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Abstract—This paper focuses on the refinement of standard
Hilbert–Huang transform (HHT) technique to accurately char-
acterize time varying, multicomponents interarea oscillations.
Several improved masking techniques for empirical mode decom-
position (EMD) and a local Hilbert transformer are proposed
and a number of issues regarding their use and interpretation are
identified. Simulated response data from a complex power system
model are used to assess the efficacy of the proposed techniques
for capturing the temporal evolution of critical system modes. It is
shown that the combination of the proposed methods result in su-
perior frequency and temporal resolution than other approaches
for analyzing complicated nonstationary oscillations.

Index Terms—Convolution filter, empirical mode decomposition,
Hilbert–Huang transform, interarea oscillation, masking.

I. INTRODUCTION

T
RANSIENT response of power systems typically displays

nonstationary characteristics [1]. Extracting and quanti-

fying temporal modal behavior from the observed oscillations

present a significant challenge due to the nature of switching

events and other control actions that may take place over the

observation period [2]–[8].

Modal analysis is one of the most effective techniques to ex-

tract modal information from power systems models [9]–[11].

However unfortunately, oscillatory processes may exhibit non-

linear behavior and in many cases linear models are not suffi-

cient to capture time-varying features associated with switching

and control actions. Several other complementary techniques

based on ringdown analysis to system perturbations and MIMO

state-space identification techniques have been successfully ap-

plied to analyze wide-area oscillatory dynamics [3], [4], [8],

[12], [13]. Fourier-based analysis tools have also been used for

off line studies of power system dynamics [14], [15]. These

techniques, however, rely on the assumption of linearity and

assume that the data are strictly periodic or stationary in time

which limits their applicability to real problems. In addition,

Fourier spectrum defines uniform harmonic components glob-
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ally and therefore needs many additional harmonic components

to simulate nonstationary data.

Other efforts include the use of ARMA block-processing

techniques to estimate stationary low-frequency modes from

measured ambient power system data [16] and the development

of mode meter block-processing algorithms for an automated

dynamic stability assessment [17]–[19]. Examples of these

approaches include the modified Yule–Walker method, the

extended modified Yule–Walker with spectral analysis and

sub-space system identification methods.

Despite these advances, modal characterization under proper

analysis remains a challenge due to the complexity of the

driving system processes operating on various temporal scales.

Recently, nonlinear and nonstationary analysis techniques

based on the Hilbert–Huang transform (HHT) [20] have been

used to analyze data from nonlinear and nonstationary pro-

cesses [6], [21], [22]. The method has been applied to many

important problems in various fields including medical [23],

geophysics [24], and power engineering [25].

The cornerstone to the whole HHT procedure is the empirical

mode decomposition (EMD) that separates a signal into a series

of amplitude—as well as frequency—modulated signal compo-

nents [20], [26]. Extracting these signal components from a data

set, however, is very challenging and may involve various com-

plications including mode mixing and the generation of spurious

information for various types of signals. This may obscure phys-

ical interpretation of the system behavior, especially when the

observed oscillations exhibit closely spaced modes. Other issues

are the end effects associated with the computation of the Hilbert

transform and the smoothness of the representations. All these

issues have motivated considerable recent research into devel-

oping methodologies to improve the HHT.

To address the problem of mode mixing, EMD with masking

technique was introduced in [27] and [28]. It also solves the

problem of intermittency that prevents the effectiveness of

EMD. Based on this masking technique, in [29] and [30], a

systematic procedure for constructing the masking signals is

proposed. The ability of these approaches to analyze power

quality signals with relatively high frequency was discussed in

[29]. While these approaches are found to work well on various

types of signals, simulation results show that they may fail to

provide characterization of more complicated system behavior,

especially for signals with low frequency components, low

magnitude or narrow frequency range.

