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Abstract. As Elliptic Curve Cryptosystems are becoming more and
more popular and are included in many standards, an increasing demand
has appeared for secure implementations that are not vulnerable to side-
channel attacks. To achieve this goal, several generic countermeasures
against Power Analysis have been proposed in recent years.
In particular, to protect the basic scalar multiplication – on an elliptic
curve – against Differential Power Analysis (DPA), it has often been
recommended using “random projective coordinates”, “random elliptic
curve isomorphisms” or “random field isomorphisms”. So far, these coun-
termeasures have been considered by many authors as a cheap and secure
way of avoiding the DPA attacks on the “scalar multiplication” primitive.
However we show in the present paper that, for many elliptic curves,
such a DPA-protection of the “scalar” multiplication is not sufficient. In
a chosen message scenario, a Power Analysis attack is still possible even
if one of the three aforementioned countermeasures is used. We expose
a new Power Analysis strategy that can be successful for a large class
of elliptic curves, including most of the sample curves recommended by
standard bodies such as ANSI, IEEE, ISO, NIST, SECG or WTLS.
This result means that the problem of randomizing the basepoint may
be more difficult than expected and that “standard” techniques have still
to be improved, which may also have an impact on the performances of
the implementations.

Keywords: Public-key cryptography, Side-channel attacks, Power Anal-
ysis, Differential Power Analysis (DPA), Elliptic curves, Smartcards.

1 Introduction

Since their introduction by V. Miller [21] and N. Koblitz [15], elliptic curve cryp-
tosystems have been included in many international standards. One of their ad-
vantages is the small size of their keys, compared to those of RSA and ElGamal-
type cryptosystems. Therefore, there has been a growing interest in implement-
ing such cryptographic schemes in low-cost cryptographic devices such as smart-
cards.

Whereas the mathematical aspects of the security of such elliptic curve cryp-
tosystems have been scrutinized for years now, a new threat appeared in 1998
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when P. Kocher et al. [16, 17] introduced attacks based on power analysis. The
idea of this new class of attacks is to monitor the power consumption of the
electronic device while it is performing the cryptographic computation and then
to use a statistical analysis of the measured consumption curves to deduce some
information about the secret key stored in the device. The initial focus was on
symmetric cryptosystems such as DES but public key cryptosystems were also
shown vulnerable, including RSA [20] and elliptic curve cryptosystems [7].

The simple power analysis (SPA) only uses a single observed information.
Two main stategies have been suggested to avoid this SPA attack.

The first strategy consists in hiding the fact that, during the computation of
a scalar multiplication d.P (d being an integer and P a point of the elliptic curve),
the nature of the basic operations (e.g. addition or doubling) executed at each
step depends on the value of the secret exponent d. Following this strategy, J.S.
Coron proposed the “double-and-add-always” method [7]. The “Montgomery”
method [23] also proved useful, giving a natural way of avoiding both timing and
SPA attacks [25, 27]. For binary fields GF(2m) a trick allows the computation
of the scalar multiplication to be performed without using the y-coordinates [1,
19]. This property was extended to the case of prime fields GF(p) for elliptic
curves which have “Montgomery-form” [28, 22] and then for any elliptic curve
on GF(p) [12, 4, 8].

The second strategy consists in using indistinguishable addition and doubling
in the scalar multiplication [5]. This has been shown feasible for some classes of
curves over a prime field GF(p): Hesse-type [29, 13] and Jacobi-type [18] elliptic
curves give a unified formula for computing both addition and doubling. A unified
formula was recently proposed by E. Brier and M. Joye [4] to achieve the same
indistinguishability for any elliptic curve on GF(2m) or GF(p). For the binary
field case, the insertion of dummy operations is also possible [3] to build an
indistinguishable adding and doubling.

As pointed out in [7, 27, 14], these anti-SPA methods are not sufficient to
prevent DPA attacks. However, many countermeasures have been proposed to
transform an SPA-resistant scheme into a DPA-resistant scheme.

In [7], J.S. Coron suggested three anti-DPA methods: randomizing the secret
exponent d, adding a random point R to P and using randomized projective
homogeneous coordinates. The first two methods have been considered with
skepticism in [27] and [12], but the third one is widely accepted: see [25], [27]
or [18].

In the same spirit, M. Joye and C. Tymen [14] proposed two other generic
methods: performing the computations in another elliptic curve which is deduced
from the usual one through a random isomorphism, and performing the basic
field operations with another representation of the field which is deduced from
the usual one though a random field isomorphism. Note that [14] also gives
a specific method for ABC curves (see also [9]).

