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Abstract. In this paper we prove that the one-dimensional Schrödinger equation with derivative
in the nonlinear term is globally well-posed in Hs for s > 1

2
for data small in L2. To understand the

strength of this result one should recall that for s < 1
2

the Cauchy problem is ill-posed, in the sense
that uniform continuity with respect to the initial data fails. The result follows from the method
of almost conserved energies, an evolution of the “I-method” used by the same authors to obtain
global well-posedness for s > 2

3
. The same argument can be used to prove that any quintic nonlinear

defocusing Schrödinger equation on the line is globally well-posed for large data in Hs for s > 1
2
.
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1. Introduction. In this paper, using the method of almost conserved ener-
gies, we establish a sharp result on global well-posedness for the derivative nonlinear
Schrödinger IVP {

i∂tu+ ∂2
xu = iλ∂x(|u|2u),

u(x, 0) = u0(x), x ∈ R, t ∈ R,
(1)

where λ ∈ R.

The first result of this kind was obtained in the context of the KdV and the
modified KdV (mKdV) IVPs [11], also using almost conserved energies. Below we
will discuss in more detail the “almost conservation method” and its relationship
with the “I-method” which was applied to (1) in [9] (see also [10, 11, 20, 21]).

From the point of view of physics the equation in (1) is a model for the propagation
of circularly polarized Alfvén waves in magnetized plasma with a constant magnetic
field [25, 26, 29].
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It is natural to impose the smallness condition

‖u0‖L2 <

√
2π

|λ|(2)

on the initial data, as this will force the energy to be positive via the sharp Gagliardo–
Nirenberg inequality [36]. Note that the L2 norm is conserved by the evolution. In
this paper, we prove the following global well-posedness result.

Theorem 1.1. The Cauchy problem (1) is globally well-posed in Hs for s > 1
2 ,

assuming the smallness condition (2).
We present here once again [9] a summary of the well-posedness story for (1).

Scattering and well-posedness for this Cauchy problem has been studied by many
authors [14, 15, 16, 17, 18, 19, 27, 28, 30, 34, 35]. The best local well-posedness
result is due to Takaoka [30], where a gauge transformation and the Fourier restriction
method are used to obtain local well-posedness in Hs, s ≥ 1

2 . In [31], Takaoka showed
this result is sharp in the sense that, when s < 1

2 , the nonlinear evolution u(0) �→ u(t),
thought of as a map from Hs to Hs for some fixed t, fails to be C3 or even uniformly
C0 in this topology, even when t is arbitrarily close to zero and the Hs norm of the
data is small (see also Bourgain [5] and Biagioni–Linares [2]). Therefore, we see that
Theorem 1.1 is sharp, in the sense described above, except for the endpoint.

In [27], global well-posedness is obtained for (1) in H1 assuming the smallness
condition (2). The argument there is based on two gauge transformations performed
in order to remove the derivative in the nonlinear term and the conservation of the
Hamiltonian. This was improved by Takaoka [31], who proved global well-posedness in
Hs for s > 32

33 assuming (2). His method of proof is based on the idea of Bourgain [4, 6]
of estimating separately the evolution of low frequencies and of high frequencies of
the initial data. In [9], we used the “I-method” to further push the Sobolev exponent
for global well-posedness down to s > 2

3 . The main idea of the “I-method” consists
of defining a modified Hs norm permitting us to capture some nonlinear cancella-
tions in frequency space during the evolution (1). These cancellations allow us to
prove that the modified Hs(R) norm is nearly conserved in time, and an iteration
of the local result proves global well-posedness provided s > 2

3 . In this paper, an
algorithmic procedure, first developed in the KdV context [11], is applied to better
capture the cancellations in frequency space. Successive applications of the algorithm
generate higher-order-in-u but lower-order-in-scaling corrections to the modified Hs

norm. After one application of our algorithm, we show that the modified Hs norm
with the generated correction terms changes less in time than the modifed Hs norm
itself, so the first application of the algorithm produces an almost conserved energy.
The improvement obtained allows us to iterate the local result and prove global well-
posedness in Hs(R) provided s > 1

2 . In principle, the algorithm may itself be iterated
to generate a sequence of almost conserved energies giving further insight into the
dynamical properties of (1). The endpoint s = 1

2 is not obtained here. We speculate,
however, that a further refinement of the “almost conservation method” could be a
possible way to approach this question.

We conclude this section with the following remark.
Remark 1.2. Consider the one-dimensional quintic nonlinear Schrödinger

i∂tu = ∂xxu+ iauū∂xu+ ibu2∂xū+ cu3ū2,(3)

where a, b, and c are fixed real numbers. If (a+b)(3a−5b)/48+c/3 < 0 the equation in
(3) is defocusing and, as was remarked in [9], the techniques used to prove Theorem 1.1
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apply here too, and one can prove global well-posedness for initial data in Hs, s > 1
2 .

Moreover, if a = b = 0, we expect our method to give global well-posedness1 even
below s = 1/2.

We should point out that Clarkson and Cosgrove [8] (see also [1]) proved that (3)
fails the Painlevé test for complete integrability when

c �= 1

4
b(2b− a).

In particular, this shows that our techniques, which do not depend on a, b, c, do not
rely on complete integrability.

2. Notation and known facts. To prove Theorem 1.1 we may assume 1
2 < s ≤

2
3 , since for s > 2

3 the result is contained in [27, 31] and [9]. Henceforth 1
2 < s ≤ 2

3
shall be fixed. Also, by rescaling u, we may assume λ = 1.

We use C to denote various constants depending on s; if C depends on other
quantities as well, this will be indicated by explicit subscripting; e.g., C‖u0‖2

will
depend on both s and ‖u0‖2. We use A � B to denote an estimate of the form
A ≤ CB, and A ∼ B for cB ≤ A ≤ CB, where c and C are absolute constants. We
also use A � B if A ≤ εB, where ε is a very small absolute constant. We use a+ and
a− to denote expressions of the form a+ ε and a− ε, where 0 < ε � 1 depends only
on s.

We use ‖f‖p to denote the Lp(R) norm and Lq
tL

r
x to denote the mixed norm

‖f‖Lq
tL

r
x
:=

(∫
‖f(t)‖qr dt

)1/q

with the usual modifications when q = ∞.
We define the spatial Fourier transform of f(x) by

F(f)(ξ) := f̂(ξ) :=

∫
R

e−ixξf(x) dx

and the spacetime Fourier transform u(t, x) by

F̃(u)(τ, ξ) := ũ(τ, ξ) :=

∫
R

∫
R

e−i(xξ+tτ)u(t, x) dtdx.

Note that the derivative ∂x is conjugated to multiplication by iξ by the Fourier trans-
form.

We shall also define Dx to be the Fourier multiplier with symbol 〈ξ〉 := 1 + |ξ|.
We can then define the Sobolev norms Hs by

‖f‖Hs := ‖Ds
xf‖2 = ‖〈ξ〉sf̂‖L2

ξ
.