This research investigates several extensions to the HHT tech-

nique. Improvements to both the masking technique and the

computation of Hilbert transformers are proposed, and a number
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of issues within their use and interpretation are identified. The

efficacy of the method to separate closely spaced modal compo-

nents is demonstrated on both synthetic and transient stability

data. It is shown that the method produces a physically moti-

vated basis suitable for analysis of general nonlinear and nonsta-

tionary signals, particularly for interarea oscillation monitoring

and analysis.

II. PRELIMINARIES

In an effort to make the paper reasonably self-contained, the

standard algorithm of the HHT and its components, the EMD

technique, Hilbert transform and the damping computation, are

briefly reviewed. Our development follows the development of

Huang [20], to which we refer the readers for more details.

A. Empirical Mode Decomposition Method

The EMD method provides an analytical basis for the decom-

position of a signal into a set of basis functions, called in-

trinsic mode functions (IMFs). An IMF is defined as a signal

that satisfies the following criteria.

1) Over the entire time series the number of extrema and the

number of zero-crossings differ by, at most, one, i.e., an

essentially oscillatory process.

2) At any point the mean value of the envelope defined by the

local maxima and the envelope defined by the local minima

is zero.

The basic EMD method adopted to extract the IMFs essen-

tially consists of a three-step procedure called sifting [6]. The

goal is to subtract away the large-scale features of the signal re-

peatedly until only the fine-scale features remain. A signal

is thus divided into the fine-scale details and the residue

, hence . The components contained in

the fine-scale details are the IMFs.

The standard EMD process can be summarized as follows.

S1. Given the original signal , set .

S2. Extract the th IMF using the sifting procedure:

a) Set and .

b) Identify the successive local minima and the local

maxima for . The time spacing between suc-

cessive maxima is defined to be the time scale of these

successive maxima.

c) Interpolate the local minima and the local maxima

with a cubic spline to form an upper and

lower envelope for the whole data span.

d) Compute the instantaneous mean of the envelopes,

; and deter-

mine a new estimate , such

that for all . Set

.

e) Repeat steps 2b-2d until satisfies a set of prede-

termined stopping criteria [follows the criteria 1) and

2) of an IMF]. Then set .

S3. Obtain an improved residue .

Set . Repeat step S2 until the number of extrema

in is less than 2.

This approach allows elimination of low amplitude riding waves

in the time series and eliminates asymmetries with respect to the

local mean, i.e., it makes the wave profile more symmetric. At

the end of this process, the EMD yields the following decom-

position of the signal :

(1)

where contain high frequency

noise components, contain the phys-

ical behavior of interest and the remaining terms

and contain less relevant, nonsinusoidal char-

acteristics. Note that in some applications where the noise does

not involve or has been removed through filtering, the first

components may not exist.

B. Hilbert Transform

Given a real signal , its complex representation is

(2)

where is the Hilbert transform of , given by

(3)

with the Cauchy principal value of the integral. Equation (2)

can be rewritten in an exponential form as

(4)

where

(5)

(6)

The time derivative of (4) is

(7)

where is the instantaneous angular frequency, which by

definition is the time derivative of the instantaneous angle

(8)

Hence, the instantaneous frequency can be defined as

, and using (4) and (7), it can be computed as

(9)

C. Damping Ratio Estimates

The knowledge about the instantaneous magnitude and in-

stantaneous frequency of a signal allows us to further compute

the instantaneous damping of the signal. Damping characteriza-

tion is another useful alternative to the analysis of local behavior

of the oscillation. Consider the signal (4). We can rewrite the
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Fig. 1. Two-component synthetic signal (15).

signal as [31]

(10)

Then the time dependent decay function can be modeled as

(11)

Moreover, using (4) and (7), we obtain

(12)

Noting that

(13)

we have

(14)

We emphasize that (14) is a generalization to modal analysis

of the notion of damping for nonstationary signals. The compu-

tation of damping ratio from local information in (14) depends

on the fast and accurate estimation of the physically meaningful

instantaneous magnitude which is given by (5). Also, ap-

proximating the signal with an exponential signal, we should be

able to find a constant or at least a slowly varying , such

that . Therefore, to make sure that the computation

is amenable to temporal modal analysis, a physically motivated

basis for the data is requited. To obtain the damping ratio esti-

mate of a range of signal, the average (mean value) of the in-

stantaneous damping is computed.

