minimum and maximum allowable flux through reactions in the 

networks based on transcriptomics data prior to optimizing for the chosen objective function 

(e.g., growth rate). On the other hand, iMAT uses gene (or protein) expression data to 

partition reactions in the network into highly and lowly expressed reactions, based on the 

expression of the genes encoding the catalyzing enzymes, and then maximizes the 

agreement between the predicted flux distribution and the pre-assigned activity states of the 

reactions. We implemented E-flux using previously published transcriptomics data for C. 

reinhardtii by linearly scaling the Vmin and Vmax to measured FPKM values for the genes 

encoding the enzymes associated with the given reaction. To prevent genes with extremely 

high FPKM counts (outliers) from skewing the flux ranges, the 99th percentile of all FPKMs 

was taken as the highest count (Maxfpkm) (typically ~600 FPKM). Thus, for a reaction 

catalyzed by a single enzyme (E), the upper bound (Vmax) was calculated as:

For reactions with complex GPR rules, the cumulative FPKM for that reaction was 

determined based on the following rules: (i) For reactions catalyzed by multiple isozymes 

(e.g., E1 OR E2 OR E3), the Efpkm was determined using the FPKM of the gene with the 
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highest count (i.e., Efpkm = max(E1fpkm, E2fpkm, E3fpkm); (ii) For reactions catalyzed by 

multi-subunit enzymes (e.g., E1 AND E2 AND E3) Efpkm was determined using the FPKM 

of the gene with the lowest count (i.e., Efpkm = min(E1fpkm, E2fpkm, E3fpkm); (iii) For more 

complex GPR rules involving a combination of OR and AND relationships (e.g., E1 AND 

(E2 OR E3)), rule (i) and (ii) were combined (i.e., Efpkm = min(E1fpkm, max (E2fpkm, 

E3fpkm)). Vmin was set to −Vmax for reversible reactions or 0 gDW−1 h−1 for irreversible 

reactions. To enable prediction of growth after imposing the E-flux constraints, four 

reactions (PSIIred, PSIIblue, ATPSm, ANNA and DHRO) were left unconstrained i.e., Vmax 

set to100 gDW−1 h−1. This need arose due to the presence of very lowly expressed 

peripheral subunits that are included in the GPR rules for large multiple subunit complexes 

such as ATP synthase. A similar set of calculations was conducted for microarray datasets 

(Mettler et al., 2014), with a few modifications. Firstly, the log transformed intensity values 

provided in (Mettler et al., 2014) were back transformed to their original values to generate a 

larger dynamic range. We then selected the 95th percentile of all intensities set as the highest 

intensity to exclude outliers. Flux predictions were made either by maximizing for biomass 

(or TAG) production (E-flux) or by maximizing the agreement between gene expression and 

predicted flux distribution (iMAT) in context of the E-flux bounds (Eflux+iMAT).

To implement iMAT, reactions were divided into high and low expression reactions using 

thresholds. Reaction(s) catalyzed by an enzyme(s) with an Efpkm less than or equal to 3 

FPKM, were assigned as being low expression, while reactions catalyzed by an enzyme(s) 

with Efpkm greater than or equal to 95th percentile of all FPKMs in the control condition 

(typically ~75 FPKM) were assigned as high expression. The rules for determining the 

Efpkm of a reaction were the same as described above. For microarray data, a reaction(s) 

catalyzed by an enzyme(s) with Efpkm greater than or equal to the ~84th percentile of 

intensities in the control condition was assigned as high expression, while those lower than 

the ~16th percentile were assigned as low expression. These thresholds were chosen because 

RNA-seq datasets are typically very skewed to the right, while microarray datasets are more 

normally distributed (Oshlack et al., 2010; Guo et al., 2013; Zwiener et al., 2014) 

(microarray upper/lower bound equal to one standard deviation from mean). An assessment 

on the impact of the selected thresholds on the predictions using this approach indicated that 

the predictive accuracy, calculated as the mean squared error (i.e., the mean of the squared 

difference between predicted and observed growth rates), was relatively robust to the 

selected high expression threshold (Figure S5a). On the other hand, the selected low 

expression threshold cutoff can have a significant impact on predictive accuracy, with 

thresholds greater than or equal to the 20th percentile resulting in a significant increase in the 

mean squared error (i.e., significant decrease in predictive accuracy) (Figure S6b). iMAT 

was formulated as previously described and epsilon was set to 0.001(Shlomi et al., 2008).