We also define the spacesXs,b(R×R) (first introduced in the context of the Schrödinger
equation in [3]; see also [22, 23]) on R × R by

‖u‖Xs,b(R×R) := ‖〈ξ〉s〈τ − |ξ|2〉bû(ξ, τ)‖L2
τL

2
ξ
.

1Recall that in this case the initial value problem is locally well-posed in Hs for s ≥ 0; see [7]
and [33].
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We often abbreviate ‖u‖s,b for ‖u‖Xs,b(R×R). For any time interval I, we define the

restricted spaces Xs,b(I × R) by

‖u‖Xs,b(I×R) := inf{‖U‖s,b : U |I×R = u}.
We shall take advantage of the Strichartz estimate (see, e.g., [3])

‖u‖L6
tL

6
x

� ‖u‖0, 12+,(4)

which interpolates with the trivial estimate

‖u‖L2
tL

2
x

� ‖u‖0,0,(5)

to give

‖u‖Lp
tL

p
x

� ‖u‖0,α(p)(6)

for any p ∈ [2, 6] and α(p) = (3+)(p−2)
4p . We also use

‖u‖L∞
t L2

x
� ‖u‖0, 12+,(7)

which together with Sobolev embedding gives

‖u‖L∞
t L∞

x
� ‖u‖ 1

2+, 12+.(8)

The next lemma introduces two more estimates that are probably less known than
the standard Strichartz estimates.

Lemma 2.1. For any b > 1
2 and any function u for which the right-hand side is

well defined, we have

‖D 1
2
x u‖L∞

x L2
t

� ‖u‖X0,b(9)

(smoothing effect estimate).
For any s > 1

2 and ρ ≥ 1
4 we have

‖u‖L2
xL

∞
t

� ‖u‖Xs,b ,(10)

‖u‖L4
xL

∞
t

� ‖u‖Xρ,b(11)

(maximal function estimates).
Proof. The estimates (9), (10), and (11) come from estimating the solution S(t)u0

of the linear one-dimensional Schrödinger IVP in the norm appearing in the left-hand
side and from a standard argument of summation along parabolic curves; see, for
example, the expository paper [13]. The smoothing effect and maximal function
estimates for S(t)u0 can be found, for example, in [24].

We also have the following improved Strichartz estimate (cf. Lemma 7.1 in [9];
see also [4, 28, 32]).

Lemma 2.2. For any Schwartz functions u, v with Fourier support in |ξ| ∼ R,
|ξ| � R, respectively, we have that

‖uv‖L2
tL

2
x
= ‖uv̄‖L2

tL
2
x

� R−1/2‖u‖0,1/2+‖v‖0,1/2+.

In our arguments we shall be using the trivial embedding

‖u‖s1,b1 � ‖u‖s2,b2 whenever s1 ≤ s2, b1 ≤ b2
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so frequently that we will not mention this embedding explicitly.
We now give some useful notation for multilinear expressions. If n ≥ 2 is an even

integer, we define a (spatial) n-multiplier to be any function Mn(ξ1, . . . , ξn) on the
hyperplane

Γn := {(ξ1, . . . , ξn) ∈ Rn : ξ1 + · · ·+ ξn = 0},

which we endow with the standard measure δ(ξ1 + · · · + ξn), where δ is the Dirac
delta.

If Mn is an n-multiplier and f1, . . . , fn are functions on R, we define the n-linear
functional Λn(Mn; f1, . . . , fn) by

Λn(Mn; f1, . . . , fn) :=

∫
Γn

Mn(ξ1, . . . , ξn)

n∏
j=1

f̂j(ξj).

We adopt the notation

Λn(Mn; f) := Λn(Mn; f, f̄ , f, f̄ , . . . , f, f̄).

Observe that Λn(Mn; f) is invariant under permutations of the even ξj indices or of
the odd ξj indices.

If Mn is a multiplier of order n, 1 ≤ j ≤ n is an index, and k ≥ 1 is an even
integer, we define the elongation Xk

j (Mn) of Mn to be the multiplier of order n + k
given by

Xk
j (Mn)(ξ1, . . . , ξn+k) := Mn(ξ1, . . . , ξj−1, ξj + . . .+ ξj+k, ξj+k+1, . . . , ξn+k).

In other words, Xk
j is the multiplier obtained by replacing ξj by ξj + · · · + ξj+k and

advancing all the indices after ξj accordingly.
We shall often write ξij for ξi+ ξj , ξijk for ξi+ ξj + ξk, etc. We also write ξi−j for

ξi − ξj , ξij−klm for ξij − ξklm, etc. Also, if m(ξ) is a function defined in the frequency
space, we use the notation m(ξi) = mi, m(ξij−k) = mij−k, etc.

In this paper we often use two very elementary tools: the mean value theorem
(MVT) and the double mean value theorem (DMVT). While recalling the statement
of the MVT will be an embarrassment, we think that doing so for the DMVT is a
necessity to avoid later confusion.

Lemma 2.3 (DMVT). Assume f ∈ C2(R) and that max(|η|, |λ|) � |ξ|; then

|f(ξ + η + λ)− f(ξ + η)− f(ξ + λ) + f(ξ)| � |f ′′(θ)||η||λ|,

where |θ| ∼ |ξ|.
3. The gauge transformation, energy, and the almost conservation laws.

In this section we summarize the main results presented in section 3 and 4 of [9].
Whatever is here simply stated and recalled is fully explained or proved in those
sections.

We start by applying the gauge transform used in [27] in order to improve the
derivative nonlinearity present in (1).

Definition 3.1. We define the nonlinear map G : L2(R) → L2(R) by

Gf(x) := e
−i
∫ x

−∞ |f(y)|2dy
f(x).
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The inverse transform G−1f is then given by

G−1f(x) := e
i
∫ x

−∞ |f(y)|2dy
f(x).

This transform is a bicontinuous map from Hs to itself for any s ∈ [0, 1].
Set w0 := Gu0, and w(t) := Gu(t) for all times t. A straightforward calculation

shows that the IVP (1) transforms into{
i∂tw + ∂2

xw = −iw2∂xw̄ − 1
2 |w|4w,

w(x, 0) = w0(x), x ∈ R, t ∈ R.
(12)

Also, the smallness condition (2) becomes

‖w0‖L2 <
√
2π.(13)

By the bicontinuity we thus see that global well-posedness of (1) in Hs is equivalent
to that of (12). From [27, 30, 31], we know that both Cauchy problems are locally
well-posed in Hs, s ≥ 1

2 , and globally well-posed in H1 assuming (13). By standard
limiting arguments, we thus see that Theorem 1.1 will follow if we can show the
following.