Remark 2.1: In HHT technique, Hilbert transform is applied

to each IMF to compute its instantaneous frequency, instanta-

neous magnitude, as well as instantaneous damping. As instan-

taneous frequency is best defined for mono-frequency signal,

i.e., signal that contains only one (dominant) frequency, it makes

sense to expect each IMF to be mono-frequency. However, as

pointed out earlier, the IMFs may contain a mixture of fre-

quencies (frequency modulation) and are difficult to interpret

in terms of conventional modal analysis. This has motivated the

need for demodulation techniques that extract from each IMF

the dominant interacting frequencies.

Fig. 2. IMFs of signal (15) obtained from standard EMD. The dashed grey lines
are the 0.8 and 0.5 Hz components of (15).

III. MASKING TECHNIQUES TO IMPROVE EMPIRICAL

MODE DECOMPOSITION

This section discusses the refinement of the conventional

EMD method to study the oscillatory dynamics, particularly

that involve the identification of frequency within the range on

0.1 to 1 Hz which is the typical range of power systems inter-

area modes. First, a synthetic example is introduced to examine

conditions under which the standard HHT and the conventional

masking technique may fail. Then, various algorithms to refine

the existing HHT are proposed.

A. When the Standard EMD Does Not Work

Consider a two-component signal,

(15)

The time evolution of this testing signal is shown in Fig. 1. The

clear feature of signal (15) is that it consists of low frequency

components and the magnitude of the higher frequency com-

ponent is significantly lower than that of the lower frequency

component.

The standard EMD [32] is applied to the signal (15). Fig. 2

shows the IMF components extracted using this procedure. The

dashed plots with the first two IMFs are the 0.8 and 0.5 Hz com-

ponents of the signal (15). Quite contrary to what is expected,

and do not imitate the two sinusoidal components

of signal. Moreover, it is obvious that is not a mono-fre-

quency signal, but instead it exhibits mode mixing, making little

sense to expect useful physical interpretation through the appli-

cation of Hilbert analysis. The discrepancies between the de-

composition result and the components of the signal propagate

to other IMFs making the overall extraction of temporal be-

havior difficult.

In an attempt to improve the performance and effectiveness

of EMD, the use of masking signals is introduced in [27] and

[28]. The technique aims at solving the problem of mode mixing

and ambiguity that occur when two or more frequencies are not

well separated. More in-depth discussion about the background

and technicalities of this technique is presented in [28]. Further

development of EMD with masking is proposed in [29].
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Fig. 3. Fourier spectrum of the first IMFs of signal (15) from (a) standard EMD
and (b) EMD with masking [29].

Although this technique has proved effective in analyzing

a large variety of signals, some limitations arise in the study

of composite oscillations involving low-frequency components.

To investigate further these limitations, we applied the masking

technique from [29] to the signal (15). Fig. 3 that compares the

spectra of the first IMF obtained using conventional EMD with

that of the approach in [29] does not show any improvement.

As the frequency components of the signal, in this case are 0.8

and 0.5 Hz, are very low and consequently the 0.3 Hz difference

between them is very small, this existing masking technique be-

comes ineffective in separating these components. Techniques

to effectively identify and isolate the individual frequency com-

ponents are discussed in the following subsection.

B. EMD Method With FFT-Based Masking Technique

It is comprehensible from the discussion and examples in

Section III-A that issues affecting the effectiveness of standard

EMD and the existing masking techniques are

• the signal consists of low frequency components1;

• the magnitude of the highest frequency component is

much lower than others, particularly the second compo-

nent, which is directly next to it in the Fourier spectrum;

• the frequency components are high enough, but they are

relatively close to each other.

