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Abstract
Much attention has been paid to the theoretical explanationof the empirical success of AdaBoost.
The most influential work is the margin theory, which is essentially an upper bound for the gen-
eralization error of any voting classifier in terms of the margin distribution over the training data.
However, important questions were raised about the margin explanation. Breiman (1999) proved
a bound in terms of the minimum margin, which is sharper than the margin distribution bound.
He argued that the minimum margin would be better in predicting the generalization error. Grove
and Schuurmans (1998) developed an algorithm called LP-AdaBoost which maximizes the min-
imum margin while keeping all other factors the same as AdaBoost. In experiments however,
LP-AdaBoost usually performs worse than AdaBoost, puttingthe margin explanation into serious
doubt. In this paper, we make a refined analysis of the margin theory. We prove a bound in terms of
a new margin measure called theEquilibrium margin (Emargin). The Emargin bound is uniformly
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sharper than Breiman’s minimum margin bound. Thus our result suggests that the minimum mar-
gin may be not crucial for the generalization error. We also show that a large Emargin and a small
empirical error at Emargin imply a smaller bound of the generalization error. Experimental results
on benchmark data sets demonstrate that AdaBoost usually has a larger Emargin and a smaller test
error than LP-AdaBoost, which agrees well with our theory.
Keywords: boosting, margin bounds, voting classifier

1. Introduction

The AdaBoost algorithm (Freund and Schapire, 1996, 1997) has achieved great success in the past
ten years. It has demonstrated excellent experimental performance bothon benchmark data sets
and real applications (Bauer and Kohavi, 1999; Dietterich, 2000; Viola and Jones, 2001; Wang
et al., 2007). According to a recent evaluation (Caruana and Niculescu-Mizil, 2006), boosting with
decision trees as base learners is the leading classification algorithm. An important property of
boosting is its relative (although not complete) resistance to overfitting. On many data sets it is
observed that the test error keeps decreasing even after thousandsof base classifiers have been
combined (Breiman, 1998; Quinlan, 1996). This fact, at first sight, obviously violates Occam’s
razor.

Considerable efforts have been made to explain the “mystery” of boosting.Friedman et al.
(2000) related boosting to fitting an additive logistic regression model. From this statistical view
they developed the LogitBoost algorithm. Jiang (2004), Lugosi and Vayatis (2004), Zhang (2004),
Bartlett et al. (2006) and others proved that boosting is Bayes consistent if it is properly regularized.
These works provide deep understanding of boosting. However, these explanations each focused on
some aspects of boosting. The consistency assures that boosting is asymptotically optimal, but it
does not explain boosting’s effectiveness on small sample problems. Thestatistical view led to many
new algorithms, but left boosting’s relative resistance to overfitting not well explained. Boosting
algorithms involve several factors such as the type of base classifiers, regularization methods and
loss functions to minimize. Recently, Mease and Wyner (2008) studied the effects of these factors.
They provided a number of examples that are contrary to previous theoretical explanations.

Schapire et al. (1998) tried to give a comprehensive explanation in terms of the margins of the
training examples. Roughly speaking, the margin of an example with respect toa classifier is a mea-
sure of the confidence of the classification result. They proved an upper bound for the generalization
error of a voting classifier that does not depend on how many classifierswere combined, but only on
the margin distribution over the training set, the number of the training examples and the size (the
VC dimension for example) of the set of base classifiers. They also demonstrated that AdaBoost
has the ability to produce a “good” margin distribution. This theory suggests that producing a good
margin distribution is the key to the success of AdaBoost and explains well its relative resistance to
overfitting.

Soon after that however, there were serious doubt cast on this margin explanation. First Breiman
(1999) and Grove and Schuurmans (1998) developed algorithms that maximize theminimum mar-
gin. (Minimum margin is the smallest margin over all training examples, see Section 2 for the formal
definition). Breiman (1999) then gave an upper bound for the generalization error of a voting classi-
fier in terms of the minimum margin, as well as the number of training examples and thesize of the
set of base classifiers. This bound is sharper than the bound based onthe margin distribution given
in Schapire et al. (1998). Breiman (1999) argued that if the bound of Schapire et al. implied that the
margin distribution is important to the generalization error, his bound implied more strongly that
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the minimum margin is the key to the generalization error, and the minimum margin maximizing
algorithms would achieve better performance than AdaBoost.

Grove and Schuurmans (1998) conducted a rigorous experimental comparison on the minimum
margin. They developed an algorithm called LP-AdaBoost which first uses AdaBoost to train a
series of base classifiers. Then by linear programming they obtained coefficients of the base clas-
sifiers, whose linear combination has the largest possible minimum margin. ThusLP-AdaBoost
and AdaBoost have all relevant factors the same except the coefficients of the base classifiers. Ac-
cording to the minimum margin bound, LP-AdaBoost would have smaller generalization error than
AdaBoost. In experiments, although LP-AdaBoost always achieves larger minimum margins, its
test error is higher than AdaBoost on most data sets. This result puts the margin theory into serious
doubt.

In this paper we provide a refined analysis of the margin theory. We propose a new upper bound
for the generalization error of voting classifiers. This bound is uniformly sharper than Breiman’s
minimum margin bound. The key factor in this bound is a new margin notion which werefer to as
theEquilibrium margin (Emargin). The Emargin can be viewed as a measure of how good a margin
distribution is. In fact, the Emargin depends, in a complicated way, on the margindistribution,
and has little relation to the minimum margin. Experimental results show that AdaBoost usually
produces a larger Emargin than LP-AdaBoost, which agrees with the Emargin explanation.

The margin theory has been studied and greatly improved by several authors. Especially Koltchin-
skii and Panchenko (2002, 2005) developed new tools for empirical processes and prove much
sharper margin distribution bounds. However it is difficult to compare thesebounds to the min-
imum margin bound of Breiman (1999), since they contain unspecified constants. Nevertheless,
these results suggest that the margin distribution may be more important than the minimum margin
for the generalization error of voting classifiers.

We also show that if a boosting algorithm returns a classifier that minimizes the Emargin bound
or the margin distribution bound of Schapire et al. (1998) then the classifierlearned converges to
the best classifier in the hypothesis space as the number of training examplesgoes to infinity.

The rest of this paper is organized as follows: In Section 2 we briefly describe the background
of the margin theory. Our main results—the Emargin bounds are given in Section 3. We provide
further explanation of the main bound in Section 4 and the consistency resultsin Section 5. All the
proofs can be found in Section 6. We provide experimental justification in Section 7 and conclude
in Section 8.

2. Background

Consider binary classification problems. Examples are drawn independently according to an under-
lying distributionD overX ×{−1,+1}, whereX is an instance space. LetH denote the space from
which the base hypotheses are chosen. A base hypothesish∈H is a mapping fromX to {−1,+1}.
A voting classifierf (x) is of the form

f (x) = ∑
i

αihi(x), hi ∈H ,

where

∑αi = 1, αi ≥ 0.
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An error occurs on an example(x,y) if and only if

y f(x)≤ 0.

We usePD(A(x,y)) to denote the probability of the eventA when an example(x,y) is chosen ran-
domly according to the distributionD. Therefore,PD(y f(x) ≤ 0) is the generalization error off
which we want to bound. LetS be a training set containingn examples. We usePS (A(x,y)) to
denote the probability with respect to choosing an example(x,y) uniformly at random fromS .

For an example(x,y), the value ofy f(x) reflects the confidence of the prediction. Since each
base classifier outputs−1 or+1, one has

y f(x) = ∑
i:y=hi(x)

αi − ∑
i:y6=hi(x)

αi .

Hencey f(x) is the difference between the weights assigned to those base classifiers that correctly
classify(x,y) and the weights assigned to those that misclassify the example.y f(x) is called the
margin for (x,y) with respect tof . If we consider the margins over the whole set of training ex-
amples, we can regardPS (y f(x)≤ θ) as a distribution overθ (−1≤ θ ≤ 1), sincePS (y f(x)≤ θ) is
the fraction of training examples whose margin is at mostθ. This distribution is referred to as the
margin distribution.

A description of AdaBoost is shown in Algorithm 1. In AdaBoost the linear coefficientsαt is
set as

αt =
1
2

log
1+ γt

1− γt
,

whereγt is defined as:

γt =
n

∑
i=1

Dt(i)yiht(xi).

γt is an affine transformation of the error rate ofht with respect to the weight distributionDt .
AdaBoost often does not overfit. Although it is known that boosting forever does overfit when

there is high classification noise, on many data sets the performance of AdaBoost keeps improving
even after a large number of rounds.