Proposition 3.2. Let w be a global H1 solution to (12) obeying (13). Then for
any T > 0 and s > 1

2 we have

sup
0≤t≤T

‖w(t)‖Hs � C(‖w0‖Hs ,T ),

where the right-hand side does not depend on the H1 norm of w.
We now pass to the considerations on the energy associated with solutions of (12).
Definition 3.3. If f ∈ H1(R), we define the energy E(f) by

E(f) :=

∫
∂xf∂xf dx− 1

2
Im

∫
fff∂xf dx.

By the Gagliardo–Nirenberg inequality we have

‖∂xf‖2 ≤ C‖f‖2
E(f)1/2(14)

for any f ∈ H1 such that ‖f‖2 <
√
2π.

By Plancherel, we write E(f) using the Λ notation and Fourier transform prop-
erties as

E(f) = −Λ2(ξ1ξ2; f)− 1

2
ImΛ4(iξ4; f).(15)

Expanding out the second term using Im(z) = (z − z̄)/2i, and using symmetry, we
may rewrite this as

E(f) = −Λ2(ξ1ξ2; f) +
1

8
Λ4(ξ13−24; f).(16)

One can use the same notation to rewrite the L2 norm as

‖w(t)‖2
2 = Λ2(1;w(t)).

Lemma 3.4 (see [27]). If w is an H1 solution to (12) for t ∈ [0, T ], then we have

‖w(t)‖2 = ‖w0‖2

and

E(w(t)) = E(w0)

for all t ∈ [0, T ].
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In [9] this lemma was proved using the following general proposition (cf. [9]).
Proposition 3.5. Let n ≥ 2 be an even integer, let Mn be a multiplier of order

n, and let w be a solution of (12). Then

∂tΛn(Mn;w(t)) = iΛn

Mn

n∑
j=1

(−1)jξ2
j ;w(t)


− iΛn+2

 n∑
j=1

X2
j (Mn)ξj+1;w(t)


+

i

2
Λn+4

 n∑
j=1

(−1)j−1X4
j (Mn);w(t)

 .

(17)

We summarize below the idea we used to prove Proposition 3.2 for s > 2
3 in [9].

Because we do not want to use the H1 norm of w, we cannot directly use the energy
E(w(t)) defined above. So we introduced a substitute notion of “energy” that could
be defined for a less regular solution and that had a very slow increment in time. In
frequency space consider an even C∞ monotone multiplier m(ξ) taking values in [0, 1]
such that

m(ξ) :=

{
1 if |ξ| < N,(

|ξ|
N

)s−1

if |ξ| > 2N.
(18)

Define the multiplier operator I : Hs −→ H1 such that Îw(ξ) := m(ξ)ŵ(ξ). This
operator is smoothing of order 1− s; indeed one has

‖u‖s0,b0 � ‖Iu‖s0+1−s,b0 � N1−s‖u‖s0,b0(19)

for any s0, b0 ∈ R. Our substitute energy was defined by

EN (w) := E(Iw).

Note that this energy makes sense even if w is only in Hs. In general, the energy
EN (w(t)) is not conserved in time, but we showed that the increment was very small
in terms of N .

To proceed with the improvement of the “I-method,” let us consider a symmetric
multiplier m(ξ)2 and let I be the multiplier operator associated with it. Then we
write

E1(w) := E(Iw).

Clearly, if m is the multiplier in (18), then

E1(w) = EN (w),

so we can think about E1(w) as the first generation of a family of modified energies.
In this paper we introduce the second generation in detail, but formally the method
can be used to define an infinite family of modified energies. We write

E2(w) = −Λ2(m1ξ1m2ξ2, w) +
1

2
Λ4 (M4(ξ1, ξ2, ξ3, ξ4), w) ,(20)

2This eventually will be taken to be exactly the multiplier in (18).
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where M4 will be determined later. Assume now that w is a solution of (12). Because
w is fixed we drop it from the definition of E2. We are interested in the increment
of this second generation of energies, and hence we compute d

dtE
2. Differentiating

Λ2(m1ξ1m2ξ2) using Proposition 3.5, using the identity ξ1 + · · · + ξn = 0 and sym-
metrizing, we have

d

dt
Λ2(m1ξ1m2ξ2) = − iΛ2(m1ξ1m2ξ2(ξ

2
1 − ξ2

2))− iΛ4(m123ξ123m4ξ4ξ2 +m1ξ1m234ξ234ξ3)

+
i

2
Λ6(m12345ξ12345m6ξ6 −m1ξ1m23456ξ23456)

=
i

2
Λ4(σ4(ξ1, ξ2, ξ3, ξ4)) +

i

6
Λ6(σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)),

where

σ4(ξ1, ξ2, ξ3, ξ4) = m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2(21)

and

σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) =

6∑
j=1

(−1)j−1m2
jξ

2
j .(22)

Notice that the contribution of Λ2 is zero because the factor (ξ2
1 − ξ2

2) is zero over the
set of integration ξ1 + ξ2 = 0.

Differentiating Λ4(M4), we have

d

dt
Λ4(M4(ξ1, ξ2, ξ3, ξ4))

= iΛ4

M4

4∑
j=1

(−1)jξ2
j


− iΛ6(M4(ξ123, ξ4, ξ5, ξ6)ξ2 +M4(ξ1, ξ234, ξ5, ξ6)ξ3

+M4(ξ1, ξ2, ξ345, ξ6)ξ4 +M4(ξ1, ξ2, ξ3, ξ456)ξ5)

+
i

2
Λ8(M4(ξ12345, ξ6, ξ7, ξ8)−M4(ξ1, ξ23456, ξ7, ξ8)

+M4(ξ1, ξ2, ξ34567, ξ8)−M4(ξ1, ξ2, ξ3, ξ45678))

= iΛ4

M4

4∑
j=1

(−1)jξ2
j


− i

36

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

Λ6(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc

+M4(ξa, ξb, ξcde, ξf )ξd +M4(ξa, ξb, ξc, ξdef )ξe)

+ C
∑

{a,c,e,g}={1,3,5,7}
{b,d,f,h}={2,4,6,8}

Λ8(M4(ξabcde, ξf , ξg, ξh) +M4(ξa, ξb, ξcdefg, ξh)

−M4(ξa, ξbcdef , ξg, ξh)−M4(ξa, ξb, ξc, ξdefgh)).
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Then

d

dt
E2(w) = − i

2
Λ4(σ4(ξ1, ξ2, ξ3, ξ4)) +

i

2
Λ4

M4

4∑
j=1

(−1)jξ2
j


− i

6
Λ6(σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6))

− i

72

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

Λ6(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc

+M4(ξa, ξb, ξcde, ξf )ξd +M4(ξa, ξb, ξc, ξdef )ξe)

+ C1

∑
{a,c,e,g}={1,3,5,7}
{b,d,f,h}={2,4,6,8}

Λ8(M4(ξabcde, ξf , ξg, ξh) +M4(ξa, ξb, ξcdefg, ξh)

−M4(ξa, ξbcdef , ξg, ξh)−M4(ξa, ξb, ξc, ξdefgh)).