Based on the above considerations, we proposed the use of

a unified masking signal that in some sense refines the results

of [29] and at the same time generalizes the results of [27] and

[28]. The algorithm of the refined EMD, named as R-EMD, is

described as follows.

R1. Perform FFT on the original signal to estimate

the frequency components , with

. These captured frequencies are the stationary

equivalence of the possibly time varying frequency com-

ponents of the signal .

R2. Construct the masking signals

using the following sinusoidal signals:

(16)

The value of is empirical and borrowing from [29] is

chosen to be , with the magnitude

of the spectrum of the th frequency component.

R3. Identify two cases depending on the physical values

of the highest frequency components and , and their

associated amplitudes and :

1Without loss of generality, we consider 1 Hz as the boundary between the
low frequency and high frequency signals. Therefore we consider signals with
frequency components lower or equal to 1 Hz as low frequency signals.

Case 1: If one of the following conditions hold:

a) and ;

b) and ;

c) and and

;

d) and and

where and

, then

1.1. Use only the first masking signal

(17)

for the whole process.

1.2. Construct two signals

and . Perform EMD on each

signal following steps S1 to S3 from the standard EMD

to obtain all IMFs from each of them, i.e., and

and also the residue and

.

1.3. The IMFs and the residue of the signal are

(18)

(19)

1.4. The total reconstructed signal is

(20)

Case 2: If other than the conditions a) to d) hold, then

2.1. Use all the constructed masking signals (16).

2.2. Construct two signals

and . Perform EMD to each

signal to obtain the first IMF only from each one, i.e.,

and . The first IMF of is

(21)

2.3. Obtain the residue .

2.4. Use the next masking signal, perform steps 2.2

and 2.3 iteratively using each masking signal while re-

placing with the residue obtained at each itera-

tion, until IMFs containing the frequency com-

ponents are extracted. The final residue

will contain the remainder.

2.5. Compute the final residue, .

2.6. If the residue is above the threshold value

of error tolerance, then repeat Step S2 of the sifting

process presented in Section II-A on to obtain

the next IMF and new residue.

2.7. The total reconstructed signal is

(22)

Remark 3.1: In the complete R-EMD algorithm, we com-

bine the proposed masking algorithm, referred to as Case 1, and

the masking algorithm from [29], referred to as Case 2. As can
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be seen clearly from the required conditions stated in the algo-

rithm, Case 1 is active during the “extreme conditions” when the

frequency components are low or when the first two

highest frequency components are very close to each other. On

the other hand Case 1 takes care of the excluded conditions, par-

ticularly to decompose high frequency signals. Therefore, the

whole process of R-EMD can handle the decomposition for a

large sets of signals both with high and low frequency compo-

nents.

Moreover, the values of the parameters

and in Case 1 are chosen based on the relation between the

frequency as well as the amplitude of the first two highest fre-

quency components of the composite signals. In this paper, the

values are chosen to suit the application for signals that contain

interarea oscillation. The choice helps classifying signals that

satisfies the three reasons given at the beginning of this section.

Although they are not optimal, the chosen combination yields

effective decomposition for a large set of signals. In general,

seeing the EMD algorithm as a filtering process, we can think

of the parameters as filter gains that are possible to tune if nec-

essary.

The R-EMD algorithm gives different procedures for dealing

with high frequency signals and low frequency signals. The

main difference is in the way the masking signals are utilized.

For Case 2, we use as many masking signals as the number of

frequencies (or ideally the number of frequencies minus one) we

want to extract from the signal, and we subtract the effect of each

masking signal at every sifting stage, after each IMF is obtained.

On the other hand, for Case 1, we use only the first masking

signal, constructed from the first two highest frequency com-

ponents peaking on the Fourier spectrum and let the masking

signal stay until the end of the decomposition process. The ef-

fect of this masking signal is then automatically removed from

the signal through the use of formula (18).