The flux capacity of reactions in iCre1355 was determined using FVA, which was used to 

determine the effective minimum (Vmin,eff) and maximum (Vmax,eff) allowable flux through 

each reaction in the network based on constraints throughout the network. The predicted 

flux capacity through each reaction was then calculated as: max(abs(Vmax,eff), abs(Vmin,eff), 

i.e., the maximum allowable flux, in either direction, permitted through a given reaction 

within the context of the applied network constraints (including transcriptional constraints 

Imam et al. Page 20

Plant J. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applied using Eflux). To assess the impact of relative changes in reaction flux capacity at a 

pathway level, we compared the predicted flux capacities for all reactions in a pathway at 

each time point to 0 m. Using a threshold of 0.01 mmol gDW−1 h−1, the pathway-level 

change in capacity at each time point was taken as the difference between total number of 

reactions in a given pathway with significantly increased predicted flux capacity and the 

total number of reactions in that pathway with significantly reduced flux capacity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Distribution of genes and reactions in iCre1355

(A) Subsystem distribution of 312 newly identified metabolic genes incorporated in 

iCre1355. (B) Distribution of the subcellular localization of reactions associated with the 

312 newly identified metabolic genes. (C) Subsystem distribution of all reactions in 

iCre1355. (D) Subcellular localization of all reaction in iCre1355. (E) Subsystem 

distribution of blocked reactions in iCre1355. Blocked reactions were identified using flux 

variability analysis with all exchange reactions made reversible. (F) Venn diagram depicting 

the overlap in predicted essential genes in iCre1355 under photoautotrophic, mixotrophic 

and heterotrophic conditions.

Imam et al. Page 26

Plant J. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Pathway-level expression of genes in iCre1355 across conditions

Heatmap depicting the proportion of genes within each pathway in iCre1355 that are highly 

expressed across 6 groups of experiments. Pathways were grouped into very highly, highly, 

moderately and lowly expressed categories based on hierarchical clustering.
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Figure 3. Assessing the performance of iCre1355

(A) ROC curves comparing the predictions of iCre1355 to iRC1080 for gene deletion 

phenotype data. * Only 48 out of 81 metabolic mutants could be assessed with iRC1080. 

iCre1355 was also evaluated with this set of 48 mutants. ** iCre1355 predictions using 

biomass reactions from iRC1080. (B) Assessment of predicted maximal TAG yield on CO2 

and photon uptake by iCre1355 and iRC1080. * Yields range from 1.33 to 1.43 depending 

on the number of c subunits (14 to 12 respectively) assumed for ATP synthase. A value of 

12 used for this simulation. (C) Comparison of iCre1355 predicted growth rate to observed 

growth rates from chemostat grown cells. Measured uptake rates for carbon (CO2 or 

Acetate), nitrogen (NH4) and phosphorus (PO4) were used as constraints. (D) Predicted 

growth rates when only CO2 or PO4 used as initial constraints.
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Figure 4. Predicting growth rate and TAG flux during nitrogen starvation

Predicted growth rate (A) and TAG flux (B) during the time course of nitrogen starvation. 

Predictions were made, with transcriptional data used to set flux capacity bounds, either by 

maximizing for biomass (E-flux) or maximizing the agreement between gene expression and 

predicted flux (E-flux+iMAT). The 2 minute time point was an outlier in the TAG flux 

analysis and thus was omitted to permit better visualization of the other time points.
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Figure 5. Impact of nitrogen starvation on pathway activity in iCre1355

Heat map depicting predicted changes in pathway activity across time during nitrogen 

starvation. Darker shades indicate greater predicted pathway activity based on an increased 

number of “high” activity state reactions.
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Figure 6. Pathway-level impact of change in light intensity on flux capacity in iCre1355

Heatmap depicting predicted changes in pathway activity during the shift from low to a 

higher light intensity. Pathway-level changes were predicted based on predicted changes in 

flux capacities of constituent reactions relative to time 0 m.
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Table 1

Comparison of components in iCre1355 and iRC1080

Components iCre1355 iRC1080

Genes 1,355 1,073

Alternative transcripts 105 13

Nuclear genes 1,314 1,073

Chloroplast genes 34 0

Mitochondrial genes 7 0

Genome version JGI version 5.5 JGI version 4

Reactions 2,394 2,190

Enzymatic 1,862 1,717

Experimental evidence-based 779 726

No gene assignment (enzymatic) 114 116

Transport 426 388

Exchange 55 45

Demand 36 26

Reversible 713 656

Irreversible 1,681 1,534

Blocked reactions* 595 613

Compartments 10 10

Metabolites 1,845 1,706

Unique metabolites 1,133 1,068

Cytosol 730 675

Chloroplast 478 457

Mitochondria 308 265

*
Reactions that do not carry any flux from flux variability analysis when all exchange reactions made reversible.
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