We abbreviate the 6-linear and the 8-linear expressions as Λ6(M6(ξ1, ξ2, . . . , ξ6)) and
Λ8(M8(ξ1, ξ2, . . . , ξ8)). We are now ready to make our choice for M4. From our cal-
culations in [9], we realized that the estimates for the different pieces of Λn appearing
in the right-hand side of d

dtEN (w) are easier for n larger.3 We decided to use the
freedom of choosing M4 to cancel the Λ4 contribution obtained above. Hence, using
(21), we set

M4(ξ1, ξ2, ξ3, ξ4) = −m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2

ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4

,(23)

which in the set of integration ξ1 + ξ2 + ξ3 + ξ4 = 0 can also be written as

M4(ξ1, ξ2, ξ3, ξ4) = −m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2

2ξ12ξ14
.

Remark 3.6. If we assume that m(ξ) = 1, then E2(w) = E(w). In fact, on the
set ξ1 + ξ2 + ξ3 + ξ4 = 0 we have

m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 +m2

3ξ
2
3ξ1 +m2

4ξ
2
4ξ2

= ξ2
1ξ3 + ξ2

2ξ4 + ξ2
3ξ1 + ξ2

4ξ2

= (ξ1 + ξ3)(ξ1ξ3 − ξ2ξ4)

= (ξ1 + ξ3)(ξ1ξ3 + (ξ1 + ξ3 + ξ4)ξ4)

= −(ξ1 + ξ3)(ξ1 + ξ4)(ξ1 + ξ2);

hence

M4(ξ1, ξ2, ξ3, ξ4) =
1

2
(ξ1 + ξ3)(24)

and

E2(w) = −Λ2(ξ1ξ2) +
1

4
Λ4(ξ13),

3Compare, for example, sections 8, 9, and 10 in [9].
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which is exactly the value of E(w) in (15).
Once again we recall that we assume throughout the paper that s ∈ ( 1

2 ,
2
3 ] and

that the multiplier m is defined as in (18). To stress the fact that with this choice
the energy E2(w) depends on the parameter N , we write E2(w) = E2

N . We now
summarize some of the above observations in the following.

Proposition 3.7. Let w be an H1 global solution to (12). Then for any T ∈ R

and δ > 0 we have

E2
N (w(T + δ))− E2

N (w(T )) =

∫ T+δ

T

[Λ6(M6;w(t)) + Λ8(M8;w(t))] dt,

where the multipliers M6 and M8 are given by

M6 := − i

6
σ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

− i

72

∑
{a,c,e}={1,3,5}
{b,d,f}={2,4,6}

(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc

+ M4(ξa, ξb, ξcde, ξf )ξd +M4(ξa, ξb, ξc, ξdef )ξe),

M8 := C2

∑
{a,c,e,g}={1,3,5,7}
{b,d,f,h}={2,4,6,8}

(M4(ξabcde, ξf , ξg, ξh) +M4(ξa, ξb, ξcdefg, ξh)

− M4(ξa, ξbcdef , ξg, ξh)−M4(ξa, ξb, ξc, ξdefgh)),

where C2 is an absolute constant. Furthermore, if |ξj | � N for all j, then the
multipliers M6 and M8 vanish.

We end this section with a lemma that shows the energy E2
N (w) has the same

strength as ‖Iw‖H1 .
Lemma 3.8. Assume that w satisfies ‖w‖L2 <

√
2π, ‖Iw‖H1 = O(1). Then, for

N � 1,

‖∂xIw‖2
L2 � E2

N (w).(25)

The proof of this lemma relies strongly on the estimate of the multiplier M4, and
it can be found in the next section.

4. Estimates for M4 and proof of Lemma 3.8. Before we start with our
estimates we recall some notation that we used in [9]. Let n = 4, 6, or 8 and let
ξ1, . . . , ξn be frequencies such that ξ1+· · ·+ξn = 0. Define Ni := |ξi|, and Nij := |ξij |.
We adopt the notation that

1 ≤ soprano, alto, tenor, baritone ≤ n

are the distinct indices such that

Nsoprano ≥ Nalto ≥ Ntenor ≥ Nbaritone

are the highest, second highest, third highest, and fourth highest values of the fre-
quencies N1, . . . , Nn, respectively. (If there is a tie in frequencies, we break the tie
arbitrarily.) Since ξ1 + · · · + ξn = 0, we must have Nsoprano ∼ Nalto. Also, from
Proposition 3.7 we see that Mn vanishes unless Nsoprano � N .
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In this section whenever we write max |f(θ)| for a function f we understand that
the maximum is taken for |θ| ∼ Nsoprano.

Lemma 4.1. Assume M4 is the multiplier defined in (23) and m(ξ) is as in (18).
Then

|M4(ξ1, . . . , ξ4)| � m2(Nsoprano)Nsoprano.(26)

Proof. We observe that to prove (26) it suffices to prove

|σ4(ξ1, . . . , ξ4)| � |ξ12||ξ12|m2(Nsoprano)Nsoprano.

Without loss of generality we may assume that Nsoprano = N1. By symmetry we
can assume that |ξ12| ≤ |ξ14|. We divide the analysis into two cases: Case (a) when
N1 � |ξ14| and Case (b) when |ξ14| � N1.

Case (a). We write

|σ4(ξ1, . . . , ξ4)| = |m2
1ξ

2
1ξ3 +m2

2ξ
2
2(−ξ12 − ξ3) +m2

3ξ
2
3ξ1 +m2

12+3ξ
2
12+3ξ2|

= |ξ3(m2
1ξ

2
1 −m2

1−12ξ
2
1−12) + ξ1(m

2
3ξ3 −m2

3+12ξ
2
3+12)(27)

− ξ12(m
2
2ξ

2
2 −m2

12+3ξ
2
12+3)|.

Then the MVT shows that

|σ4(ξ1, ξ2, ξ3, ξ4)| � |ξ12|N1 max |(m(ξ)2ξ2)′|,(28)

where |ξ| � N1. Now it is easy to see that for m defined in (18)

(m2(ξ)ξ2)′ ∼ m2(ξ)ξ

and that the function m2(ξ)ξ is nondecreasing. Then (28) immediately gives (26).
Case (b). We first write σ4 so that the DMVT in Lemma 2.3 can be applied. For

simplicity we write m2(ξ)ξ2 = f(ξ). Then in the set ξ1 + · · ·+ ξ4 = 0 we have

σ4(ξ1, . . . , ξ4) = f(ξ1)ξ3 + f(ξ2)ξ4 + f(ξ3)ξ1f(ξ4)ξ2

= ξ3[f(ξ1)− f(ξ2)] + ξ1[f(ξ3)− f(−ξ4)]− ξ12[f(ξ2)− f(−ξ4)]

= ξ3[f(ξ1)− f(ξ2) + f(ξ3)− f(−ξ4)]

+ (ξ1 − ξ3)[f(ξ3)− f(ξ3 − ξ12)]− ξ12[f(ξ2)− f(−ξ4)]