The first margin explanation (Schapire et al., 1998) of the AdaBoost algorithm is to upper bound
the generalization error of voting classifiers in terms of the margin distribution,the number of
training examples and the complexity of the set from which the base classifiersare chosen. The
theory contains two bounds: one applies to the case that the base classifiersetH is finite, and the
other applies to the general case thatH has a finite VC dimension.

Theorem 1 (Schapire et al., 1998) For anyδ > 0, with probability at least1− δ over the random
choice of the training setS of n examples, every voting classifier f satisfies the following bounds:

PD
(

y f(x)≤ 0
)

≤ inf
θ∈(0,1]

[

PS
(

y f(x)≤ θ
)

+O

(

1√
n

(

lognlog|H |
θ2 + log

1
δ

)1/2
)]

,

if |H |< ∞. And

PD
(

y f(x)≤ 0
)

≤ inf
θ∈(0,1]

[

PS
(

y f(x)≤ θ
)

+O

(

1√
n

(

d log2(n/d)
θ2 + log

1
δ

)1/2
)]

,

where d is the VC dimension ofH .
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Input : T, S= {(x1,y1),(x2,y2), . . . ,(xn,yn)}
wherexi ∈ X , yi ∈ {−1,1}.

Initialization: D1(i) = 1/n.
for t = 1 to T do

1. Train a base classifierht ∈H using distributionDt , whereht : X →{−1,1}.
2. Chooseαt .
3. Update:

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt
,

whereZt is the normalization factor chosen so thatDt+1 will be a distribution.
end
Output : The final classifier

F(x) = sgn( f (x)) ,

where

f (x) =
T

∑
t=1

αtht(x).

Algorithm 1 : A description of AdaBoost.

The theorem states that if the voting classifier generates a good margin distribution, that is, most
training examples have large margins so thatPS (y f(x) ≤ θ) is small for not too smallθ, then the
upper bound of the generalization error is also small. In Schapire et al. (1998) it has also been shown
that for the AdaBoost algorithm,PS (y f(x) ≤ θ) decreases to zero exponentially fast with respect
to the number of boosting iterations ifθ is not too large. These results suggest that the excellent
performance of AdaBoost is due to its good margin distribution.

Another important notion is the minimum margin which is the smallest margin achieved onthe
training set. Formally, the minimum margin, denoted byθ0, of a voting classifierf on a training set
S is defined as

θ0 = min{y f(x) : (x,y) ∈ S} .

Breiman (1999) proved an upper bound for the generalization error ofvoting classifiers which de-
pends only on the minimum margin, not on the entire margin distribution.

Theorem 2 (Breiman, 1999) Assume that|H | < ∞. Let θ0 be a real number that satisfiesθ0 >

4
√

2
|H | and

R=
32log(2|H |)

nθ2
0

≤ 2n.

Then for anyδ > 0, with probability at least1−δ over the random choice of the training setS of n
examples, every voting classifier f whose minimum margin onS is at leastθ0 satisfies the following
bound:

PD
(

y f(x)≤ 0
)

≤ R

(

log(2n)+ log
1
R
+1

)

+
1
n

log

( |H |
δ

)

.
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Breiman (1999) pointed out that his bound is sharper than the margin distribution bound of
Schapire et al. Ifθ in Theorem 1 is taken to be the minimum marginθ0, the bound in Theorem 2
is about the square of the bound in terms of the margin distribution, since the bound in Theorem 2

is O
(

logn
nθ2

0

)

and the bound in Theorem 1 isO
(
√

logn
nθ2

0

)

. Breiman then argued that compared to the

margin distribution explanation, his bound implied more strongly that the minimum margingoverns
the generalization error.

Several authors developed algorithms to maximize the minimum margin. Among these,the most
representative one is the LP-AdaBoost proposed by Grove and Schuurmans (1998). Leth1, . . . ,hT

be the base classifiers returned by AdaBoost on the training examples{(xi ,yi), i = 1, . . . ,n}. Finding
a voting classifierg= ∑T

t=1 βtht such thatg maximizes the minimum margin can be formulated as a
linear programming problem.

max
β,m

m

s.t. yi

T

∑
t=1

βtht(xi)≥ m, i = 1,2, . . . ,n

βt ≥ 0,
T

∑
t=1

βt = 1,

whereβ = (β1, · · · ,βT). Grove and Schuurmans called this algorithm LP-AdaBoost.
Comparing the performance of AdaBoost and LP-AdaBoost is a good test of significance of

the minimum margin bound. Except the linear coefficients, the voting classifiersobtained by the
two algorithms have all relevant factors the same. In experiments, although LP-AdaBoost always
produces larger minimum margins, its test error is higher than AdaBoost moreoften than not. This
result is different from what the minimum margin bound suggests and therefore puts the margin
explanation into serious doubt.

Breiman (1999) and Meir and Rätsch (2003) developed arc-gv to maximize the minimum mar-
gin. Arc-gv can also be described by Algorithm 1. The only difference from AdaBoost is how to set
αt at each round. It can be shown that arc-gv converges to the maximum margin solution (R̈atsch
and Warmuth, 2005; Rudin et al., 2007) whereas AdaBoost does not always do this (Rudin et al.,
2004). However on some data sets AdaBoost has larger minimum margin than arc-gv after a finite
number of rounds. Also note that arc-gv and AdaBoost generate different base classifiers. Recently
Reyzin and Schapire (2006) gained an important discovery that when Breiman (1999) tried to max-
imize the minimum margin by arc-gv, he had not make a good control of the complexity of the base
classifiers, while comparing the margin is only meaningful when the complexity ofbase learners
are the same.

3. Emargin Bounds

In this section we propose upper bounds in terms of the Emargin. The bounds are sharper than the
minimum margin bound.

First let us introduce some notions. Consider the Bernoulli relative entropy function D(q||p)
defined as

D(q||p) = qlog
q
p
+(1−q) log

1−q
1− p

, 0≤ p,q≤ 1.
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By convention, letD(0||0) = 0.
For a fixedq, D(q||p) is a monotone increasing function ofp for q≤ p≤ 1. It is easy to check

that
D(q||p) = 0 whenp= q,

and
D(q||p)→ ∞ asp→ 1.

Thus one can define the inverse function ofD(q||p) for fixedq asD−1(q,u), such that

D
(

q||D−1(q,u)
)

= u for all u≥ 0 andD−1(q,u)≥ q.

See also Langford (2005).
The next theorem is our main result: the Emargin bound. Here we consider the case that the

base classifier setH is finite. For the case thatH is infinite but has a finite VC dimension, the
bound is more complicated and will be given in Theorem 7. All the proofs canbe found in Section
6.

Theorem 3 If 8 < |H | < ∞, then for anyδ > 0, with probability at least1− δ over the random
choice of the training setS of n examples (n> 1), every voting classifier f such that

q0 = PS

(

y f(x)≤
√

8
|H |

)

< 1.

satisfies the following bound:

PD
(

y f(x)≤ 0
)

≤ log|H |
n

+ inf
q∈{q0,q0+

1
n ,...,

n−1
n }

D−1(q,u
[

θ̂(q)
])

, (1)

where

θ̂(q) = sup

{

θ ∈ (0,1] : PS
(

y f(x)≤ θ
)

≤ q

}

, (2)

u(θ) =
1
n

(

8
θ2 log

(

2n2

log|H |

)

log(2|H |)+2log|H |+ log
n
δ

)

.

Note that the assumptionq0 < 1 in the theorem is very mild since it implies that at least one training
example has a large margin (larger than 8/|H |), or equivalently thelargestmargin is not too small.1

This contrasts with the fact that the minimum margin bound applies when theminimummargin is
not too small.

Clearly the key factors in this bound are the optimalq and the correspondinĝθ(q).

Definition 4 Let q∗ be the optimal q in Equation(1), and denote

θ∗ = θ̂(q∗).

We callθ∗ the Equilibrium margin (Emargin). It can be seen that q∗ is the empirical error at margin
θ∗, that is,

q∗ = PS (y f(x)< θ∗).

q∗ will be referred to as the Emargin error.

1. This observation is due to a reviewer.
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With Definition 4, the Emargin bound (1) can be simply written as

PD
(

y f(x)≤ 0
)

≤ log|H |
n

+D−1
(

q∗,u(θ∗)
)

.