Remark 3.2: The use of only one masking signal constructed

using the two highest frequency components of the spectrum in

Case 1 is justified, since it satisfies the condition of a masking

frequency to be higher than the frequency to be masked. The

significant advantage of this algorithm is that it preserves well

the magnitude of the signal components, which is not the case

for other algorithms as the decomposition often fails. Hence,

not only that the instantaneous frequency of the IMFs obtained

using the R-EMD algorithm is more meaningful, but also we can

obtain a quite good estimation of the instantaneous magnitude

of the IMFs.

C. EMD Method With Energy-Based Masking Technique

In the previous subsection we use FFT to construct the

masking signals, which implies that to some extent we rely of

FFT to separate the frequency components of the composite

signals. In this section, we extend this approach by deriving

the masking signal directly from the EMD. This results in

an automated procedure in which the masking procedure is

embedded in the EMD decomposition.

Drawing on Case 1 in Section III-B and the notion of instan-

taneous mean frequency in [27], an alternative approach to de-

termining an appropriate masking signal is suggested, relaxing

the dependence on Fourier analysis for detecting the frequency

components of the signal. The algorithm, called A-EMD, is

summarized as follows.

A1. Perform the standard EMD algorithm on the original

signal to obtain the IMFs. Use only the first IMF, ,

which is expected to contain the highest frequency compo-

nent of the signal, , but may also contain mode mixing

with other lower frequency components. Perform Hilbert

transform on to obtain its instantaneous frequency

and instantaneous magnitude .

A2. In the spirit of Hilbert analysis, compute the energy

weighted mean of over samples, i.e.,

(23)

A3. Observe Case 1 from R3, then replace step 1.1 with the

following.

1.1. Construct the masking signal

(24)

where and .

The rest follows the steps given in the R-EMD algorithm.

Remark 3.3: If the maximum frequency of the composite

signal, , is lower than 1 Hz, it is common to choose

since a higher value of may cause the masking signal inef-

fective as its frequency, , would be much higher than .

Comparing with [27], where the masking signal is computed

as , the parameter replaces

the parameter , the sampling rate. Moreover, we introduced

for analytical choice of in [27].

To complete the formulation of the method, an efficient algo-

rithm to extract instantaneous attributes is now explored based

on the use of a local Hilbert transform.

D. Convolution-Based Local Hilbert Transform

Existing approaches to the calculation of the complex trace

(2) are based on the computation of the analytic signal through

the Fourier transform. This transform, however, has a global

character and suffers from problems such as end effects and

leakage. In this section, an alternative approach based on filter

banks is proposed that circumvents some of these effects.

Given a signal

(25)

where and are the Fourier coefficients

The transformation to a complex time series is

(26)
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where is the quadrature function, or the Hilbert

transform in (2). The Hilbert transform used in this construction

is obtained directly by operating the real component with a con-

volution filter

(27)

where is the convolution filter with unit amplitude re-

sponse and 90 phase shift. A simple filter that provides an ade-

quate amplitude response and phase response is given by

[33] as

(28)

where . As the filter (28) yields

an exact Hilbert transform. For finite, the filter introduces

ripple effects. To limit these effects, a local Hilbert transform

has been developed based on filter banks. As suggested in [34]

and [35], the filter banks are developed such that the flatness of

the frequency response is maximal for the length of the filter.

Defining , a maxflat filter can be defined by

(29)

where is the number that determine the zeros at , and

is chosen such that is halfband. The filter is shifted in

frequency by .

IV. APPLICATIONS

To further illustrate the usefulness of the method, we consider

both synthetic data and data from transient stability simulations.

For comparison, the system response is analyzed using various

algorithms described in previous subsections.