= ξ3[f(ξ1 − ξ12 − ξ14)− f(ξ1 − ξ12)− f(ξ1 − ξ14) + f(ξ1)]

+ (−ξ3 + ξ1)[f(ξ3)− f(ξ3 − ξ12)]− ξ12[f(ξ2)− f(ξ2 + ξ14 − ξ12)],

where we often used the fact that f(ξ) is an even function. Using the DMVT in the
first term of the right-hand side of the inequality and the MVT in the remaining two
terms we obtain

σ4(ξ1, . . . , ξ4) � |ξ1||f ′′(θ)||ξ12||ξ14|+ |ξ12|max |f ′|(|ξ3−1|+ |ξ14|+ |ξ12|),(29)

where |θ| ∼ N1. Now observe that

|ξ3−1| = |ξ12 + ξ14| � |ξ14|

and that |f ′′(θ)| � m(N1)
2, so inserting (29) in the definition of M4 we obtain

(26).
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We need two more local estimates for M4.
Lemma 4.2.
• Assume that |ξ1| ∼ |ξ3| � N � |ξ2|, |ξ4|; then

|M4(ξ1, ξ2, ξ3, ξ4)| � m(Nsoprano)
2Ntenor.(30)

• Assume that |ξ1| ∼ |ξ2| � N � |ξ3|, |ξ4|; then

M4(ξ1, ξ2, ξ3, ξ4) =
m2

1ξ
2
2

2ξ1
+R(ξ1, . . . , ξ4),(31)

where

|R(ξ1, . . . , ξ4)| � Ntenor.

Proof. The first part of the lemma follows from the MVT. In fact,∣∣∣∣m2
1ξ

2
1ξ3 + ξ2

2ξ4 +m2
3ξ

2
3ξ1 + ξ2

4ξ2
ξ12ξ14

∣∣∣∣ � |ξ1ξ3ξ13|max |(m(ξ)2ξ)′|+ |ξ24ξ2ξ4|
|ξ1|2

� m(Nsoprano)
2Ntenor,

where again we used that |(m(ξ)2ξ)′| ∼ |m(ξ)ξ|.
To prove the second part of the lemma we use the identity

1

ξ14
=

1

ξ1
− ξ4

ξ14

1

ξ1
,

and we write

−2M4(ξ1, ξ2, ξ3, ξ4) +
m2

1ξ
2
2

ξ1
= R1(ξ1, . . . , ξ4) +R2(ξ1, . . . , ξ4),

where

R1(ξ1, . . . , ξ4) =
m2

1ξ
2
1ξ3 +m2

2ξ
2
2ξ4 + ξ2

3ξ1 + ξ2
4ξ2 +m2

1ξ
2
2ξ12

ξ12ξ1
,

R2(ξ1, . . . , ξ4) = − ξ4
ξ14

m2
1ξ

2
1ξ3 +m2

2ξ
2
2ξ4 + ξ2

3ξ1 + ξ2
4ξ2

ξ12ξ1
.

We first estimate R1:

R1(ξ1, . . . , ξ4) =
m2

1ξ
2
1ξ3 +m2

2ξ
2
2ξ4 + ξ2

3ξ1 + ξ2
4ξ2 −m2

1ξ
2
2ξ34

ξ12ξ1

=
m2

1ξ3(ξ
2
1 − ξ2

2) + ξ2
2ξ4(m

2
2 −m2

1) + ξ2
3(ξ1 + ξ2) + ξ2(ξ

2
4 − ξ2

3)

ξ12ξ1
, and

hence, by the MVT,

|R1(ξ1, . . . , ξ4)| � Ntenor.

On the other hand,

R2(ξ1, . . . , ξ4) = − ξ4
ξ14

m2
1ξ

2
1(ξ3 + ξ4) + (m2

2ξ
2
2 −m2

1ξ
2
1)ξ4 + ξ2

3ξ12 + ξ2ξ34ξ3−4

ξ12ξ1
, and

hence, again by the MVT,

|R2(ξ1, . . . , ξ4)| � Ntenor.
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Proof of Lemma 3.8.
Proof. We rewrite E2

N (w) as

E2
N (w) = − Λ2(m1ξ1m2ξ2) +

1

8
Λ4(ξ13−24m1m2m3m4)

+
1

8
Λ4(4M4(ξ1, ξ2, ξ3, ξ4)− ξ13−24m1m2m3m4).

In Lemma 3.6 of [9] we proved the estimate

‖∂xIw‖2
L2 � −Λ2(m1ξ1m2ξ2) +

1

8
Λ4(ξ13−24m1m2m3m4)

for ‖Iw‖L2 <
√
2π. Hence we have only to show that

|Λ4(4M4(ξ1, ξ2, ξ3, ξ4)− ξ13−24m1m2m3m4)| � O

(
1

Nα

)
‖Iw‖4

H1(32)

for some α > 0.
We first perform a Littlewood–Paley decomposition of the four factors w so that

the ξi are essentially the constants Ni, i = 1, . . . , 4. To recover the sum at the end
we borrow a N−ε

soprano from the large denominator Nsoprano and often this will not be
mentioned.

If all |ξj | are less than N
100 , the left-hand side of (32) vanishes thanks to (23).

Therefore, we may assume Nsoprano � N . Also note Nalto � N on the set ξ1 + ξ2 +
ξ3 + ξ4 = 0. Then it is obvious that

|Λ4(ξ13−24m1m2m3m4)| � 1

N
‖Iw‖2

H1‖Iw‖2
L∞ � 1

N
‖Iw‖4

H1 .

Next we control the contribution of Λ4(M4) in (32). By (26), we have

|Λ4(M4(ξ1, ξ2, ξ3, ξ4))| � 1

N1−
sopranom(Nbaritone)2Nbaritone

‖Iw‖4
H1 � 1

N1− ‖Iw‖4
H1 ,

where again we used the fact that m2(ξ)ξ is nondecreasing.

5. Local estimates. This section contains a refinement of the results presented
in section 5 of [9]. We start with the main result.