Theorem 3 provides an upper bound of the generalization error of a voting classifier that depends
on its Emargin and the Emargin error.

Our Emargin bound has a similar flavor to Theorem 1. Note that the Emargin depends, in a
complicated way, on the whole margin distribution. Roughly, if most training examples have large
margins, thenθ∗ is large andq∗ is small. The minimum margin is only a special case of the Emargin.
From (2) one can see thatθ̂(0) is the minimum margin. Hence the Emargin is equal to the minimum
margin if and only if the optimalq∗ is zero.

We next compare our Emargin bound to the minimum margin bound. We show that the Emargin
bound is sharper than the minimum margin bound. Since the minimum margin bound applies only
to the separable case, that is,θ0 > 0, we assume that the conditions in Theorem 2 are satisfied.

Theorem 5 Assume that the minimum marginθ0 is larger than0. Then the bound given in Theo-
rem 3 is uniformly sharper than the minimum margin bound in Theorem 2. That is, if

R=
32log(2|H |)

nθ2
0

≤ 2n,

then

log|H |
n

+D−1
(

q∗,u(θ∗)
)

≤ R

(

log(2n)+ log
1
R
+1

)

+
1
n

log
|H |

δ
.

This theorem suggests that the Emargin and Emargin error may be more relevant to the gen-
eralization error than the minimum margin. The following theorem describes howthe Emarginθ∗

and the Emargin errorq∗ affect the upper bound of the generalization ability. It states that a larger
Emargin and a smaller Emargin error result in a lower generalization error bound.

Theorem 6 Let f1, f2 be two voting classifiers. Denote byθ1, θ2 the Emargins and by q1, q2 the
Emargin errors of f1, f2 respectively. Thus

qi = PS
(

y fi(x)< θi

)

, i = 1,2.

Also denote by B1, B2 the Emargin upper bounds of the generalization error of f1, f2 (i.e., the
right-hand side of(1)). Then

B1 ≤ B2,

if
θ1 ≥ θ2 and q1 ≤ q2.

Theorem 6 suggests that the Emargin and the Emargin error can be used asmeasures of the
quality of a margin distribution. A large Emargin and a small Emargin error indicatea good margin
distribution. Experimental results in Section 7 show that AdaBoost often haslarger Emargins and
smaller Emargin errors than LP-AdaBoost.

The last theorem of this section is the Emargin bound for the case that the setof base classifiers
has a finite VC dimension.
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Theorem 7 Suppose the set of base classifiersH has VC dimension d. Then for anyδ > 0, with
probability at least1− δ over the random choice of the training setS of n examples, every voting
classifier f satisfies the following bound:

PD
(

y f(x)≤ 0
)

≤ d2+1
n

+ inf
q∈{q0,q0+

1
n ,...,

n−1
n }

n−1
n

·D−1(q,u
[

θ̂(q)
])

, (3)

where

θ̂(q) = sup

{

θ ∈
(

0,1
]

: PS
(

y f(x)≤ θ
)

≤ q

}

,

and

u(θ) =
1
n

(

16d
θ2 log

n
d

log
en2

d
+3log

(

16
θ2 log

n
d
+1

)

+ log
2n
δ

)

,

provided q0 = PS (y f(x)≤ 0)< 1.

4. Explanation of the Emargin Bound

In Theorem 3, we adopted the partial inverse of the relative entropy to upper bound the general-
ization error. The key term in the Emargin bound is infqD−1(q,u[θ̂(q)]). To better understand the
bound, we make use of three different upper bounds of infqD−1(q,u[θ̂(q)]) to obtain simpler forms
and give explanations of the Emargin bound. We list in the following lemma the upper bounds of
infqD−1(q,u[θ̂(q)]).

Lemma 8 Let u[θ̂(q)] be the one defined in Theorem 3. LetΓ = {q0,q0+
1
n, . . . ,

n−1
n }, where q0 was

defined in Theorem 3. Then the following bounds hold. (In the first boundwe assume that q0 = 0.)

inf
q∈Γ

D−1(q,u
[

θ̂(q)
])

≤ D−1(0,u
[

θ̂(0)
])

≤ u
[

θ̂(0)
]

.

inf
q∈Γ

D−1(q,u
[

θ̂(q)
])

≤ inf
q∈Γ



q+

(

u
[

θ̂(q)
]

2

)1/2


 .

inf
q∈Γ

D−1(q,u
[

θ̂(q)
])

≤ inf
q∈Γ, q≤Cu[θ̂(q)]

D−1(q,u
[

θ̂(q)
])

≤ inf
q∈Γ, q≤Cu[θ̂(q)]

C′u[θ̂(q)],

where C is any constant such that there exists q such that q≤Cu[θ̂(q)]. Here C′ = max(2C,8).

Note from Theorem 3 that

u
[

θ̂(q)
]

= O

(

1
n

(

lognlog|H |
θ̂(q)2

+ log
1
δ

))

,

and
q= PS

(

y f(x)< θ̂(q)
)

.

Thus we can derive the following three bounds of the generalization error from the Emargin bound
by using the three inequalities in Lemma 8 respectively.
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Corollary 9 If 8 < |H | < ∞, then for anyδ > 0, with probability at least1− δ over the random
choice of the training setS of n examples (n> 1), every voting classifier f∈C(H ) such that q0 < 1
satisfies the following bounds:

1.

PD(y f(x)≤ 0)≤ O

(

1
n

(

lognlog|H |
θ2

0

+ log
1
δ

))

.

Here we assumeθ0 >
√

8/|H | is the minimum margin.

2.

PD
(

y f(x)≤ 0
)

≤ inf
θ∈[ 8

|H | ,1]

[

PS
(

y f(x)≤ θ
)

+O

(

1√
n

(

lognlog|H |
θ2 + log

1
δ

)1/2
)]

.

3. For any constant C andθ ∈ [
√

8/|H |,1) such that

PS (y f(x)≤ θ)≤ C
n

(

8
θ2 log

(

2n2

log|H |

)

log(2|H |+ log|H |+ log
n
δ
)

)

, (4)

we have

PD(y f(x)≤ θ)≤ log|H |
n

+
C′

n

(

8
θ2 log

(

2n2

log|H |

)

log(2|H |+ log|H |+ log
n
δ
)

)

,

where C′ = max(2C,8).

The first bound in the corollary has the same order as the minimum margin bound. The second
bound is essentially the same as Theorem 1 except thatθ cannot be too small. So previous bounds
can be derived from the Emargin bound. The third bound states that the generalization error is

O
(

lognlog|H |
nθ2

)

even in the non-zero error case, provided the margin errorPS (y f(x) ≤ θ) is small

enough.
The third bound has a much simpler form than Theorem 1. If we use this bound to define

Emargin, that is, the optimalθ in the bound, it can be greatly simplified. It is easy to see that the
optimalθ is just the largestθ satisfying (4). The price however is that this approximate bound is not
uniformly sharper than the minimum margin bound.

5. Consistency

So far the results are finite sample generalization error bounds. In this section we point out that
the Emargin bound and the margin distribution bound in Theorem 1 imply statistical consistency.
In particular we show that if a boosting algorithm minimizes the bound, then the classifier learned
converges to the optimal classifier in the hypothesis space, that is, the convex hull of the base
classifiers. Here we assume that the set of base classifiersH is symmetric. That is, ifh∈ H then
−h∈H . Therefore the best classifier in the convex hull ofH is also the best classifier in the linear
span ofH . An immediate consequence of this consistency is that margin bound optimization is
Bayes consistent if the linear span of the base classifiers is dense in the space of all measurable
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functions. A typical example of such base classifiers is decision tree with thenumber of leaves
larger than the dimension of the input space (Breiman, 2004).

Before stating the consistency theorem, we need some notions. LetC(H ) be the convex hull of
the set of base classifiers. Also let

L∗ = inf
f∈C(H )

PD
(

y f(x)≤ 0
)

.

That is,L∗ is the minimal generalization error of the classifiers inC(H ).
We consider an algorithm that optimizes the Emargin: Given a training setS containingn

examples, the learning algorithm returns a functionf̂n ∈ C(H ) which minimizes the finite VC
dimension Emargin bound (i.e., the right-hand side of (3)), or simplyD−1

(

q∗,u(θ∗)
)

.
The next theorem states that margin bound optimization is consistent. With almost the same

arguments one can show that minimizing the margin distribution bound in Theorem 1is also con-
sistent. But there is no such result for the minimum margin bound for the non-separable problems.

