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A refined shear deformation theory for flexure of thick beams

Abstract

A Hyperbolic Shear Deformation Theory (HPSDT) taking

into account transverse shear deformation effects, is used for

the static flexure analysis of thick isotropic beams. The dis-

placement field of the theory contains two variables. The

hyperbolic sine function is used in the displacement field in

terms of thickness coordinate to represent shear deformation.

The transverse shear stress can be obtained directly from the

use of constitutive relations, satisfying the shear stress-free

boundary conditions at top and bottom of the beam. Hence,

the theory obviates the need of shear correction factor. Gov-

erning differential equations and boundary conditions of the

theory are obtained using the principle of virtual work. Gen-

eral solutions of thick isotropic simply supported, cantilever

and fixed beams subjected to uniformly distributed and con-

centrated loads are obtained. Expressions for transverse dis-

placement of beams are obtained and contribution due to

shear deformation to the maximum transverse displacement

is investigated. The results of the present theory are com-

pared with those of other refined shear deformation theories

of beam to verify the accuracy of the theory.
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1 INTRODUCTION

The Bernoulli-Euler elementary theory of bending (ETB) of beam disregards the effect of

the shear deformation. The theory is suitable for slender beams and is not suitable for thick or

deep beams since it is based on the assumption that the transverse normal to the neutral axis

remains so during bending and after bending, implying that the transverse shear strain is zero.

Since the theory neglects the transverse shear deformation, it underestimates deflections and

overestimates the natural frequencies in case of thick beams, where shear deformation effects

are significant.

The first order shear deformation theory (FSDT) of Timoshenko [14] includes refined effects

such as the rotatory inertia and shear deformation in the beam theory. Timoshenko showed
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NOMENCLATURE

A Cross sectional area of beam;

b Width of beam in y direction;

E,G,µ Elastic constants of the material;

E Young’s modulus;

G Shear modulus;

h Thickness of beam;

I Moment of inertia of cross section of beam;

L Span of the beam;

q Intensity of uniformly distributed transverse load;

u Axial displacement in x direction;

w Transverse displacement in z direction;

x, y, z Rectangular Cartesian coordinates;

µ Poisson’s ratio of the beam material;

σx Axial stress in x direction;

τxz Transverse shear stress in zx plane;

ϕ Unknown function associated with the shear slope.

ABBREVIATIONS

ETB Elementary Theory of Beam-bending

FSDT First-order Shear Deformation Theory

HSDT Higher-order Shear Deformation Theory

TSDT Trigonometric Shear Deformation Theory

PSDT Parabolic Shear Deformation Theory

HPSDT Hyperbolic Shear Deformation Theory

UDL Uniformly distributed load

that the effect of transverse shear is much greater than that of rotatory inertia on the response

of transverse vibration of prismatic bars. In this theory transverse shear strain distribution is

assumed to be constant through the beam thickness and thus requires shear correction factor

to appropriately represent the strain energy of deformation. Cowper [4] has given refined

expression for the shear correction factor for different cross-sections of the beam.

The discrepancies in the elementary theory of beam bending and first order shear defor-

mation theory forced the development of higher order or equivalent refined shear deformation

theories. Levinson [11], Bickford [3], Rehfield and Murthy [12], Krishna Murty [10], Baluch,

et.al [1], Bhimaraddi and Chandrashekhara [2] presented parabolic shear deformation theories

assuming a higher variation of axial displacement in terms of thickness coordinate. These the-

ories satisfy shear stress free boundary conditions on the top and bottom surfaces of the beam

and thus obviate the need of shear correction factor. Kant and Gupta [9], and Heyliger and

Reddy [8] presented higher order shear deformation theories for the static and free vibration
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analyses of shear deformable uniform rectangular beams.

The theories based on trigonometric and hyperbolic functions to represent the shear de-

formation effects through the thickness is the another class of refined theories. Vlasov and

Leont’ev [18] and Stein [13] developed refined shear deformation theories for thick beams in-

cluding sinusoidal function in terms of thickness coordinate in the displacement field. However,

with these theories shear stress free boundary conditions are not satisfied at top and bottom

surfaces of the beam. This discrepancy is removed by Ghugal and Shimpi [7] and developed

a variationally consistent refined trigonometric shear deformation theory for flexure and free

vibration of thick isotropic beams. Ghugal and Nakhate [5] obtained the general bending so-

lutions for thick beams using variationally consistent refined trigonometric shear deformation

theory. Ghugal and Sharma [6] developed the variationally consistent hyperbolic shear defor-

mation theory for flexural analysis of thick beams and obtained the displacements, stresses

and fundamental frequencies of flexural mode and thickness shear modes from free vibration

of simply supported beams.