A. Application to a Synthetic Signal

As a first example, we examine again the synthetic signal (15)

that we have used in Section III-A. In order to verify the ac-

curacy and generality of the present method we examine again

the synthetic signal 14 in Section II-A with the two-fold ob-

jective of evaluating the ability of the method to extract modal

components and assessing its generality to deal with nonlinear

signals. Previous studies have shown that conventional analysis

fails to separate the individual modal making physical interpre-

tation difficult. We focus first on the decomposing capability of

the method. Then, we test the ability of the refined technique to

deal with nonlinear/nonstationary signals.

1) Decomposing Capability Test: Fig. 4 shows the first three

IMFs extracted following the R-EMD algorithm, while Fig. 5

shows the spectra of the first and the second IMFs. For error

analysis, and are also compared with the corre-

sponding components of the composite signal (15) which are

plotted as the dashed lines background. Overall, the improved

method provides superior temporal resolution. The frequencies

identified from Hilbert analysis are 0.8 and 0.5 Hz, which are in

Fig. 4. IMFs of the signal (15) obtained using the R-EMD. The dashed lines
are the individual components making up the signal (15).

Fig. 5. Fourier spectra of the first and second IMFs of signal (15) with R-EMD.

Fig. 6. Reconstruction of signal (15) from IMFs obtained using R-EMD.

agreement with the expected behavior. In addition, comparing

Figs. 4 and 5 we can clearly see that although R-EMD relies

on FFT to estimate the frequency components of the signal, in

fact R-EMD provides correction that yields more accurate in-

formation of the amplitude of each components. Fig. 6 shows

the correctness of the whole decomposition results and the com-

pleteness of the algorithm.

Fig. 7 (a) and (b) shows the instantaneous frequency of

and , respectively, which show the frequency

components of the composite signal. This figure also compares

the instantaneous frequency obtained utilizing the command

hilbert in Matlab, with the convolution approach proposed in

Section III-D, where the latter is seen to reduce end effects.

The following conclusions can be drawn from this analysis.

First, that R-EMD achieves a higher temporal resolution than

the standard methods. Second, the convolution based Hilbert

transformer provides smoother transformation of the signal by
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Fig. 7. Instantaneous frequency of the IMFs of the synthetic signal (15). (a)
Frequency IMF1. (b) Frequency IMF2. (c) Frequency IMF3.

reducing end effects. The combined application of these ap-

proaches results in a more accurate physical characterization of

temporal behavior of the signal.

We have also tested the energy based A-EMD algorithm on

signal (15). However we do not include the simulation plots in

this paper as they are very similar to the results from the R-EMD

algorithm. We will show the application of the A-EMD in the

next example.

2) Reliability To Handle Nonlinear/Nonstationary Signals:

As a second example to assess the ability of the method to treat

general signals, a nonlinear and nonstationay version of the

signal (15) was examined by clipping the modal components

at specific time intervals (see [36] for more details). This gives

raise to both harmonic components and nonstationary behavior.

Comparison of the decomposition results with the distorted

0.8 and 0.5 Hz components in Fig. 8 shows that the A-EMD

technique effectively deals with abrupt changes in the signals.

Although we only show two IMFs, the decomposition actually

yields three additional IMFs of negligible magnitude. Table I

compares the modes identified using the refined HHT in the

paper with modes identified using Prony analysis. For the

R-RMD modes, average values are shown.

Although we only show two IMFs in Fig. 8, this decompo-

sition actually yields another three insignificant IMFs plus a

residue (as shown partly in Fig. 4). However, feeding the dis-

torted signal using a standard Prony analysis tool (we have used

the BPA/PNNL Ringdown Analysis Tool) for comparison, we

obtain more elements of the signals. Moreover, applying the in-

stantaneous damping computation formula (14), we obtain the

comparison between HHT with R-EMD and Prony analysis as

provided in Table I. It is shown that the estimated damping

ratio obtained using HHT is more accurate than with the

Prony analysis as the damping of the first two IMFs are approx-

imately zero. As suggested in Fig. 8, Hilbert analysis interprets

nonlinearity/nonstationarity in terms of frequency and ampli-

tude modulation. As observed in column 3 of Table I, the HHT

produces three additional frequency components in addition to

the main frequency components, which correspond to the am-

plitude modulation from the two main frequency components

Fig. 8. First two IMFs of the distorted signal (15) obtained using the R-EMD
(distorted components are plotted as dashed line background).