Theorem 10 Let C(H ), L∗ and f̂n be defined as above. Then

lim
n→∞

EPD
(

yf̂n(x)≤ 0
)

= L∗,

where E is the expectation over the random draw of the training setSn.

6. Proofs

In this section, we give proofs of the theorems, lemmas and corollaries.

6.1 Proof of Theorem 3

The proof uses the tool developed in Schapire et al. (1998). The difference is that we do not bound
the deviation of the generalization error from the empirical margin error directly, instead we consider
the difference of the generalization error to a zero-one function of a certain empirical measure. This
allows us to unify the zero-error and nonzero-error cases and it results in a sharper bound. For the
sake of convenience, we follow the convention in Schapire et al. (1998).

Let C(H ) denote the convex hull ofH . Also letCN(H ) denote the set of unweighted averages
overN elements from the base classifier setH . Formally,

CN(H ) =

{

g : g=
1
N

N

∑
j=1

h j , h j ∈H

}

.

Any voting classifier
f = ∑βihi ∈C(H ),

where

∑βi = 1, βi ≥ 0,

can be associated with a distribution overH by the coefficients{βi}. We denote this distribution
asQ( f ). By choosingN elements independently and randomly fromH according toQ( f ), we
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can generate a classifierg ∈ CN(H ). The distribution ofg is denoted byQN( f ). For any fixedα
(0< α < 1)

PD
(

y f(x)≤ 0
)

≤ PD,g∼QN( f )

(

yg(x)≤ α
)

+PD,g∼QN( f )

(

yg(x)> α, y f(x)≤ 0
)

≤ PD,g∼QN( f )

(

yg(x)≤ α
)

+exp

(

−Nα2

2

)

. (5)

We next bound the first term on the right-hand side of the inequality. So farthe argument is the
same as Schapire et al. (1998). From now on we use some different techniques. For any fixed
g∈CN(H ), and for any positive numberε and nonnegative integerk such thatk≤ nε, we consider
the probability (over the random draw ofn training examples) that the training error at marginα is
less thank/n, while the true error ofg at marginα is larger thanε:

Pr
S∼Dn

(

PS (yg(x)≤ α)≤ k
n
, PD (yg(x)≤ α)> ε

)

. (6)

Here PrS∼Dn denotes the probability overn training examples chosen independently at random
according toD. Note that the proof in Schapire et al. (1998) considers only the difference of
PD (yg(x)≤ α) andPS (yg(x)≤ α), that is,PD (yg(x)≤ α)−PS (yg(x)≤ α); While here we con-
sider the values ofPD (yg(x)≤ α) andPS (yg(x)≤ α) themselves. The benefit is that this allows
us to use the tightest version of Chernoff bound—the relative entropy Chernoff bound—rather than
the relatively looser additive Chernoff bound. To derive the bound, we write (6) in the following
equivalent form.

Pr
S∼Dn

(

PD(yg(x)≤ α)> I

[

PS (yg(x)≤ α)>
k
n

]

+ ε
)

, (7)

whereI is the indicator function. (7) is important in our proof. It bounds the difference of the
true and empirical margin distributions asα andk vary over their ranges. Butk andα can take
essentially finite number of values, so we can use union bounds. It’s easyto see that no matter
PD(yg(x) ≤ α) > ε or PD(yg(x) ≤ α) ≤ ε, we have the following inequality (In the former case, it
is the tail bound for Bernoulli trials; and in the latter case the probability is actually zero).

Pr
S∼Dn

(

PD
(

yg(x)≤ α
)

> I

[

PS
(

yg(x)≤ α
)

>
k
n

]

+ ε

)

≤
k

∑
r=0

(

n
r

)

εr(1− ε)n−r .

Then applying the relative entropy Chernoff bound (Hoeffding, 1963) to the Bernoulli trials, we
further have

k

∑
r=0

(

n
r

)

εr(1− ε)n−r ≤ exp

(

−nD

(

k
n

∥

∥

∥ε
))

.

We thus obtain

Pr
S∼Dn

(

PD
(

yg(x)≤ α
)

> I

[

PS
(

yg(x)≤ α
)

>
k
n

]

+ ε

)

≤ exp

(

−nD

(

k
n

∥

∥

∥
ε
))

. (8)

We only considerα at the values in the set

U =

{

1
|H | ,

2
|H | , . . . ,1

}

.
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There are no more than|H |N elements inCN(H ). Using the union bound we get

Pr
S∼Dn

(

∃g∈CN(H ), ∃α ∈U, PD
(

yg(x)≤ α
)

> I

[

PS
(

yg(x)≤ α
)

>
k
n

]

+ ε

)

≤ |H |(N+1)exp

(

−nD

(

k
n

∥

∥

∥
ε
))

.

The above formula upper bounds the probability that “∃g∈CN(H )” certain inequality ofg holds.
The bound also applies to “∃ a distribution ofg overCN(H )” such that the inequality of theexpec-
tationoverg holds, since the latter implies the former. Note that

Eg∼QN( f )PD
(

yg(x)≤ α
)

= PD,g∼QN( f )

(

yg(x)≤ α
)

,

Eg∼QN( f )I

[

PS
(

yg(x)≤ α
)

>
k
n

]

= Pg∼QN( f )

(

PS
(

yg(x)≤ α
)

>
k
n

)

.

We thus have

Pr
S∼Dn

(

∃ f ∈C(H ),∃α ∈U,PD,g∼QN( f )

(

yg(x)≤ α
)

> Pg∼QN( f )

(

PS (yg(x)≤ α)>
k
n

)

+ ε

)

≤ |H |(N+1)exp

(

−nD

(

k
n

∥

∥

∥
ε
))

.

Let

δ = |H |(N+1)exp

(

−nD

(

k
n

∥

∥

∥
ε
))

,

then

ε = D−1
(

k
n
,
1
n

[

(N+1) log|H |+ log
1
δ

])

.

We obtain that with probability at least 1− δ over the draw of the training examples, for allf ∈
C(H ), all α ∈U , but fixedk,

PD,g∼QN( f )

(

yg(x)≤ α
)

≤Pg∼QN( f )

(

PS
(

yg(x)≤ α
)

>
k
n

)

(9)

+D−1
(

k
n
,
1
n

[

(N+1) log|H |+ log
1
δ

])

.

We next bound the first term in the right-hand side of (9). Using the same argument for deriving
(5), we have for any fixedf ,S ,α, k, anyθ > α

Pg∼QN( f )

(

PS
(

yg(x)≤ α
)

>
k
n

)

≤I

[

PS
(

y f(x)< θ
)

>
k
n

]

+Pg∼QN( f )

(

PS
(

yg(x)≤ α
)

>
k
n
,PS
(

y f(x)< θ
)

≤ k
n

)

.

(10)
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Note that the last term in (10) can be written in the following equivalent form and further bounded
by

Pg∼QN( f )

(

∃(xi ,yi) ∈ S : yig(xi)≤ α, yi f (xi)≥ θ

)

≤ nexp

(

−N(θ−α)2

2

)

. (11)

Combining (5), (9), (10) and (11), we have that with probability at least 1− δ over the draw of
training examples, for allf ∈C(H ), all α ∈U , all θ > α, but fixedk andN

PD
(

y f(x)≤ 0
)

≤exp

(

−Nα2

2

)

+nexp

(

−N(θ−α)2

2

)

+ I

[

PS
(

y f(x)< θ
)

>
k
n

]

+D−1
(

k
n
,
1
n

[

(N+1) log|H |+ log
1
δ

])

.

Sinceθ is arbitrary, we setθ = θ̂( k
n). Now we constructα by roundingθ/2 to the nearest neighbor

of 1/|H |. Let

α =
θ
2
− η

|H | ∈U,

where 0≤ η < 1. The goal is to letα takes only a finite number of values. (Recall thatU =
{ 1
|H | , · · · ,1}.) It is easy to check that the sum of the first two terms on the right-hand side of the

above inequality can be bounded by the following.

exp

(

−Nα2

2

)

+nexp

(

−N(θ−α)2

2

)

≤ exp

(

−Nθ2

8

)

exp

(

− Nη2

2|H |2
)[

exp

(

Nθη
2|H |

)

+nexp

(

− Nθη
2|H |

)]

≤ max

(

2n,exp

(

N
2|H |

)

+1

)

exp

(

−Nθ2

8

)

.

The last inequality holds since 0≤ θ,η ≤ 1. Replacingδ by δ ·2−N. we can get a union bound over
all N by replacing log(n

δ) in all previous equations by log( n
δ·2−N ) = N log2+ log(n

δ). Put

N =

⌈

8
θ2 log

(

2n2

log|H |

)⌉

.