Theorem 5.1. Let w be a H1 global solution to (12) and let T ∈ R be such that

‖Iw(T )‖H1 ≤ C0

for some C0 > 0. Then we have

‖Iw‖X1,b([T,T+δ]×R) � 1

for any 1
2 < b < 3

4 and for some δ > 0 depending on C0.
Remark 5.2. This theorem is stronger than the corresponding Theorem 5.1 in [9]

because b can be arbitrarily close to 3
4 , and this is essential to obtain our sharp global

well-posedness result.
As explained in [9] the proof of Theorem 5.1 is a consequence of the following

multilinear estimates.
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Lemma 5.3. For the Schwartz function w and 1
2 < b < 3

4 , b′ < 3
4 , we have

‖I(w∂xww)‖1,b′−1 � ‖Iw‖2
1, 12+‖Iw‖1,b,(33)

‖I(wwwww)‖1,b′−1 � ‖Iw‖5
1, 12+.(34)

Proof. The proof of (34) follows from the same arguments used to prove (17) in
[9], and we do not present it here again. The proof of (33) on the other hand is more
delicate than the one given in [9] for (16), so we decided to give all the details. By
standard duality arguments in L2 and renormalization, it is easy to see that (33) is
equivalent to

(35)∫
∗

m4〈ξ4〉|ξ2|〈τ4 + ξ2
4〉b

′−1∑3
i=1〈τi + (−1)iξ2

i 〉b−
1
2−
∏3

j=1 mj〈ξj〉〈τj + (−1)jξ2
j 〉

1
2+

4∏
j=1

Fj(τj , ξj) �
4∏

j=1

‖Fj‖L2 ,

where all functions Fj are real-valued and nonnegative. If

m4〈ξ4〉|ξ2|∏3
j=1 mj〈ξj〉

� 1,(36)

then the L2 estimate (5) for F4 and the Strichartz estimate (6) with p = 6 for F1, F2, F3

automatically shows (35) for b > 1
2 , b′ ≤ 1. Then we may assume

m4〈ξ4〉|ξ2|∏3
j=1 mj〈ξj〉

� 1,

which, one can easily check, can happen only when

|ξ2| � 1, |ξ12| � 1, |ξ14| � 1.

We recall (cf. [3] and [9]) the fundamental inequality

|ξ12ξ14| � max
j=1,2,3,4

{〈τj + (−1)jξ2
j 〉}.(37)

Then we proceed with a case by case analysis: Case (a) if maxj=1,2,3{〈τ4 + ξ2
4〉, 〈τj +

(−1)jξ2
j 〉} = 〈τ4 + ξ2

4〉 and Case (b) if maxj=1,2,3{〈τ4 + ξ2
4〉, 〈τj + (−1)jξ2

j 〉} = 〈τi +
(−1)jξ2

i 〉 for some i = 1, 2, 3.

• Case (a). In this case we replace in the denominator 〈τ4 + ξ2
4〉1−b′ with

(〈ξ12〉〈ξ14〉)1−b′ . Then, using the same argument that in [9] led us from (16)
to (18), we can show that (35) is equivalent to

(38)∫
∗

〈ξ4〉s〈ξ2〉1−s

(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s〈ξ3〉s
∏3

j=1〈τj + (−1)jξ2
j 〉

1
2+

4∏
j=1

Fj(τj , ξj) �
4∏

j=1

‖Fj‖L2 .
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To have an idea of the “numerics” involved while proceeding with the proof,
the reader should keep in mind that the interesting case is when s = 1

2+ and
1− b′ = 1

4+. Since ξ14 = −ξ32, by symmetry, we may assume that |ξ1| ≥ |ξ3|.
Then, using the fact that ξ4 = −ξ3 − ξ12, we can write

〈ξ4〉s〈ξ2〉1−s

(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s〈ξ3〉s = A1 +A2,(39)

where

A1 � 〈ξ2〉1−s

(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s ,

A2 � 〈ξ12〉s−1+b′〈ξ2〉1−s

〈ξ14〉1−b′〈ξ1〉s〈ξ3〉s .

We now write ξ12 = −ξ14 − ξ3 + ξ1, and we write

A2 = A1
2 +A2

2 +A3
2,

where

A1
2 � 〈ξ2〉1−s

〈ξ14〉2(1−b′)−s〈ξ1〉s〈ξ3〉s ,

A2
2 � 〈ξ2〉1−s

〈ξ14〉1−b′〈ξ3〉1−b′〈ξ1〉s ,

A3
2 � 〈ξ2〉1−s

〈ξ14〉1−b′〈ξ1〉1−b′〈ξ3〉s .

It is now easy to see that, for 1− b′ ≥ s
2 ,

A1, A
i
2(ξ1, ξ2, ξ3) � 〈ξ2〉 1

2

〈ξ1〉 s
2 〈ξ3〉 s

2
for all i = 1, 2, 3.

Then by (9) and (11) we obtain∫
∗

〈ξ4〉s〈ξ2〉1−s

(〈ξ12〉〈ξ14〉)1−b′〈ξ1〉s〈ξ3〉s
∏3

j=1〈τj + (−1)jξ2
j 〉

1
2+

4∏
j=1

Fj(τj , ξj)

� ‖F̃−1(F4)‖L2
xt

∥∥∥∥∥F̃−1

(
〈ξ〉 1

2

〈τ + ξ2〉 1
2+

F2

)∥∥∥∥∥
L∞

x L2
t

‖F̃−1

( 〈ξ〉− s
2

〈τ − ξ2〉 1
2+

F3

)
‖L4

xL
∞
t

× ‖F̃−1

( 〈ξ〉− s
2

〈τ − ξ2〉 1
2+

F1

)
‖L4

xL
∞
t

�
4∏

j=1

‖Fj‖L2 .

• Case (b). In this case we borrow a power α = b′ − 1
2+ from the large denom-

inator, and we reduce our estimate to∫
∗

〈ξ4〉s〈ξ2〉1−s

〈ξ1〉s〈ξ3〉s
∏4

j=1〈τj + (−1)jξ2
j 〉

1
2+

4∏
j=1

Fj(τj , ξj) �
4∏

j=1

‖Fj‖L2 .
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Again by symmetry we can assume that |ξ1| ≥ |ξ3|. We first observe that if
the exponent of 〈ξ4〉 were 1

2 , then we could simply use (9) for the function F2

and (10) for the function F4 to obtain the estimate as we did above. However,
in our case s > 1

2 , so we have to do a bit more work. We subdivide the analysis
into subcases.

– Subcase (1). |ξ4| � |ξ2|. In this case we can write

〈ξ4〉s〈ξ2〉1−s � 〈ξ4〉 1
2 〈ξ2〉 1

2 ,

and we can indeed use (9) and (10).
– Subcase (2). |ξ2| � |ξ4|. Because we assumed that |ξ3| ≤ |ξ1| and we are

on the set ξ1 + · · ·+ ξ4 = 0, it follows that |ξ4| � |ξ1|. Then the estimate
becomes ∫

∗

〈ξ2〉1−s

〈ξ3〉s
∏4

j=1〈τj + (−1)jξ2
j 〉

1
2+

4∏
j=1

Fj(τj , ξj)

�
∥∥∥∥F̃−1

(
1

〈τ + ξ2〉 1
2+

F4

)∥∥∥∥
L4

xt

∥∥∥∥F̃−1

(
1

〈τ − ξ2〉 1
2+

F1

)∥∥∥∥
L4

xt

×
∥∥∥∥F̃−1

( 〈ξ〉1−s

〈τ + ξ2〉 1
2+

F2

)∥∥∥∥
L∞

x L2
t

×
∥∥∥∥F̃−1

( 〈ξ〉−s

〈τ − ξ2〉 1
2+

F3

)∥∥∥∥
L2

xL
∞
t

�
4∏

j=1

‖Fj‖L2 ,

thanks to (6) for p = 2, (9), and (10).