In this paper, a variationally consistent hyperbolic shear deformation theory previously

developed by Ghugal and Sharma [6] for thick beams is used to obtain the general bending

solutions for thick isotropic beams. The theory is applied to uniform isotropic solid beams of

rectangular cross-section for static flexure with various boundary and loading conditions. The

results are compared with those of elementary, refined and exact beam theories available in

the literature to verify the credibility of the present shear deformation theory.

2 THEORETICAL FORMULATION

The variationally correct forms of differential equations and boundary conditions, based on

the assumed displacement field are obtained using the principle of virtual work. The beam

under consideration occupies the following region:

0 ≤ x ≤ L; −b/2 ≤ y ≤ b/2; −h/2 ≤ z ≤ h/2

where x, y, z are Cartesian coordinates, L is the length, b is the width and h is the total

depth of beam. The beam is subjected to transverse load of intensity q(x) per unit length of

the beam. The beam can have any meaningful boundary conditions.

2.1 The displacement field

The displacement field of the present beam theory is of the form [6]

u (x, z) = −z dw
dx

+ [z cosh(1
2
) − h sinh( z

h
)]φ (x) (1)

w (x, z) = w (x) (2)

Here u and w are the axial and transverse displacements of the beam center line in the x

and z directions respectively. The first term in Eqn (1) is the axial displacement according to
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the elementary theory of beam bending (ETB) due to Bernoulli-Euler which is linear through

the thickness of the beam the second term in the bracket is the displacement due to transverse

shear deformation, which is assumed to be hyperbolic sine function in terms of thickness

coordinate, which is non-linear in nature through the thickness of beam. The hyperbolic sine

function is assigned according to the shearing stress distribution through the thickness of the

beam. The φ (x) is an unknown function to be determined and is associated with the rotation

of the cross-section of the beam at neutral axis.

Normal strain: εx =
∂u

∂x
= −z d

2w

dx2
+ [z cosh(1

2
) − h sinh( z

h
)] dφ

dx
(3)

Shear strains: γxz =
∂u

∂z
+ dw

dx
= [cosh(1

2
) − cosh( z

h
)]φ (4)

Stresses

One dimensional constitutive laws are used to obtain normal bending and transverse shear

stresses. These stresses are given by

σx = Eεx, τxz = Gγxz (5)

where E and G are the elastic constants of beam material.

2.2 Governing equations and boundary conditions

Using the expressions (3) through (5) for strains and stresses and dynamic version of principle of

virtual work, variationally consistent governing differential equations and boundary conditions

for the beam under consideration are obtained. The principle of virtual work when applied to

the beam leads to

b∫
x=L

x=0
∫

z=h/2

z=−h/2
(σxδεx + τxzδγxz)dxdz − ∫

x=L

x=0
qδwdx = 0 (6)

where the symbol δ denotes the variational operator. Employing Green’s theorem in Eqn. (6)

successively, we obtain the coupled Euler-Lagrange equations which are the governing differen-

tial equations of the beam and the associated boundary conditions of the beam. The governing

differential equations obtained are as follows:

EI
d4w

dx4
−EIA0

d3φ

dx3
= q (7)

EIA0
d3w

dx3
−EIB0

d2φ

dx2
+GAC0φ = 0 (8)

where A0, B0 and C0 are the constants as given in Appendix and the associated boundary

conditions obtained are as follows:

Either EI
d3w

dx3
−EIA0

d2φ

dx2
= 0 or w is prescribed (9)
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Either EI
d2w

dx2
−EIA0

dφ

dx
= 0 or

dw

dx
is prescribed (10)

Either EIA0
d2w

dx2
−EIB0

dφ

dx
= 0 or ϕ is prescribed (11)

Thus the variationally consistent governing differential equations and the associated bound-

ary conditions are obtained. The static flexural behavior of beam is given by the solution of

these equations and simultaneous satisfaction of the associated boundary conditions.