Now for any sampleS we only considerf ∈C(H ) andk that satisfyq0 < 1 and

k
n
≥ q0. (12)

Note that by (12) and the assumption that|H |> 8, we have

θ >

√

8
|H | .

So by some numerical calculations one can show

2n> exp

(

N
2|H |

)

+1, (n> 1).
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Recall thatθ = θ̂(k/n), soPS
(

y f(x)< θ
)

≤ k
n. We thus obtain that for fixedk, with probability at

least 1−δ over the random choice of the training setS of n examples, everyf ∈C(H ) with q0 < 1
satisfies

PD
(

y f(x)≤ 0
)

≤ log|H |
n

+D−1
(

k
n
,u

)

,

where

u=
1
n

(

8
θ2 log

(

2n2

log|H |

)

log(2|H |)+2log|H |+ log
1
δ

)

.

Finally using the union bound overk ∈ {nq0, . . . ,n− 1} and replacingδ by δ/n, we have with
probability at least 1−δ over the random choice of the training setS of n examples, everyf ∈C(H )
with q0 < 1 satisfies

PD
(

y f(x)≤ 0
)

≤ log|H |
n

+ inf
k∈{nq0,...,n−1}

D−1
(

k
n
,u′
)

,

where

u′ =
1
n

(

8
θ2 log

(

2n2

log|H |

)

log(2|H |)+2log|H |+ log
n
δ

)

.

The theorem follows.

6.2 Proof of Theorem 5

The following lemma will be used to prove Theorem 5.

Lemma 11 D−1(0, p)≤ p for p≥ 0.

Proof of Lemma 11.We only need to show

D(0||p)≥ p,

sinceD(q||p) is a monotonic increasing function ofp for p≥ q. By Taylor expansion

D(0||p) =− log(1− p) = p+
p2

2
+

p3

3
+ · · · ≥ p.

Proof of Theorem 5.By the assumption of Theorem 2 we haveθ0 > 4
√

2
|H | . Then it is easy to see

that the right-hand side of the Emargin bound (1) is the minimum over allq∈
{

0, . . . , n−1
n

}

. Take
q= 0, it is clear that̂θ(0) is the minimum margin. By Lemma 11, the Emargin bound can be relaxed
to

PD
(

y f(x)≤ 0
)

≤ 1
n

(

8

θ2
0

log

(

2n2

log|H |

)

log(2|H |)+3log|H |+ log
n
δ

)

≤ 16log(2n) log(2|H |)
nθ2

0

+
logn+2log|H |

n
+

1
n

log

( |H |
δ

)

. (13)

We only need to show that this relaxed bound is sharper than Theorem 2. For the minimum margin
bound, we only consider the case thatR≤ 1, since otherwise the bound is larger than one. Simple
calculations show that the right-hand side of (13) is smaller than the minimum marginbound.
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6.3 Proof of Theorem 6

Remember thatqi = PS (y fi(x)< θi) is the optimalq∗ in the Emargin bound. Thus we only need to
show

D−1
(

q1,u(θ1)
)

≤ D−1
(

q2,u(θ2)
)

.

Note that ifθ1 ≥ θ2, thenu(θ1)≤ u(θ2). So

D−1
(

q2,u(θ2)
)

≥ D−1
(

q2,u(θ1)
)

,

sinceD−1(q,u) is an increasing function ofu for fixed q. Also D−1(q,u) is an increasing function
of q for fixedu, we have

D−1
(

q2,u(θ1)
)

≥ D−1
(

q1,u(θ1)
)

sinceq1 ≤ q2. This completes the proof.

6.4 Proof of Theorem 7

The next lemma is a modified version of the uniform convergence result (Vapnik and Chervonenkis,
1971; Vapnik, 1998) and its refinement (Devroye, 1982). It will be used for proving Theorem 7.

Lemma 12 LetA be a class of subsets of a space Z. Let zi ∈ Z, i = 1, . . . ,n. Let NA(z1,z2, . . . ,zn)
be the number of different sets in

{

{z1,z2, . . . ,zn}
⋂

A : A∈ A

}

.

Define
s(A ,n) = max

(z1,z2,...,zn)∈Zn
NA(z1,z2, . . . ,zn).

Assumeε ≥ 1
n. Letε′ = n

n−1ε− 1
n. Then for any distributionD over Z and any nonnegative integer

k such thatkn ≤ ε′

Pr
S∼Dn

(

∃A∈ A : PD(A)> I

[

PS (A)>
k
n

]

+ ε
)

≤ 2·s(A ,n2)exp

(

−nD

(

k
n

∥

∥

∥
ε′
))

.

Proof of Lemma 12. The proof is the standard argument. We first show that for any 0< α < 1,
ε > 0, and any integern′

Pr
S∼Dn

(

∃A∈ A : PD(A)> I

[

PS (A)>
k
n

]

+ ε
)

≤
(

1

1−e−2n′α2ε2

)

Pr
S∼Dn, S′∼Dn′

(

∃A∈ A : PS′(A)> I

[

PS (A)>
k
n

]

+(1−α)ε

)

.

Or equivalently,

Pr
S∼Dn

(

sup
A∈A

(

PD(A)− I

[

PS (A)>
k
n

])

> ε
)

≤
(

1

1−e−2n′α2ε2

)

Pr
S∼Dn, S ′∼Dn′

(

sup
A∈A

(

PS ′(A)− I

[

PS (A)>
k
n

]

)

> (1−α)ε

)

. (14)
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Let V denote the event

sup
A∈A

(

PD(A)− I

[

PS (A)>
k
n

])

> ε.

If the above event occurs, letA∗ be anyA∈ A so thatPD(A)− I
[

PS (A)> k
n

]

> ε. Otherwise letA∗

be anyA∈ A . Note that the following two events

PS′(A
∗)≥ PD(A

∗)−αε

and

PD(A
∗)− I

[

PS (A
∗)>

k
n

]

> ε

imply that

PS′(A
∗)− I

[

PS (A
∗)>

k
n

]

> (1−α)ε.

Then

Pr
S∼Dn, S ′∼Dn′

(

sup
A∈A

(

PS′(A)− I

[

PS (A)>
k
n

])

> (1−α)ε

)

=
∫

dDn
∫

I

[

sup
A∈A

(

PS ′(A)− I

[

PS (A)>
k
n

])

> (1−α)ε

]

dDn′

≥
∫

V
dDn

∫
I

[

sup
A∈A

(

PS ′(A)− I

[

PS (A)>
k
n

])

> (1−α)ε

]

dDn′

≥
∫

V
dDn

∫
I

[

PS ′(A∗)− I

[

PS (A
∗)>

k
n

]

> (1−α)ε

]

dDn′

≥
∫

V
dDn

∫
I

[

PS ′(A∗)≥ PD(A
∗)−αε

]

dDn′

≥
(

1−e−2n′α2ε2
)

∫
V

dDn

=
(

1−e−2n′α2ε2
)

Pr
S∼Dn

(

sup
A∈A

(

PD(A)− I

[

PS (A)>
k
n

])

> ε
)

.

This completes the proof of (14).
Take

n′ = n2−n,

α =
1

(n−1)ε
,

we have

Pr
S∼Dn

(

∃A∈ A : PD(A)> I

[

PS (A)>
k
n

]

+ ε
)

≤ 2 Pr
S∼Dn, S ′∼Dn′

(

∃A∈ A : PS ′(A)> I

[

PS (A)>
k
n

]

+(ε− 1
n−1

)

)

.
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Proceeding as Devroye (1982) and using the relative entropy Hoeffding inequality, the lemma
follows.

Proof of Theorem 7.The proof is the same as Theorem 3 until we have (8). Letα = θ
2, we need to

bound

Pr
S∼Dn

(

∃g∈CN(H ), ∃θ > 0, PD
(

yg(x)≤ θ
2

)

> I

[

PS
(

yg(x)≤ θ
2

)

>
k
n

]

+ ε

)

.

Note that for fixedN, in order to derive a bound uniformly over all 0< θ ≤ 1 it suffices to show the
bound holds forθ = 1

N ,
2
N , . . . ,1. Let

A(g) =

{

(x,y) ∈ X ×{−1,1} : yg(x)≤ θ
2

}

,

and
A =

{

A(g) : g∈CN(H )
}

.