6. Proof of Proposition 3.2. Based on Lemma 3.8, Theorem 5.1, and the
arguments presented in [9, section 6] (see also the comments in [9, section 7]), the
only result that one needs to obtain is the following.

Lemma 6.1. For any Schwartz function w, we have∣∣∣∣∣
∫ T+δ

T

Λn(Mn;w(t)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖nX1,3/4−([T,T+δ]×R)(40)

for n = 6, 8, where M6, M8 are defined in Proposition 3.7.
In [9] we were only able to obtain a decay of N−1+, which is why we could only

prove global well-posedness for s > 2
3 .

The proof of this lemma is a corollary of the four lemmas that follow in this
section.

Lemma 6.2 (n = 8).

|M8(ξ1, ξ2, . . . , ξ8)| � Nsopranom
2(Nsoprano).

This is a simple consequence of Lemma 4.1. We now turn to the estimate of
d
dtE

2(Iw) involving Λ8.
Lemma 6.3.∣∣∣∣∣

∫ T+δ

T

∫
Λ8(M8(ξ1, ξ2, . . . , ξ8)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖8
1, 12+.
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Proof. As in the proof of Lemma 3.8, also in this case we first perform a
Littlewood–Paley decomposition of the eight factors w so that the ξi essentially are
the constants Ni, i = 1, . . . , 8. To recover the sum at the end we borrow a N−ε

soprano

from the large denominator Nsoprano. Often this will not be mentioned, and it will
only be recorded at the end by paying a price equivalent to N0+. Below we often use
the set of indices R = {soprano, alto, tenor}. Again we proceed by analyzing different
cases.

• Case (a). Nsoprano ∼ Ntenor. By Lemma 6.2 and the fact that m(ξ)〈ξ〉 1
2 is

increasing, we have∣∣∣∣∣
∫ T+δ

T

∫
Λ8(M8(ξ1, ξ2, . . . , ξ8)) dt

∣∣∣∣∣
�
∑
R,j

Nsoprano

m(Ntenor)
‖DxIwsoprano‖L6‖DxIwalto‖L6‖DxIwtenor‖L6

∏
j,k/∈R

‖DxIwj‖L6‖D1/2−
x Iwk‖2

L∞ � 1

N2− ‖Iw‖8
1, 12+.

• Case (b). Nsoprano � Ntenor. By Lemma 2.2, and again the monotonicity of
m(ξ)〈ξ〉1/2, we have∣∣∣∣∣

∫ T+δ

T

∫
Λ8(M8(ξ1, ξ2, . . . , ξ8)) dt

∣∣∣∣∣
� Nsoprano‖Iwsopranowtenor‖L2‖Iwaltowbaritone‖L2

× ‖w‖4
L∞ � 1

N2− ‖Iw‖8
1, 12+.

Lemma 6.4 (n = 6).

• If Ntenor � N , we have

|M6(ξ1, ξ2, . . . , ξ6)| � m(Nsoprano)
2N2

soprano.(41)

• If Ntenor � N , we have

|M6(ξ1, ξ2, . . . , ξ6)| � NsopranoNtenor.(42)

Proof. If Nsoprano � N , M6 vanishes. Then we may assume Nsoprano � N . Also
in the set ξ1 + · · ·+ ξ6 = 0 we have Nalto ∼ Nsoprano.

The proof of (41) follows from (26). The proof of (42) is more delicate. By
symmetry we assume soprano = 1, N1 ≥ N3 ≥ N5, N2 ≥ N4 ≥ N6. Again we
analyze different cases.

• Case (a). alto = 2. The MVT shows

|σ6(ξ1, ξ2, . . . , ξ6)| � m(N1)
2N1N12 +m(Ntenor)

2N2
tenor

� m(Nsoprano)
2NsopranoNtenor.
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Next we estimate the second term in M6:∑
(M4(ξabc, ξd, ξe, ξf )ξb +M4(ξa, ξbcd, ξe, ξf )ξc +M4(ξa, ξb, ξcde, ξf )ξd

+M4(ξa, ξb, ξc, ξdef )ξe).

Again by (26) one has that

|M4(ξabc, ξd, ξe, ξf )ξg| � m(Nsoprano)
2NsopranoNtenor(43)

for every a, . . . , g ∈ {1, . . . , 6} and g �= soprano, alto. Thus we have only to
consider the contributions∣∣∣∣∣∣

∑
(a,e)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa21, ξd, ξe, ξf )ξ2 +M4(ξa, ξ21d, ξe, ξf )ξ1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(a,c)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa, ξ12b, ξe, ξf )ξ1 +M4(ξa, ξb, ξ12e, ξf )ξ2

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(a,c)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa, ξb, ξ12c, ξf )ξ2 +M4(ξa, ξb, ξc, ξ12f )ξ1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

(a,e)∈{3,5}

∑
(d,f)∈{4,6}

M4(ξa2c, ξd, ξ1, ξf )ξ2 +M4(ξa, ξ2, ξc, ξd1f )ξ1

∣∣∣∣∣∣ =
4∑

i=1

Ii.

Observe first that all the variables appearing in the function M4 in
∑3

i=1 Ii
are strictly smaller that N

2 , and hence by (24) it follows that

3∑
i=1

Ii � NsopranoNtenor.

To estimate I4 we use (30) and the symmetry of M4. Then also in this case
we obtain

I4 � NsopranoNtenor.

• Case (b). alto = 3. In this case we need some cancellation between the large
terms coming from σ6(ξ1, . . . , ξ6) and the large terms of the sum of the M4.
From (43) it is easy to see that one needs to estimate only

M̃6(ξ1, . . . , ξ6) = − 1

6
(m2

1ξ
2
1 +m2

3ξ
2
3)

− ξ1
36

 ∑
(b,d,f)∈{2,4,6}

M4(ξa, ξb1d, ξ3, ξf ) +M4(ξa, ξb, ξ3, ξd1f )


− ξ3

36

 ∑
(b,d,f)∈{2,4,6}

M4(ξa, ξb, ξ1, ξd3f ) +M4(ξa, ξb3d, ξ1, ξf )

 .
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We now use (31) and the symmetries of M4 to write

M̃6(ξ1, . . . , ξ6) = − 1

6
(m2

1ξ
2
1 +m2

3ξ
2
3)

− ξ1
72

 ∑
(b,d,f)∈{2,4,6}

m2
3(ξ

2
b1d + ξ2

b1f )

ξ3

+O(NsopranoNtenor)

− ξ3
72

 ∑
(b,d,f)∈{2,4,6}

m2
1(ξ

2
d3f + ξ2

b3d)

ξ1

+O(NsopranoNtenor)

= − 1

6
(m2

1ξ
2
1 +m2

3ξ
2
3)

+
1

72

 ∑
(b,d,f)∈{2,4,6}

m2
3(ξ

2
b1d + ξ2

b1f )

+O(NsopranoNtenor)

+
1

72

 ∑
(b,d,f)∈{2,4,6}

m2
1(ξ

2
d3f + ξ2

b3d)

+O(NsopranoNtenor)

= − 1

72
m2

3

∑
(b,d,f)∈{2,4,6}

(ξ2
3 − ξ2

1bd) + (ξ2
3 − ξ2

1fb)

− 1

72
m2

1

∑
(b,d,f)∈{2,4,6}

(ξ2
1 − ξ2

3bf ) + (ξ2
1 − ξ2

b3d)

+O(NsopranoNtenor),

and now it is clear that also in this case

|M̃6(ξ1, . . . , ξ6)| � NsopranoNtenor.