Hence [7, 14] propose three generic methods (“random projective coordi-
nates”, “random elliptic curve isomorphisms” and “random field isomorphisms”),
which so far have been considered by many authors as a cheap and secure way of
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thwarting the DPA attacks: see e.g. [26], [3], [12]. For example it is stated in [4]
that DPA attacks are not really a threat for elliptic curve cryptography since
they are easily avoided by randomizing the inputs.

However, in the present paper we prove that, for a large class of elliptic
curves, a Power Analysis attack can still work, even if we apply one of the three
countermeasures above (together with an SPA countermeasure, such as “Add-
and-double always”, the Montgomery method, or a unified add/double formula).

In our scenario, the attacker can choose the message, i.e. the input of the
“scalar multiplication” primitive. The only way the sensitive data are blinded
is by using random projective coordinates (for the input), random elliptic curve
isomorphisms (for the curve itself) or random field isomorphism (for the algebraic
structure).

The paper is organized as follows. In section 2, we give the mathematical
background about elliptic curves and scalar multiplication. In section 3, we de-
scribe our new strategy of attack, for each of the three DPA-countermeasures
of [7, 14]. In section 4, we study more precisely the necessary conditions on the
elliptic curve for our attack to work, and show that most of the sample curves
proposed by standardization bodies [2, 10, 11, 24, 30, 31] verify these conditions.

2 Mathematical Background

2.1 Parametrizations of Elliptic Curves

General (affine) Weierstraß Form We consider the elliptic curve defined
over a field K by its Weierstraß equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

We denote by E(K) the set of points (x, y) ∈ K2 satisfying this equation. If we
introduce a formal “point at infinity” denoted by O, the set E(K)

⋃O can be
equiped with an operation + which makes it an abelian group whose identity
element is O.

Projective Coordinates To avoid costly inversions, it is convenient to use
projective coordinates. Among many possibilities developed in [6], we describe
homogeneous and Jacobian projective coordinates.

Homogeneous projective coordinates are obtained by setting x = X/Z and
y = Y/Z, so that the general Weierstraß equation becomes

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ2 + a6Z
3.

The point at infinity O is then represented by (0, θ, 0) for some θ ∈ K∗, the affine
point (x, y) is represented by a projective point (θx, θy, θ) for some θ ∈ K∗ and
a projective point (X,Y, Z) �= O corresponds to the affine point (X/Z, Y/Z).

Jacobian projective coordinates are obtained by setting x = X/Z2 and y =
Y/Z3, so that the general Weierstraß equation becomes

E : Y 2 + a1XY Z + a3Y Z
3 = X3 + a2X

2Z2 + a4XZ4 + a6Z
6.
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The point at infinity O is then represented by (θ2, θ3, 0) for some θ ∈ K∗,
the affine point (x, y) is represented by a projective point (θ2x, θ3y, θ) for some
θ ∈ K∗ and a projective point (X,Y, Z) �= O corresponds to the affine point
(X/Z2, Y/Z3).

Simplified (affine) Weierstraß Forms When Char(K) �= 2, 3, the general
Weierstraß equation can be simplified to

E : y2 = x3 + ax+ b

and the addition formulas, giving P + Q = (x3, y3) from P = (x1, y1) and
Q = (x2, y2), become

{
x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1
with λ =

{
y1−y2
x1−x2

if P �= Q
3x2

1+a
2y1

if P = Q

When Char(K) = 2 and the curve is non-supersingular, the general Weier-
straß equation can be simplified to

E : y2 + xy = x3 + ax2 + b

and the addition formulas to{
x3 = λ2 + λ+ a+ x1 + x2

y3 = λ(x1 + x3) + x3 + y1
with λ =

{ y1−y2
x1−x2

if P �= Q
x1 + y1

x1
if P = Q

Montgomery Form In order to ease the additions, P.L. Montgomery consid-
ered in [23] the family of elliptic curves of the following form (on a field K of
characteristic �= 2):

E : By2 = x3 +Ax2 + x with B(A2 − 4) �= 0.

As noticed in [27], on such elliptic curves, the point (0, 0) is of order 2 and the
cardinality of E(K) is always divisible by 4.

Hessian Form The Hessian-type elliptic curves were considered because they
provide a unified formula for adding and doubling. Defined as the intersection
of two quadrics, they can be given in the following form (on a field K = GF(q)
with q ≡ 2 mod 3)

E : x3 + y3 + 1 = 3Dxy with D ∈ K,D3 �= 1.