By Sauer’s lemma (Sauer, 1972) it is easy to see that

s(A ,n)≤
(en

d

)Nd
,

whered is the VC dimension ofH . By Lemma 12, we have

Pr
S∼Dn

(

∃g∈CN(H ), ∃θ > 0, PD
(

yg(x)≤ θ
2

)

> I

[

PS
(

yg(x)≤ θ
2

)

>
k
n

]

+ ε

)

≤ 2(N+1)

(

en2

d

)Nd

exp

(

−nD

(

k
n

∥

∥

∥
ε′
))

,

where

ε′ =
n

n−1
ε− 1

n
.

Proceeding as the proof of Theorem 3, we have that with probability at least 1− δ the following
holds for everyf ∈C(H ), everyθ > 0 but fixedk, where 0≤ k≤ nε.

PD,g∼QN( f )

(

yg(x)≤ θ
2

)

≤ Pg∼QN( f )

(

PS

(

yg(x)≤ θ
2

)

>
k
n

)

+
1
n
+

n−1
n

D−1
(

k
n
,τ
)

, (15)

where

τ =
1
n

[

Nd

(

log
n2

d
+1

)

+ log(2(N+1))+ log
1
δ

]

.

Similar to the proof of Theorem 3, we can bound the first term of (15) as

Pg∼QN( f )

(

PS

(

yg(x)≤ θ
2

)

>
k
n

)

≤ I

[

PS (y f(x)< θ)>
k
n

]

+Pg∼QN( f )

(

PS

(

yg(x)≤ θ
2

)

>
k
n
, PS (y f(x)< θ)≤ k

n

)

≤ I

[

PS (y f(x)< θ)>
k
n

]

+nexp

(

−Nθ2

8

)

. (16)
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Settingθ = θ̂( k
n) and combining (15), (16) and (5); recallingα = θ/2 we have with probability at

least 1−δ for all f ∈C(H ), all 0< θ ≤ 1, but fixedk andN

PD(y f(x)≤ 0)≤ 1
n
+(n+1)exp

(

−Nθ2

8

)

+
n−1

n
D−1

(

k
n
,τ
)

.

Use the union bound overN; put N = 16
θ2 log n

d and use the union bound overk as in the proof of
Theorem 3 we obtain the theorem.

6.5 Proof of Lemma 8

The first inequality has already been proved in Lemma 11.
For the second inequality, we only need to show

D−1(q,u)≤ q+
√

u/2,

or equivalently
D(q,q+

√

u/2)≥ u,

sinceD is an increasing function in the second parameter. But this is immediate by a well known
result (Hoeffding, 1963):

D(q,q+δ)≥ 2δ2.

For the third inequality we first show that for all 0< q< 1

D−1
(q

2
,
q
8

)

≤ q, (17)

which is equivalent to

D
(q

2

∥

∥

∥
q
)

≥ q
8
.

For fixedq, let φ(x) = D(qx||q), 0< x≤ 1. Note that

φ(1) = φ′(1) = 0,

and
φ′′(x) =

q
x(1−qx)

≥ q,

we have

D
(q

2

∥

∥

∥q
)

= φ
(

1
2

)

≥ q
8
.

This completes the proof of (17).
Now if q≤Cu[θ̂(q)], recall thatC′ =max(2C,8), and noteD−1 is increasing function on its first

and second parameter respectively. IfC′u[θ̂(q)]< 1 we have

D−1(q,u
[

θ̂(q)
])

≤ D−1
(

C′

2
u
[

θ̂(q)
]

,u
[

θ̂(q)
]

)

≤ D−1
(

C′

2
u
[

θ̂(q)
]

,
C′

8
u
[

θ̂(q)
]

)

≤ C′u
[

θ̂(q)
]

.

The lemma follows.

1853



WANG, SUGIYAMA , JING, YANG, ZHOU AND FENG

6.6 Proof of Corollary 9

The first and third bounds are straightforward from lemma 8. We only prove the second bound.
Let Φ(θ) be the right hand side of the bound (without taking the infimum) we want to prove,

that is,

Φ(θ) = PS
(

y f(x)≤ θ
)

+O

(

1√
n

(

lognlog|H |
θ2 + log

1
δ

)1/2
)

.

It is not difficult to see that there is noθ that can achieve infθ∈[8/|H |,1] Φ(θ). To see this, first note
that for anyθ, eitherPS (y f(x) < θ) = PS (y f(x) ≤ θ) (a continuous point), orPS (y f(x) < θ) <
PS (y f(x)≤ θ) (a jump point). In the former case, increasingθ decreasesΦ(θ) sincePS(y f(x)≤ θ)
does not change butu(θ) is decreasing. In the latter case, decreasingθ also decreasesΦ(θ), since
PS(y f(x)≤ θ) decreases discontinuously whileu(θ) increases continuously.

Let θ1,θ2, . . ., be a sequence so thatΦ(θi) converges to infθ Φ(θ). Let θ be the limiting point
of θ1,θ2, . . .. It is not difficult to see from the above argument that for sufficiently large i, θi < θ,
since there is a jump ofΦ(θ) at thoseθ such thatPS (y f(x)≤ θ) is discontinuous. Take anyθi that is
sufficiently close toθ. Let qi = PS (y f(x)≤ θi), we must havêθ(qi) = θ (recall thatθ̂(qi) = sup{θ ∈
(0,1] : PS (y f(x)≤ θ)≤ qi}). Thereforeu[θ̂(qi)]< u(θi) and henceqi +(u[θ̂(qi)])

1/2 < Φ(θi). Thus
infq(q+(u[θ̂(q)])1/2)≤ infθ Φ(θ). The corollary follows.

6.7 Proof of Theorem 10

We first give a simple lemma.

Lemma 13 Let ξ be a random variable andκ a positive constant. If for any t> 0 we have P(ξ >

κt)< exp(−t2), then Eξ ≤
√

π
2 κ.

Proof of Lemma 13.

Eξ =
∫ ∞

−∞
u d(−P(ξ > u))≤

∫ ∞

0
u d(−P(ξ > u)).

By the assumption, we have

Eξ ≤
∫ ∞

0
κt d(−e−t2

) =

√
π

2
κ.

Proof of Theorem 10.
Let B( f ) be the right-hand-side of the Emargin bound in Theorem 7. Then for any training setS ,

f̂n is the functionf in C(H ) so thatB( f ) is minimized, that is,̂fn = argminf∈C(H )B( f ). According
to the Emargin bound, with probability 1−δ

PD(yf̂n(x)≤ 0)≤ B( f̂n).

Since f̂n = argminf∈C(H )B( f ), then for anyf ∈ C(H ), we haveB( f̂n) ≤ B( f ). Therefore for
all f ∈C(H ), with probability 1−δ

PD(yf̂n(x)≤ 0)≤ B( f ) =
d2+1

n
+ inf

q∈{q0,...,
n−1

n }

n−1
n

D−1(q,u[θ̂(q)]).
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For any fixed f ∈ C(H ), let q = PS (y f(x) ≤ n−1/4). It is easy to see that̂θ(q) ≥ n−1/4 and
u[θ̂(q)] ≤ u[n−1/4], whereu[θ̂(q)] is defined in Theorem 7. By the second inequality ofD−1 in
lemma 8, we have

PD(yf̂n(x)≤ 0) ≤ d2+1
n

+
n−1

n

(

q+(u
[

θ̂(q)
]

)1/2
)

,

≤ d2+1
n

+
n−1

n

(

PS (y f(x)≤ n−1/4)+(u
[

n−1/4
]

)1/2
)

.

It is easy to see that there is a constantc (independent off ) such that the right-hand-side of the
above inequality can be further bounded by

n−1
n

PS (y f(x)≤ n−1/4)+c
d log n

d

n1/4
+c

√

logn
n

log(
1
δ
).

Let t =
√

log(1
δ), we have that for anyt > 0 with probability at most exp(−t2)

PD(yf̂n(x)≤ 0)− n−1
n

PS (y f(x)≤ n−1/4)−c
d log n

d

n1/4
> c

√

logn
n

t.

According to lemma 13, we obtain

EPD(yf̂n(x)≤ 0)− n−1
n

EPS (y f(x)≤ n−1/4)−c
d log n

d

n1/4
≤ c

√
π

2

√

logn
n

,

where the expectation is over the random choice of the training set. Note that

EPS (y f(x)≤ n−1/4) = PD(y f(x)≤ n−1/4),

we have

EPD(yf̂n(x)≤ 0)≤ n−1
n

PD(y f(x)≤ n−1/4)+c
d log n

d

n1/4
+

c
√

π
2

√

logn
n

.