2.3 The general solution for the static flexure of beam

Using the governing equations (7) and (8) for static flexure of beam, the general solution for

w(x ) and ϕ(x) can be obtained. By integrating and rearranging the first governing equation

(Eqn. 7) one can get following equation

d3w

dx3
−A0

d2φ

dx2
= Q (x)

EI
(12)

where Q(x) is the generalized shear force for the beam under consideration and it is given by

Q (x) = ∫ q dx +C1. The second governing equation (Eqn. 8) can be written as

d3w

dx3
− A0

B0

d2φ

dx2
+ βφ = 0 (13)

Using Eqn. (12) and Eqn. (13), a single differential equation in terms of ϕ can be obtained

as follows.

d2φ

dx2
− λ2φ = Q (x)

αEI
(14)

where the constant α, β and λ used in Eqn. (13) and Eqn. (14) are given in Appendix. The

general solution of above Eqn. (14) is given by:

φ (x) = C2 coshλx +C3 sinhλx −
Q (x)
βEI

(15)

The general solution for transverse displacement (w) can be obtained by substituting the

expression for φ (x) in Eqn. (13) and integrating thrice with respect to x. The solution is

EIw(x) =∫ ∫ ∫ ∫ qdxdxdxdx + C1x
3

6
+ A0EI

λ
(C2 sinhλx +C3 coshλx)

+C4
x2

2
+C5x +C6

(16)

where C1 – C6 are the arbitrary constants of integration and can be obtained by imposing

natural (forced) and kinematic (geometric) boundary conditions of beams.
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3 ILLUSTRATIVE EXAMPLES

3.1 Example 1: Simply supported beam with uniformly distributed load q

A simply supported beam with rectangular cross section (b× h) is subjected to uniformly

distributed load q over the span L at surface z = −h/2 acting in the downward z direction.

The origin of beam is taken at left end support i.e. at x = 0. The boundary conditions

associated with simply supported beam are as follows.

EI
d3w

dx3
= EI

d2φ

dx2
= dw

dx
= φ = 0 at x = L

2
and (17)

EI
d2w

dx2
= EI

dφ

dx
= w = 0 at x = 0, L (18)

The boundary condition, ϕ = 0 at x = L/2 is used from the condition of symmetry of

deformation, in which the middle cross section of the beam must remain plane without warping

(see Timoshenko [15]). Applying appropriate boundary conditions from (19) and (20) in general

solutions of the beam the final expressions for ϕ(x) and w(x) are obtained as follows:

φ(x) = qL

2βEI
[1 − 2x

L
+ 2

λL

sinh (λx − λL/2)
cosh (λL/2)

] (19)

w(x) = qL4

24EI
(x

4

L4
− 2x

3

L3
+ x

L
) + 3

5

qL2

GA
[x
L
− x2

L2
− 2

(λL)2
(1 − cosh (λx − λL/2)

cosh (λL/2)
)] (20)

The maximum transverse displacement at x = L/2 obtained from Eqn. (20) is

w (L/2) = 5qL4

384EI
[1 + 1.92 (1 + µ) h

2

L2
] (21)

3.2 Example 2: Simply supported beam with central concentrated load P

A simply supported beam with rectangular cross section (b × h ) subjected to concentrated

load P at mid span i.e. at x = L/2 at surface z = −h/2. The origin beam is taken at left end

support i.e. at x = 0. The boundary conditions associated with simply supported beam with

a concentrated load are given as:

EI
dw

dx
= φ = 0atx = L

2
and EI

d2w

dx2
= EI

dφ

dx
= w = 0atx = 0, L (22)

From the condition of symmetry, the middle cross-section of the beam must remain normal

and plane, hence shear rotation, ϕ = 0 at x = L/2 [15]. Using these boundary conditions, in

the region (0 = x = L/2) of beam, the general expressions for ϕ(x) and w(x) are obtained as

follow:

φ (x) = P

2βEI
[1 − cosh (λx)

cosh (λL/2)
] (23)
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w(x) = PL3

48EI
(3x

L
− 4x

3

L3
) + 3

5

PL

GA
(x
L
− sinhλx

λL cosh (λL/2)
) (24)

The maximum transverse displacement at x = L/2 obtained from Eqn. (24) is

w (L/2) = PL3

48EI
[1 + 2.4 (1 + µ) h

2

L2
] (25)

3.3 Example 3: Cantilever beam with uniformly distributed load q

A cantilever beam with rectangular cross section (b × h) is subjected to uniformly distributed

load q at surface z = −h/2 acting in the z direction. The origin of beam is taken at free end

i.e. at x = 0 and it is fixed or clamped at x = L. The boundary conditions associated with

cantilever beam are as given:

EI
d3w

dx3
= EI

d2φ

dx2
= EI

d2w

dx2
= EI

dφ

dx
= 0 at x = 0 and

dw

dx
= φ = w = 0 at x = L (26)