TABLE I
COMPARISON OF R-EMD RESULTS AND PRONY ANALYSIS RESULTS

and the decomposition inaccuracy. This is in marked contrast to

Prony analysis in column 5 of Table I, which necessitates a large

number of modal components to accommodate nonlinear/non-

stationary features.

Moreover, as discussed in our analysis of power system data,

Hilbert analysis naturally identifies the time intervals in which

the signal is nearly stationary. This may, in fact, help in identi-

fying time intervals in which Prony (Fourier) analysis are mean-

ingful.

Up to this point, we have verified that our proposed algo-

rithms provide a better alternative implementation of HHT in

certain applications. We now explore the ability of the method

to analyze power system data.

B. Application to Simulated Data

To verify the proposed method further, we consider simu-

lation data from transient stability simulations of a complex

system. Fig. 9 depicts a simplified diagram of the test system

showing the study area and major interfaces selected for study

[22].

Several simulation studies have been conducted to assess

the applicability of the proposed technique to analyze com-

posite oscillations resulting from major system disturbances.

In these studies, the southeastern-central interface TEC-TOP

was chosen for analysis because this corridor has a dominant

participation in three major interarea modes. Fig. 10 shows the

power flow response of a key transmission line interconnection,

to the loss of Laguna Verde unit #1. This particular contingency
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Fig. 9. Simplified geographical scheme of the Mexican interconnected power
system.

Fig. 10. Tie-line oscillations following the loss of Laguna Verde unit #1.

results in undamped oscillations involving three major interarea

modes at 0.25, 0.50, and 0.78 Hz.

Using the R-EMD method, we decompose the signal into four

nonstationary temporal signals and a trend. The IMFs derived

using the R-EMD are shown in Fig. 11. For comparison, the

IMFs derived from the same signal using the conventional ap-

proach are shown in Fig. 12. This is the same information as

what has been reported in [22, Fig. 5].

Comparison between Figs. 11 and 12 shows that R-EMD

successfully decompose the signal into its essential mono-fre-

quency components. Effectively, the method allows for the non-

stationary behavior of the signal to be analyzed into separate

temporal scales. In sharp contrast with this, standard EMD re-

sults in intermodulation and nonlinear behavior that makes it

difficult to extract the physical interpretation of the basic modal

properties.

Moreover, it can be seen from Fig. 13 that the R-EMD algo-

rithm accurately extracts the three dominant frequencies as we

can see the value of the instantaneous frequency of each IMF

is quite constant through out the time. This has shown that the

decomposition works well. Figs. 13 and 14 also show that the

computation of the instantaneous frequency and the instanta-

neous magnitude using the convolution based Hilbert transform

Fig. 11. IMFs obtained using R-EMD algorithm.

Fig. 12. First three IMFs obtained using standard EMD algorithm.

Fig. 13. Instantaneous frequency of the IMFs showing the frequency of the
interarea oscillation. (a) Frequency IMF1. (b) Frequency IMF2. (c) Frequency
IMF3.

reduces the edge effect that appears strongly when using the

standard Hilbert transform.
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Fig. 14. Instantaneous magnitude of the IMFs showing the growth of each com-
ponent. (a) Magnitude IMF1. (b) Magnitude IMF2. (c) Magnitude IMF3.

The frequency component of the interarea modes obtained

from the power signal in this study (see Fig. 13) are, respec-

tively, 0.7625, 0.4888, and 0.2542 Hz; these modes coincide

very well with detailed eigenvalue analysis of the system [22].