Let n→ ∞, we obtain

lim
n→∞

EPD(yf̂n(x)≤ 0)≤ lim
n→∞

PD(y f(x)≤ n−1/4) = PD(y f(x)≤ 0).

The last equality holds becausePD(y f(x)≤ θ) is a right continuous function ofθ. Since the above
inequality is true for everyf ∈C(H ), we have

lim
n→∞

EPD(yf̂n(x)≤ 0)≤ inf
f∈C(H )

PD(y f(x)≤ 0) = L∗.

7. Experiments

In this section we provide experimental results to verify our theory. We compare AdaBoost and
LP-AdaBoost in terms of their Emargin, Emargin error and the generalizationerror. Theorem 6
suggests that if a voting classifierf1 has a larger Emargin and a smaller Emargin error than another
classifierf2, then f1 has a smaller bound of the generalization error thanf2. Thus we expectf1 will
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Data Set # Examples # FeaturesData Set # Examples # Features
Image 2310 16 Page-block 5473 10
Isolet 7797 617 Pendigits 10992 16
Letter 20000 16 Satimage 6435 36
Magic04 19022 10 Shuttle 58000 9
Mfeat-fac 2000 216 Spambase 4601 57
Optdigits 5620 64 Waveform 5000 30

Table 1: Description of the large data sets

Data Set # Examples # Features
Breast 683 9
Diabetes 768 8
German 1000 24
Vehicle 845 18
Wdbc 569 30

Table 2: Description of the small data sets

have better performance on the test data. The goal of the experiment is to see whether the empirical
results agree with the theoretical prediction.

The experiments are conducted on 17 benchmark data sets all from the UCIrepository (Asun-
cion and Newman, 2007). The data sets are grouped into two categories. Table 1 lists 12 “large”
data sets, each containing at least 1000 data points. Table 7 lists 5 “small” datasets, each has at
most 1000 examples. (We distinguish large and small data sets because we found they demonstrate
somewhat different results, see below for discussions.) If the data is multiclass, we group them into
two classes since we study binary classification problems. For instance, the“letter” data set has 26
classes, we use the first 13 as the positive and the others as the negative. In the preprocessing stage,
each feature is normalized to[0,1]. For all data sets we use 5-fold cross validation, and average the
results over 10 runs (for a total of 50 runs on each data set).

In order to study the effect of the margins, we need to control and calculate the complexity of
the base classifiers. We conduct two sets of experiments using differentbase classifiers. For one
set of experiments, we use decision stumps. For the other, we use three-layer eight-leaf (complete)
binary decision trees (Therefore the shape of the trees are fixed). Weconsider a finite set of base
classifiers. Specifically, for each feature we consider 100 thresholdsuniformly distributed on[0,1].
Therefore the size of the set of decision stumps is 2×100×k, and for the three-layer eight-leaf trees
is (2×100×k)7, wherek denotes the number of features.

We run AdaBoost 100 rounds, and use the obtained base classifiers to train the LP-AdaBoost
voting classifier. We then calculate the Emargin, Emargin error, test error aswell as the minimum
margin of them respectively. The calculation of the Emargin involves solving the inverse relative
entropyD−1(q,u). SinceD is a monotone function on the second parameter, one can adopt the
Newton method to find the root ofD(q||·)−u= 0 on[q,1]. Another simple way to solveD−1(q,u)
is just applying binary search on[q,1]: Let p1 = q, p2 = 1. We haveD(q, p1) = 0≤ u andD(q, p2) =
∞ > u. Then letp3 =

p1+p2
2 , computeD(q, p3) and see ifD(q, p3)> u or not, etc.
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Emargin Emargin Error Test Error Min margin
Image Ada 0.461± 0.024 0.799± 0.016 0.032± 0.009 -0.076± 0.010

LP 0.751± 0.238 0.664± 0.075 0.029± 0.009 0.000± 0.001
Isolet Ada 0.172± 0.057 0.714± 0.040 0.163± 0.045 -0.195± 0.063

LP 0.145± 0.031 0.763± 0.021 0.180± 0.053 -0.069± 0.015
Letter Ada 0.199± 0.010 0.804± 0.017 0.190± 0.005 -0.309± 0.009

LP 0.000± 0.000 0.905± 0.021 0.202± 0.012 0.000± 0.000
Magic04 Ada 0.190± 0.007 0.716± 0.017 0.230± 0.006 -0.412± 0.034

LP 0.000± 0.000 0.859± 0.063 0.265± 0.017 0.000± 0.000
Mfeat-fac Ada 0.184± 0.008 0.538± 0.033 0.040± 0.009 -0.018± 0.007

LP 0.171± 0.009 0.558± 0.038 0.045± 0.010 0.033± 0.003
Optdigits Ada 0.173± 0.009 0.654± 0.022 0.111± 0.013 -0.231± 0.016

LP 0.017± 0.046 0.708± 0.027 0.127± 0.019 -0.010± 0.027
Page-block Ada 0.278±0.014 0.458± 0.037 0.048± 0.005 -0.213± 0.023

LP 0.232± 0.374 0.686± 0.218 0.055± 0.008 0.000± 0.000
Pendigits Ada 0.176± 0.006 0.634± 0.020 0.091± 0.006 -0.243± 0.015

LP 0.135± 0.046 0.711± 0.028 0.131± 0.010 -0.085± 0.029
Satimage Ada 0.262± 0.008 0594± 0.018 0.057± 0.005 -0.161± 0.014

LP 0.092± 0.280 0.771± 0.036 0.066± 0.007 0.000± 0.000
Shuttle Ada 0.173± 0.017 0.062± 0.038 0.001± 0.000 -0.087± 0.026

LP 0.204± 0.032 0.251± 0.065 0.001± 0.000 0.000± 0.000
Spambase Ada 0.315± 0.217 0.591± 0.201 0.055± 0.020 -0.126± 0.365

LP 0.116± 0.316 0.737± 0.257 0.080± 0.028 0.096± 0.291
Waveform Ada 0.371± 0.014 0.721± 0.013 0.096± 0.008 -0.185± 0.014

LP 0.000± 0.000 0.780±0.014 0.104± 0.011 0.000± 0.000

Table 3: Margin measures and performances of AdaBoost and LP-AdaBoost on thelarge data sets
and using thestump base classifiers.

Emargin Emargin Error Test Error Min margin
Breast Ada 0.312± 0.045 0.425± 0.082 0.044± 0.016 -0.048± 0.017

LP 0.299± 0.068 0.556± 0.135 0.053± 0.017 0.022± 0.012
Diabetes Ada 0.216± 0.017 0.753± 0.033 0.228± 0.026 -0.199± 0.018

LP 0.149± 0.294 0.821± 0.071 0.271± 0.040 -0.008± 0.015
German Ada 0.221± 0.015 0.769± 0.029 0.240± 0.026 -0.246± 0.018

LP 0.059± 0.173 0.818± 0.073 0.272± 0.030 0.000± 0.000
Vehicle Ada 0.196± 0.012 0.688± 0.035 0.223± 0.026 -0.102± 0.011

LP 0.273± 0.285 0.790± 0.075 0.231± 0.029 -0.018± 0.008
Wdbc Ada 0.400± 0.032 0.537± 0.048 0.028± 0.014 0.096± 0.012

LP 0.376± 0.032 0.546± 0.050 0.033± 0.015 0.139± 0.008

Table 4: Margin measures and performances of AdaBoost and LP-AdaBoost on thesmall data sets
and using thestump base classifiers.
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Emargin Emargin Error Test Error Min margin
Image Ada 0.370± 0.016 0.375± 0.034 0.010± 0.004 0.184± 0.008

LP 0.374± 0.023 0.374± 0.054 0.010± 0.004 0.232± 0.007
Isolet Ada 0.252± 0.076 0.589± 0.028 0.074± 0.067 0.020± 0.144

LP 0.240± 0.010 0.591± 0.040 0.074± 0.056 0.063± 0.071
Letter Ada 0.246± 0.017 0.714± 0.034 0.077± 0.006 -0.144± 0.012

LP 0.236± 0.019 0.775± 0.031 0.086± 0.006 0.061± 0.004
Magic04 Ada 0.312± 0.018 0.805± 0.018 0.156± 0.006 -0.212± 0.012