Using these boundary conditions the general expressions for ϕ(x) and w(x) are obtained

from the general solution as follows:

φ (x) = qL

βEI
[ coshλx
coshλL

− sinhλ (L − x)
λL coshλL

− x

L
] (27)

w (x) = qL4

24EI
(x

4

L4
− 4x

L
+ 3) + 3

5

qL2

GA
[1 − x2

L2
− 2 (sinhλL − sinhλx)

λL coshλL
+ 2 coshλ (L − x)
(λL)2 coshλL

] (28)

The maximum transverse displacement at free end (x = 0) obtained from Eqn. (28) is

w (0) = qL4

8EI
[1 + 0.8 (1 + µ) h

2

L2
] (29)

3.4 Example 4: Cantilever beam with concentrated load P at free end

A cantilever beam with rectangular cross section (b × h) is subjected to concentrated load P

at free end i.e. at x = L at surface z = −h/2 acting in the z direction. The origin of the beam

is taken at fixed end i.e. at x = 0. The boundary conditions associated with cantilever beam

are as given:

EI
d2w

dx2
= EI

dφ

dx
= 0 at x = L and

dw

dx
= w = φ = 0atx=0 (30)
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Using these boundary conditions in general solution of the beam, the general expressions

for ϕ(x) and w(x) are obtained as follows:

ϕ(x) = P

βEI
(sinhλx − coshλx + 1) (31)

w(x) = PL3

6EI
(3x

2

L2
− x3

L3
) + 6

5

PL

GA
(x
L
+ coshλx − sinhλx − 1

λL
) (32)

The maximum transverse displacement at free end (x = L) obtained from Eqn. (32) is

w (L) = PL3

3EI
[1 + 0.6 (1 + µ) h

2

L2
] (33)

3.5 Example 5: Fixed-fixed (Clamped-clamped) beam with uniformly distributed load q

A fixed-fixed beam with rectangular cross section (b×h) is subjected to uniformly distributed

load q at surface z = −h/2. The origin of the beam is taken at left end fixed/clamped support

i.e. x = 0. The boundary conditions associated with this beam are as follows:

EI
d3w

dx3
= EI

d2φ

dx2
= EI

dw

dx
= φ = 0 at x = L

2
;

ϕ = w = EI
dw

dx
= 0 at x = 0, L and

d2w

dx2
= dϕ

dx
= qL2

12EI
at x = 0 (34)

Using the appropriate boundary conditions, from the set given by Eqn. (34), in general

solution of the beam, the general expressions for ϕ(x) and w(x) are obtained as follows:

φ(x) = qL

2βEI
[sinhλ(L/2 − x)

sinh (λL/2)
− (1 − 2x

L
)] (35)

w(x) = qL4

24EI
(x

4

L4
− 2x

3

L3
+ x2

L2
) + 3

5

qL2

GA
[x
L
− x2

L2
− (cosh (λL/2) − coshλ (L/2 − x))

λL sinh (λL/2)
] (36)

The maximum transverse displacement at center of the beam (x = L/2) obtained from

Eqn. (36) is

w (L/2) = qL4

384EI
[1 + 9.6 (1 + µ) h

2

L2
] (37)
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3.6 Example 6: Fixed-fixed beam with central concentrated load P

A fixed-fixed beam with rectangular cross section (b × h) is subjected to concentrated load P

at mid span at surface z = −h/2. The origin of the beam is taken at left end fixed/clamped

support i.e. x = 0. The boundary conditions associated with this beam are as follows:

EI
dw

dx
= ϕ = 0atx = 0, L

2
;w = 0 at x = 0 and

d2w

dx2
= dϕ

dx
= − PL

8EI
at x = 0 (38)

Using these boundary conditions, in the region (0 = x = L/2) of beam, the general expres-

sions for ϕ(x) and w(x) are obtained as follow:

φ(x) = P

2βEI
(1 + sinhλx − coshλx − sinhλx

sinh (λL/2)
) (39)

w(x) = PL3

48EI
(3x

2

L2
− 4x

3

L3
) + 3

5

PL

GA
(x
L
+ coshλx − sinhλx − 1

λL
) (40)

The maximum transverse displacement at center of the beam (x = L/2) obtained from

Eqn. (40) is

w (L/2) = PL3

192EI
[1 + 9.6 (1 + µ) h

2

L2
] (41)

While obtaining the expressions for maximum transverse displacement (deflection) in the

above examples it is observed that the quantity λL is very large and therefore tanhλL ≃ 1,

1/λL ≃ 1/ (λL)2 ≃ 0 and sinhλL ≃ coshλL. For problems of practical interest this is a very

good approximation.