Lemma 6.5.∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖6
1, 34−.(44)

Proof. Also in this case one uses a Littlewood–Paley decomposition to start. We
divide the proof into three different cases: Case (a) when Nbaritone � N , Case (b)
when Nsoprano ≥ Ntenor � N � Nbaritone, and Case (c) when Nsoprano ∼ Nalto �
N � Ntenor. Below we often use the two sets of indices S = {soprano, alto, tenor,
baritone} and R = {soprano, alto, tenor}. We also recall that thanks to the fact that

m(ξ)|ξ| 12 is not decreasing,

m(ξ)(1 + |ξ|) �
{

N if |ξ| > N
2 ,

1 if |ξ| ≤ N
2 .

(45)
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• Case (a). Nbaritone � N . By Lemma 6.4, (45), and the Strichartz estimate
(4), we have ∣∣∣∣∣

∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣
�
∑
S,j

1

NsopranoN
m(Nsoprano)Nsoprano‖wsoprano‖L6

× m(Nalto)Nalto‖walto‖L6m(Ntenor)Ntenor‖wtenor‖L6

× m(Nbaritone)Nbaritone‖wbaritone‖L6

×
∏
j /∈S

‖Iwj‖L6 � 1

N2− ‖Iw‖6
1, 12+.

• Case (b). Nsoprano ≥ Ntenor � N � Nbaritone. This is the only part in which
we need to use the space X1,b with b ∼ 3

4−. By Lemma 6.4 and (45) we have∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣
�
∑
R,j

1

Nsoprano
m(Nsoprano)Nsoprano‖wsopranowbaritone‖L2

×m(Nalto)Nalto‖walto‖L6m(Ntenor)Ntenor‖wtenor‖L6

∏
j /∈R

‖D 1
2
x Iwj‖L12 .

Using Lemma 2.2 and (45), it is easy to see that

m(Nsoprano)Nsoprano‖wsopranowbaritone‖L2

� N−1/2‖Iwsoprano‖
X1, 1

2
+‖Iwbaritone‖

X1, 1
2
+ .

Also by the Sobolev inequalities and again (45)∏
j /∈R

‖D 1
2
x Iwj‖L12 �

∏
j /∈R

‖Iwj‖
X1, 1

2
+ .

Collecting the above estimates one obtains∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣ � 1

N
3
2−

‖Iw‖6
1, 12+.

Unfortunately, the decay N− 3
2+ is not enough for our purposes. Because the

local estimate allow us to handle terms of type ‖Iw‖1, 34− (see section 5), we
take advantage of the extra denominators. To see this we use the identity

ξ1 + · · ·+ ξ4 = 0 =⇒ ξ2
1 − ξ2

2 + ξ2
3 − ξ2

4 = 2ξ12ξ14,
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proved in [9]. We consider only the case N1 = Nsoprano, N2 = Nalto, and
N3 = Ntenor. Indeed if N5 = Ntenor the argument is easier. Then in the set
ξ1 + · · ·+ ξ6 = 0 we write

6∑
i=1

(−1)i−1ξ2
i = ξ2

1 − ξ2
2 + ξ2

3 − (ξ4 + ξ5 + ξ6)
2

+(ξ4 + ξ5 + ξ6)
2 − ξ2

4 + ξ2
5 − ξ2

6

= 2ξ12ξ1456 + (ξ4 + ξ5 + ξ6)
2 − ξ2

4 + ξ2
5 − ξ2

6 ,

which implies that ∣∣∣∣∣
6∑

i=1

(−1)i−1ξ2
i

∣∣∣∣∣ � N2,

and for λ1 + · · ·+ λ6 = 0

N2 � max
i=1,... ,6

|λi + (−1)iξ2
i |.(46)

If the integral in time were performed on the whole real line instead of [T, T +

δ], then, after paying the price of the extra factor maxi=1,... ,6 |λi+(−1)iξ2
i |

1
4 ,

one would obtain∣∣∣∣∣
∫ T+δ

T

∫
Λ6(M6(ξ1, ξ2, . . . , ξ6)) dt

∣∣∣∣∣ � 1

N2− ‖Iw‖6
1, 34−.

This argument has to be modified when the time integral is performed on
a finite interval [T, T + δ], due to the fact that χ[T,T+δ], the characteristic
function of the interval [T, T + δ], is not smooth enough. A similar difficulty
was encountered also in [9]. We split

χ[T,T+δ](t) = a(t) + b(t),

where

â(τ) = ̂χ[T,T+δ](τ)η(τ/N
2),

and η is supported on a small interval of 0 and equals 1 near 0, so a is smooth-
ing out χ[T,T+δ] at scale N−2. If one replaces χ[T,T+δ](t) with a(t), then the
argument above works because the Fourier transform of a(t) is supported on
|τ | � N2, and one can still obtain the crucial inequality (46). We now have
to deal with b(t). It is easy to check that

‖b(t)‖L1
t

� N−2.

So we just have to show that

sup
t

|Λ6(M6;w1(t), . . . , w6(t))| �
6∏

j=1

‖Iwj‖
X1, 3

4
− .(47)
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We can crudely use Lemma 6.4 and obtain

|Λ6(M6;w1(t), . . . , w6(t))| � m2
sopranoN

2
soprano‖wsoprano‖L∞

t L2
x
‖walto‖L∞

t L2
x

× ‖wtenor‖L∞
t L∞

x
‖wbaritone‖L∞

t L∞
x

∏
j /∈S

‖Iwj‖L∞
t L∞

x
,

which gives (47) by the Sobolev embedding theorem.
• Case (c). Nsoprano ∼ Nalto � N � Ntenor. By Lemma 6.4, Lemma 2.2,
Sobolev inequality, and (45), we have∣∣∣∣∫ ∫ Λ6(M6(ξ1, ξ2, . . . , ξ6))

∣∣∣∣ �∑
S,j

1

m2
altoNalto

NsopranoNtenor

× ‖IwsopranoIwtenor‖L2

× Nalto‖IwaltoIwbaritone‖L2

∏
j /∈S

‖wj‖L∞

� 1

N2− ‖Iw‖1, 12+.

This concludes the proof of the lemma.
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