LP 0.282± 0.038 0.879± 0.028 0.225± 0.013 -0.085± 0.003
Mfeat-fac Ada 0.377± 0.029 0.293± 0.104 0.017± 0.005 0.285± 0.006

LP 0.350± 0.044 0.146± 0.174 0.018± 0.006 0.314± 0.005
Optdigits Ada 0.288± 0.009 0.460± 0.025 0.018± 0.003 0.090± 0.006

LP 0.288± 0.010 0.466± 0.022 0.018± 0.003 0.124± 0.004
Page-block Ada 0.392± 0.024 0.465± 0.038 0.030± 0.005 -0.068± 0.009

LP 0.508± 0.041 0.518± 0.057 0.033± 0.005 0.000± 0.000
Pendigits Ada 0.305± 0.008 0.337± 0.017 0.005± 0.001 0.101± 0.008

LP 0.301± 0.010 0.345± 0.022 0.005± 0.001 0.137± 0.005
Satimage Ada 0.319± 0.013 0.484± 0.026 0.044± 0.006 0.012± 0.008

LP 0.284± 0.014 0.496± 0.039 0.046± 0.006 0.055± 0.004
Shuttle Ada 0.503± 0.037 0.034± 0.020 0.001± 0.000 -0.049± 0.013

LP 0.541± 0.066 0.071± 0.042 0.001± 0.000 0.000± 0.000
Spambase Ada 0.294± 0.014 0.601± 0.034 0.052± 0.006 -0.092± 0.008

LP 0.309± 0.181 0.681± 0.077 0.067± 0.008 -0.002± 0.002
Waveform Ada 0.494± 0.023 0.709± 0.011 0.100± 0.009 0.001± 0.006

LP 0.473± 0.033 0.714± 0.018 0.103± 0.008 0.041± 0.003

Table 5: Margin measures and performances of AdaBoost and LP-AdaBoost on thelarge data sets
and using theTree base classifiers.

Emargin Emargin Error Test Error Min margin
Breast Ada 0.591± 0.057 0.392± 0.051 0.030± 0.014 0.317± 0.030

LP 0.667± 0.059 0.404± 0.053 0.033± 0.014 0.385± 0.033
Diabetes Ada 0.230± 0.032 0.706± 0.062 0.272± 0.027 0.035± 0.007

LP 0.222± 0.026 0.709± 0.058 0.284± 0.030 0.082± 0.004
German Ada 0.202± 0.015 0.704± 0.041 0.242± 0.027 -0.010± 0.010

LP 0.192± 0.017 0.703± 0.050 0.259± 0.028 0.046± 0.004
Vehicle Ada 0.271± 0.018 0.644± 0.038 0.216± 0.029 0.087± 0.007

LP 0.256± 0.020 0.633± 0.046 0.216± 0.027 0.127± 0.004
Wdbc Ada 0.539± 0.018 0.015± 0.010 0.028± 0.013 0.527± 0.019

LP 0.582± 0.020 0.002± 0.000 0.030± 0.014 0.582± 0.020

Table 6: Margin measures and performances of AdaBoost and LP-AdaBoost on thesmall data sets
and using thetree base classifiers.
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The results are described in Tables 3, 4, 5 and 6 respectively according to the type of base
classifiers used and the size of the data sets. To highlight the results we useboldface in the following
manner: By a t-test with significant level 0.01,larger Emargin , smaller Emargin error , and
smaller test error are denoted in boldface. If on a data set, the empirical result agrees with the
theory, thename of the data setis marked in boldface. For example, if one algorithm has larger
Emargin, smaller or equal Emargin error, and smaller test error, then the data set is marked in
boldface. Similarly, if one algorithm has smaller Emargin error, larger or equal Emargin, and smaller
test error, then the data set is marked in boldface. Also if the two algorithms have (statistically) the
same Emargin, Emargin error and test error, it agrees with the theory.

In Table 3 we use decision stump base classifiers on large data sets. We seethat only one data
set is not marked in boldface. On this “Shuttle” data set, LP-AdaBoost hasa larger Emargin and
also a larger Emargin error. In this case, the comparison theorem (Theorem 6) does not apply. We
mark such data sets by italic font. Note that AdaBoost does not always have larger Emargin than
LP-AdaBoost. On the “Image” data set, LP-AdaBoost achieves larger Emargin, smaller Emargin
error and, as the bound predicts, a smaller test error.

In Table 4 we use decision stump base classifiers on small data sets. Four data sets agree with the
theory. On the “Vehicle” data set, although the bound predicts that AdaBoost would have a smaller
generalization error, the test error of AdaBoost is not significantly smaller than LP-AdaBoost.

In Table 5 we use eight-leave decision tree base classifiers on large data sets. Eight data sets
agree with the theory. For the “Mfeat-fac”, “Page-block” and “Shuttle”data sets, our comparison
theorem does not apply. Only the “Pendigits” data set differs from the theoretical prediction: The
test errors are the same while the theory predicts AdaBoost would perform better.

The last set of experiments, listed in Table 6, in which we use eight-leave decision tree base
classifiers on small data sets, behaves different from all the previous results. Only one data set
agrees with the theory. On the “Breast” data set, the test error is contraryto what the bound predicts.

To summarize, on large data sets, the Emargin theory usually agrees with empirical observations.
AdaBoost has better performances because it has a larger Emargin anda smaller Emargin error. Note
there are also cases that LP-AdaBoost achieves a larger Emargin and asmaller Emargin error and a
smaller test error. However, on small data sets and with more complex base classifiers, the theory
does not often give the correct predictions. We think the reason is that the bound is still loose,
especially when the data set contains only a few hundred of points. Also thenumber of classifiers
is a loose bound for the complexity of complex decision trees.

Finally we plot in Figure 1 some margin distribution graphs and the corresponding Emargin and
Emargin errors to give an illustration. AdaBoost often has intuitively “better” margin distributions.

8. Conclusions

In this paper we provided a refined analysis on the margin theory for boosting algorithms, which
extended our preliminary study (Wang et al., 2008). We proposed a bound in terms of a new margin
measure called the Emargin, which depends on the whole margin distribution. This bound is uni-
formly sharper than the minimum margin bound whose prediction is different from the empirical
observations. Our theory suggests that a boosting classifier may not be necessarily achieve better
performance even though it generates a larger minimum margin.

Our bound suggests that the Emargin and the Emargin error play important roles to guarantee
a smaller bound of the generalization error of a voting classifier—a larger Emargin and a smaller
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Figure 1: Margin distribution graphs with Emargin and Emargin errors. The lines marked with
stars are the margin distributions of LP-AdaBoost. The lines marked with circles are of
AdaBoost. Emargin and Emargin errors are plotted by lines parallel to the axes. The left
column uses decision stump base classifiers, the right column uses decision tree classi-
fiers. The three rows are from the data sets of Breast, Satimage and Shuttlerespectively.
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Emargin error result in better generalization ability. Experimental results on (not-too-small) bench-
mark data sets agree well with our theory.

From a practical point of view, the Emargin bound is still too loose to give useful quantitative
predictions. For most data sets, the bound is larger than 1/2. On the other hand we can employ the
bound to “compare” voting classifiers with the help of Emargin and Emargin error. This provides
some guidance to choose classifiers. To calculate the Emargin, one needs toknow the complexity
(e.g., VC dimension) of the base classifiers. This can be difficult for some base learners like C4.5
decision trees.

A future work is to develop algorithms that generate voting classifiers with good margin distri-
butions, that is, large Emargin and small Emargin error. Directly optimizing Emargin and Emargin
error would be computationally difficult. On the other hand, given a voting classifier∑αtht , it might
be possible to improve its margin distribution. One way is to solve the following linearoptimization
problem to obtain∑βtht .

max
β,ξ

∑ξi (18)

s.t. yi ∑βtht(xi)≥ yi ∑αtht(xi)+ξi , i = 1,2, . . .

βt ≥ 0, ∑βt = 1,

ξi ≥ 0,

whereα = (α1, . . . ,αT), β = (β1, . . . ,βT), ξ = (ξ1, . . . ,ξn). If there is a nontrivial solution (i.e.,
β 6= α), ∑βtht would have a uniformly better margin distribution than∑αtht and therefore we
expect it has a smaller generalization error. However, there is usually nonontrivial solutions when
∑αtht is an AdaBoost classifier—it already has a good margin distribution. An openproblem is to
modify and relax (18) and obtain a solution with larger Emargin and smaller Emargin error. Then it
would be a good test to see if such a classifier achieves better performance as our theory predicts.
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