Another advantage of this approach over other existing

methods is that modal damping can be determined more accu-

rately since the individual (modal) components are isolated and

extracted. This issue is discussed with more details in [37].

In order to demonstrate that Hilbert analysis correctly identi-

fies system behavior, we also show that the damping ratio listed

in [22, Table III] for the frequency components 0.7625, 0.4888,

and 0.2247 Hz, which are, respectively, , and

, matches the trend of magnitude of each frequency

component. As we can observe from Figs. 11 and 14, the 0.7625

Hz component is decreasing, the 0.4888 Hz is increasing, and

the 0.2542 Hz is also increasing.

Figs. 15 and 16 are the corresponding IMFs and instantaneous

frequency computed using the A-EMD method. Comparison of

Figs. 15 with 11 and Figs. 16 with 13 shows that the two methods

give results that show good agreement. In both cases, the local

Hilbert transform is found to reduce the end effects.

The numerical implementation of the masking technique in

A-EMD deserves some comments. In the actual implementa-

tion of the algorithm it may be tempting to question why we

are using (24) with the term instead of using the maximum

value of the instantaneous frequency of the first IMF that is

logically the maximum frequency component of the signal and

replace with where . Extensive nu-

merical simulations, as illustrated by Fig. 17, show that spikes

in the instantaneous frequency computation that appears due to

the inaccuracy of the first decomposition with the standard EMD

(before the masking signal is constructed) will give a wrong in-

formation of the value of the maximum frequency component

that leads to the frequency of the constructed masking signal

too high hence ineffective. Clearly, the use of in (24) helps

in filtering the fictitious variations which in turn results in im-

proved system characterization.

Fig. 15. IMFs obtained using A-EMD algorithm.

Fig. 16. Instantaneous frequency of the IMFs obtained using A-EMD algo-
rithm. (a) Frequency IMF1. (b) Frequency IMF2. (c) Frequency IMF3.

Fig. 17. Instantaneous frequency of the first IMF obtained using the standard
EMD algorithm.

To complete our study, we also make a comparison between

HHT with A-EMD and Prony. The result is presented in Table II.

It can be observed that the results obtained using Prony involve

some ambiguities as can be seen for the components 0.4915 and

0.5276 Hz as well as the components 0.2494 and 0.2758 Hz as

they are coming as pairs. Although the relative energy of the

pairing components are significantly different, it tells us that the
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TABLE II
COMPARISON BETWEEN HHT WITH A-EMD AND PRONY FOR INTERAREA

MODES ANALYSIS

damping information does not show the real damping ratio of the

true component 0.5 and 0.25 Hz, respectively. If the components

of the monitored signal are not known, this creates confusion

in interpreting the results. On the contrary, HHT with A-EMD

gives more reliable and consistent results for the decomposition

and the damping computation.

These findings are very useful for monitoring and analysis of

the interarea oscillation for power system. It has simplified the

analysis, as in this way the instantaneous frequency and instan-

taneous damping of the interarea oscillation can be seen clearly

and directly from visual observation, which is very useful when

engineers have to make quick decision to take action in urgent

situations.

V. CONCLUSION

In this paper, a nonstationary data-based, refined approach for

characterizing temporal behavior based on the Hilbert–Huang

transform has been proposed. The method allows automated ex-

traction and characterization of temporal modal behavior with

no prior assumptions on the governing processes driving the os-

cillations and can be applied to a wide-variety of signals found

in power system oscillatory processes.

Simulation results have shown that the proposed algorithms

improve visualization of complex oscillations involving multi-

time scale behavior. The theory can be explored more in sev-

eral important ways. Further refinement to the technique is pos-

sible, including the optimal design of filters and the computa-

tion of more general masking techniques. The study also raises

a number of challenging issues that will be addressed in future

stages of this work. The application of the developed techniques

to measured data is being actively investigated by the authors

and will be presented in a future publication.
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