As mentioned in [29, 13], point (−1, 0) has order 3, that implies that the cardi-
nality of E(K) is always divisible by 3.
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2.2 Usual SPA Countermeasures

To compute the scalar multiplication d.P , where d = dn−12n−1 + dn−22n−2 +
...+ d12+ d0, with dn−1 = 1 and P ∈ E(K), the following generic schemes have
been proposed.

Classical Binary Method This method (see Algorithm 1) is analogous to the
“square-and-multiply” principle used in RSA. Note that an analogous method
exists, which is from the least significant bit. As noticed in [7], both are vul-
nerable to SPA attacks. That is why two other methods were introduced: the
“Double-and-add-always” and the “Montgomery” methods.

Algorithm 1 Binary method (from the most significant bit)

Require: d, P
Ensure: Q = d.P

Q := P
for i = n − 2 down to 0 do

Q := 2.Q
if di = 1 then

Q := Q + P
end if

end for
Return Q

Double-and-Add-Always This method (Algorithm 2) was proposed in [7].
Note that an analogous method also exists, which is from the least significant
bit [7, 12]. Both are SPA-resistant.

Algorithm 2 Double-and-add-always (from the most significant bit)

Require: d, P
Ensure: Q0 = d.P

Q0 := P
for i = n − 2 down to 0 do

Q0 := 2.Q0

Q1 := Q0 + P
Q0 := Qdi

end for
Return Q0
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Montgomery Method This method (Algorithm 3) was originally proposed
in [23] and then elaborated in [1, 19, 25, 27, 28, 28, 22, 12, 4, 8]. It is SPA-
resistant.

Algorithm 3 Montgomery’s method

Require: d, P
Ensure: Q0 = d.P

Q0 := P
Q1 := 2.P
for i = n − 2 down to 0 do

Q1−di := Q0 + Q1

Qdi := 2.Qdi

end for
Return Q0

3 Our New Power Analysis Attack

We present here a Power Analysis attack that can work on many elliptic curves,
even if an SPA-countermeasure (such as Double-and-add-always or the Mont-
gomery method) is used, together with one of three aforementioned DPA-
countermeasures (Random projective coordinates, Random elliptic curve iso-
morphisms or Random field isomorphisms).

3.1 The Strategy of the Attack

In this section, we describe the generic attack on an elliptic curve scalar multipli-
cation, SPA-protected with Double-and-add-always or the Montgomery method.
Note however that the attack is not limited to the case of binary methods (such
as Algorithm 2 or Algorithm 3) and can be extended to the case of other addition
chains.

Suppose the attacker already knows the highest bits dn−1, ..., di+1 of the
secret multiplier d. We illustrate below how he can find the next bit di.

Let us suppose that the elliptic curve E(K) contains a “special” point P0 �=
O, i.e. a point P0 �= O such that one of the (affine or projective) coordinates
equals 0 in K.

Note that, for each of the three aforementioned DPA-countermeasures, the
randomization does not affect the “special” property of the point P0 (see section
3.2).
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Double-and-Add-Always In Algorithm 2, for any given input point P , the
value Q0 obtained at the end of the i-th step of the loop is

Q0 =
( n−1∑

j=i+1

dj2j−i + di

)
.P.

We then have two cases:

– If di = 0, the values that appear during the (i + 1)-st step of the loop are( n−1∑
j=i+1

dj2j−i+1
)
.P and

( n−1∑
j=i+1

dj2j−i+1 + 1
)
.P .

– If di = 1, the values that appear during the (i + 1)-st step of the loop are( n−1∑
j=i+1

dj2j−i+1 + 2
)
.P and

( n−1∑
j=i+1

dj2j−i+1 + 3
)
.P .

We consider the point P1 given by

P1 =
[( n−1∑

j=i+1

dj2j−i+1 + 1
)−1

mod |E(K)|
]
.P0

if
( n−1∑

j=i+1

dj2j−i+1 +1
)
is coprime to |E(K)| (this corresponds to the guess di =

0), or

P1 =
[( n−1∑

j=i+1

dj2j−i+1 + 3
)−1

mod |E(K)|
]
.P0

if
( n−1∑

j=i+1

dj2j−i+1 +3
)
is coprime to |E(K)| (this corresponds to the guess di =

1). In many cases, both possibilities can be chosen.
Let us now denote by Cr, for 1 ≤ r ≤ R, the power consumption curves

associated to r distinct computations of d.P1. Because of the randomization
performed before each computation, two curves corresponding to the same input
value can be different.