4 RESULTS

In expressions of maximum transverse displacement the first term in the bracket is the dis-

placement contribution according to the classical Bernoulli-Euler beam theory and the second

term represents the effect of transverse shear deformation. These expressions can be written

in the generalized form as follows:

w = wC [1 +wS (1 + µ) (
h

L
)
2

] (42)

In the above equation wc is the transverse displacement according to the classical Bernoulli-

Euler beam theory and ws is the proportionality constant due to transverse shear deformation

effect. In Tables 1 through 3 the values of ws for different beam problems are compared with

those of other refined theories.
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Table 1 Values of proportionality constant (ws) for simply supported beams.

Source Model Uniform Load
Concentrated

Load

Present HPSDT 1.92 2.4

Timoshenko [14] FSDT 1.92 2.4

Levinson [11] HSDT 1.92 —

Bhimaraddi and Chandrashekhara [2] PSDT 1.92 —

Ghugal and Nakhate [5] TSDT 1.92 2.4

Timoshenko and Goodier [16] Exact 1.93846 —

Table 2 Values of proportionality constant (ws) for cantilever beams.

Source Model Uniform Load
Concentrated

Load

Present HPSDT 0.8 0.6

Timoshenko [14] FSDT 0.8 0.6

Levinson [11] HSDT 1.2 0.75

Bhimaraddi and Chandrashekhara [2] PSDT 0.8 0.6

Ghugal and Nakhate [5] TSDT 0.8 0.6

Timoshenko and Goodier [16] Exact — 0.75

Venkatraman and Patel [17] Exact 0.68 —

Table 3 Values of proportionality constant (ws) for fixed-fixed beams.

Source Model Uniform Load
Concentrated

Load

Present HPSDT 9.6 9.6

Timoshenko [14] FSDT 9.6 9.6

Levinson [11] HSDT 12.0 —

Bhimaraddi and Chandrashekhara [2] PSDT 9.6 —

Ghugal and Nakhate [5] TSDT 9.6 9.6

The numerical results shown in Table 1 for simply supported beam with uniform load

and concentrated load indicate that the results of proportionality constant (ws) due to shear

deformation effect according to present theory (HPSDT) are identical to those of beam theories

of Timoshenko (FSDT), Levinson (HSDT), Bhimaraddi and Chandrashekhara (PSDT), and

Ghugal and Nakhate (TSDT). The results of these theories are closed to exact value in case

of simply supported beam with uniform load. In case of cantilever and fixed-fixed beams

with uniform load Levinson’s variationally inconsistent beam theory yields higher values of ws
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than those obtained by present theory and other refined theories as shown in Tables 2 and 3.

However, for cantilever beam with concentrated load Levinson’s theory gives the exact value

of this constant (see Table 2). In case of beam with both the ends fixed, it is observed that

the constant of proportionality due to shear deformation is independent of loading conditions.

5 CONCLUSIONS

In this paper a hyperbolic shear deformation theory has been used to obtain the bending

solutions for thick homogeneous, isotropic, statically determinate and indeterminate beams.

General solutions for the transverse displacement and rotation are presented for transversely

loaded beams with various end conditions. Expressions for maximum transverse displacements

are deduced from the general solutions of the thick beams. The effect of transverse shear

deformation on the bending solutions of thick beams can be readily observed from the analytical

expressions presented for the transverse displacement. The values of transverse displacement

contribution (ws) due to transverse shear deformation effect obtained by present theory are

found to be identical to those of first order shear deformation theory of Timoshenko with the

shear correction factor equal to 5/6. The present theory requires no shear correction factor.

The accuracy of present theory is verified by comparing the results of other refined theories

and the exact theory.
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APPENDIX

The constants A0, B0 and C0 appeared in governing equations (7) and (8) and boundary

conditions given by equations (9) – (11) are as follows:

A0 = cosh(
1

2
) − 12 [cosh(1

2
) − 2 sinh(1

2
)]

B0 = cosh2 (
1

2
) + 6 [sinh (1) − 1] − 24 cosh(1

2
) [cosh(1

2
) − 2 sinh(1

2
)]

C0 = cosh2 (
1

2
) + (1

2
) [sinh (1) + 1] − 4 cosh(1

2
) sinh(1

2
)

The constants α, β and λ appeared in Eqns. (13) and (14) are as follows:

α = B0

A0
−A0, β = GAC0

EIA0
, λ2 = β

α
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