We then consider the mean curve

MP1 =
1
R

R∑
r=1

Cr.

If the guess for di (i.e. the choice for the point P1) is incorrect, thenMP1 	 0,
since the values appearing in the (i+ 1)-st step of the loop in Algorithm 2, are
correctly randomized.

On the contrary, if the guess for di is correct, the mean curve MP1 shows
appreciable consumption “peaks” (compared to the mean power consumption of
random points), corresponding to the treatment of the zero value in the (i+1)-st
step of the loop.

Once di is known, the remaining bits di−1, ..., d0 are recovered recursively,
in the same way.
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The Montgomery Method In Algorithm 3, for any given input point P , the
values Q0 and Q1 obtained at the end of the i-th step of the loop are

Q0 =
( n−1∑

j=i+1

dj2j−i + di

)
.P

Q1 =
( n−1∑

j=i+1

dj2j−i + di + 1
)
.P

We then have two cases:

– If di = 0, the values that appear during the (i + 1)-st step of the loop

are
( n−1∑

j=i+1

dj2j−i+1 + 1
)
.P on the one hand, and

( n−1∑
j=i+1

dj2j−i+1
)
.P or

( n−1∑
j=i+1

dj2j−i+1 + 2
)
.P on the other hand.

– If di = 1, the values that appear during the (i + 1)-st step of the loop are( n−1∑
j=i+1

dj2j−i+1 + 3
)
.P on the one hand, and

( n−1∑
j=i+1

dj2j−i+1 + 2
)
.P or

( n−1∑
j=i+1

dj2j−i+1 + 4
)
.P on the other hand.

We then consider then point P1 given by

P1 =
[( n−1∑

j=i+1

dj2j−i+1 + 1
)−1

mod |E(K)|
]
.P0

if
( n−1∑

j=i+1

dj2j−i+1 + 1
)
is coprime to |E(K)| (the guess is di = 0), or

P1 =
[( n−1∑

j=i+1

dj2j−i+1 + 3
)−1

mod |E(K)|
]
.P0

if
( n−1∑

j=i+1

dj2j−i+1 + 3
)
is coprime to |E(K)| (the guess is di = 1).

The rest of the attack is then exactly the same as for the “Double-and-
add-always” method: the bit di is found by power analysis, and the remaining
bits di−1, ..., d0 in the same way.

3.2 Application to Three Usual DPA-Countermeasures

Random Projective Coordinates The basic idea of this method is the fol-
lowing. The computation Q = d.P is performed in projective coordinates. The
basepoint P = (x, y) can be represented by (θx, θy, θ) (homogeneous projective
coordinates) or (θ2x, θ3y, θ) (Jacobian projective coordinates) for some θ ∈ K∗.

Thus the computation is performed in 3 steps:
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1. Choose a random θ ∈ K∗ and let P ′ = (θx, θy, θ) (homogeneous projective
coordinates) or P ′ = (θ2x, θ3y, θ) (Jacobian projective coordinates).

2. Compute Q′ = (X ′, Y ′, Z ′) = d.P ′.
3. Compute Q = (X ′/Z ′, Y ′/Z ′) (homogeneous projective coordinates) or Q =

(X ′/Z ′2, Y ′/Z ′3) (Jacobian projective coordinates).

It is easy to see that the “special” point mentioned in section 3.1 remains of
the form (X, 0, Z) or (0, Y, Z), whatever the random value θ may be. This shows
that the above strategy applies.

Random Elliptic Curve Isomorphisms This method applies for an elliptic
curve E : y2 = x3 + ax+ b on a field K of characteristic �= 2, 3. For P = (x, y),
the computation of Q = d.P is performed as follows:

1. Choose a random θ ∈ K∗ and let P ′ = (θ2x, θ3y, 1), a′ = θ−4a and b′ = θ−6b.
2. Compute Q′ = (X ′, Y ′, Z ′) = d.P ′ in E′ : Y 2Z = X3 + a′XZ2 + b′Z3

(homogeneous projective coordinates).
3. Compute Q = (θ2X ′/Z ′, θ3Y ′/Z ′).

A variant consists in computing Q′ = d.P ′ in E′ : Y 3 = X3 + a′XZ4 +
b′Z6 (Jacobian projective coordinates). It is easy to see that the “special” point
mentioned in section 3.1 remains of the form (X, 0, Z) or (0, Y, Z), whatever the
random value θ may be. This shows that the strategy of section 3.1 applies again.

Random Field Isomorphisms This method applies for an elliptic curve over
a field K = GF(2m) = GF(2)[X ]/Π(X), where Π is an irreducible polynomial
of degree m over GF(2). The idea is that there are many such irreducible poly-
nomials, so that K can be replaced (randomly) by an isomorphic field K ′. The
computation of Q = d.P is performed as follows:

1. Choose a random irreducible polynomial Π ′ of degree m over GF(2) and let
K ′ = GF(2)[X ]/Π ′(X).

2. Let ϕ be the field isomorphism between K and K ′ and P ′ = ϕ(P ).
3. Compute Q′ = d.P ′ ∈ K ′2 in E/K′ .
4. Compute Q = ϕ−1(Q′) ∈ K2.

Again, the “special” point mentioned in section 3.1 remains of the form (x, 0)
or (0, y) (with the usual representation of the zero value), whatever the random
polynomial Π ′ may be, so that the strategy of section 3.1 also applies.

4 Practical Applications

4.1 Computation of the “Special” Point

Special Points (0, y) For a non-singular binary elliptic curve, whose reduced
Weierstraß form is E : y2 + xy = x3 + ax2 + b over K = GF(2m), we can
choose P0 = (0, b2

m−1
) as the “special” point.
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For an elliptic curve E : y2 = x3 + ax + b over a prime field K = GF(p)
(p > 3), a special point of the form (0, y) exists if and only if b is a quadratic
residue modulo p, i.e.

(
b
p

)
= 1, where

(
.
.

)
is the Legendre symbol.

Among the standardized curves over a prime field satisfying the condition
are: four curves proposed in FIPS 186-2 [24], the basic curve (curve number 7)
proposed in WTLS [31], the seven curves proposed in ANSI X9.62 [2] (Annex J5),
and two curves proposed in the working draft ISO/IEC 15946-4 [11] (Annexes
A2.1 and A3.1). Only one curve of FIPS 186-2 (P224) and four curves of ISO/IEC
15946-4 (Annexes A1.11, A4.1, A5.1 and A6.1) have no special point (0, y).

Special Points (x, 0) For an elliptic curve E : y2 = x3 + ax+ b over a prime
field K = GF(p) (p > 3), a special point of the form (x, 0) exists if and only if
the equation x3 + ax+ b = 0 has at least one root α in K.

Note that P0 = (α, 0) is then a point of order 2 in E(K). At first glance,
it may seem that the strategy of section 3.1 fails, because P1 does not depend
on the guess made on di (P1 is always equal to P0). However, the successive
values of Q that appear during Algorithm 2, for i = n − 2, ..., 0 are either O
(if di = 0) or P (if di = 1). Therefore the mean curve MP1 shows in fact
many peaks: for instance if Algorithm 2 is applied, with random homogeneous
projective coordinates, the chip instructions manipulating O = (0, θ, 0) are likely
to create 2 such peaks (one for each 0), whereas the instructions manipulating
(θx, 0, θ) are likely to create only 1 peak. This allows the attacker to recover all
the bits di of the secret exponent d with only one application of the strategy of
3.1.

Some particular classes of curves automatically have such points of order 2.
As mentioned in section 2.1, for all Montgomery-form elliptic curves, (0, 0) is of
order 2: its double is O = (0, 1, 0). For the Hessian form, all (x, x) are of order
2: their double is O = (−1, 1, 0).

4.2 Cardinality of the Elliptic Curve

Another condition for our strategy of attack to work is the fact that at least

one of the values
( n−1∑

j=i+1

dj2j−i+1 + 1
)
and

( n−1∑
j=i+1

dj2j−i+1 + 3
)
is coprime to

|E(K)|.
Over a prime field, FIPS 186-2 [24] or SECG [30] recommend to use elliptic

curves of prime cardinality, and binary curves of cardinality 2q or 4q (q prime).
All the curves proposed by WTLS [31] and ISO/IEC 15946-4 [11] have cardi-
nality q, 2q, 4q, 6q (q prime). It is also true for most of the curves of ANSI
X9.62 [2].

This shows that the condition above is true for most standardized elliptic
curves.
1 This curve however has a point of order 2, hence a special point (x, 0).
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5 Conclusion

This attack we present here shows that the problem of randomizing the base-
point may be more difficult than expected and that “standard” techniques for
securing the “scalar multiplication” primitive still have to be improved. Evaluat-
ing the performances of secure implementations of elliptic curve cryptosystems
will require to take those improvements into account. The results of this paper
also highlight the necessity to choose a message blinding method (before entering
the “scalar multiplication” primitive) that prevents an attacker from choosing
the messages.
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