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Abstract: Site-dependent effects are now the key factors that restrict the high accuracy applications of

Global Navigation Satellite System (GNSS) technology, such as deformation monitoring. To reduce

the effects of non-line-of-sight (NLOS) signal and multipath, methods and models applied to both

of the function model and stochastic model of least-squares (LS) have been proposed. However,

the existing methods and models may not be convenient to use and not be appropriate to all GNSS

satellites. In this study, the SNR features of GPS and GLONASS are analyzed first, and a refined

SNR based stochastic model is proposed, in which the links between carrier phase precision and

SNR observation have been reasonably established. Compared with the existing models, the refined

model in this paper could be used in real-time and the carrier phase precision could be reasonably

shown with the SNR data. More importantly, it is applicable to all GNSS satellite systems. Based on

this model, the site observation environment can be assessed in advance to show the obstruction area.

With a bridge deformation monitoring platform, the performance of this model was tested in the

aspect of integer ambiguity resolution and data processing. The results show that, compared with the

existing stochastic models, this model could have the highest integer ambiguity resolution success

rate and the lowest noise level in the data processing time series with obvious obstruction beside

the site.

Keywords: site-dependent effects; SNR based stochastic model; GPS/GLONASS; ambiguity resolution;

noise reduction

1. Introduction

Global Navigation Satellite Systems (GNSS) are now gradually recognized as an essential tool in

every aspect of geodesy and geodynamics. Especially in the application of high precision deformation

monitoring, the relative double differential positioning technology with short baselines is widely

applied, due to the advantages of eliminating satellite orbits errors, receiver and satellite clock offsets,

and of reducing ionosphere and troposphere delays. Furthermore, it is also a relatively easy way to

process the data compared with the long baseline data processing. The benefits make the short baseline

double difference (DD) mode to be an ideal method in the engineering application. Generally, in an

open viewing environment, the precision of millimeter level in horizontal directions and centimeter to

sub-centimeter level in vertical component could be achieved regardless of a static or kinematic mode

with multiple GNSS (Multi-GNSS) phase observations [1–4]. However, in the deformation monitoring

application, the monitoring stations are mounted on the targeted objects. GNSS signals are inevitably

sheltered or reflected by obstructions, such as bridge towers, cables and vehicles on a bridge, and each
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station has a specific observation situation [5,6]. From the literature review, we know that the signal

obstruction can mainly cause three essential problems. They are, (1) multipath effects from signal

reflection, (2) signal diffractions and (3) the satellite geometry strength reduction. The paper calls these

problems uniformly as site-dependent effects [6,7]. Since the site-dependent effect is related to the

observation environment at each station, it cannot be eliminated by double differencing so as to be an

unresolved problem in the short baseline data processing [7,8].

The GNSS carrier-phase observations are generally resolved by means of least-squares (LS) method.

However, only if both of the function model and stochastic model are realistic, can the unknown

parameters be precisely estimated [9–11]. In the data processing, the function model describes the

mathematical relationship between the unknown parameters and the GNSS phase observations. The

aim of stochastic model is to describe the a priori statistical properties of the observations with an

appropriately defined variance-covariance matrix [7,12]. As for the site-dependent error, a variety

of eliminating methods have been proposed in the aspects of functional and stochastic models by

many studies.

In the functional model, the methods can be divided into three categories. Firstly, it will be

the spatial or temporal repeatability-based sidereal filters. The constellations of GNSS satellites are

repeated, and the repeat periods are differed from different GNSS systems. The temporal sidereal

filter is based on the repeat time, which could be calculated in advance, and generates the multipath

correction model for real-time GNSS data processing [13–19]. In the multipath modelling process,

Wavelet [20–22], Adaptive filter [23] and Vondrak filter [24] could be applied. Alternatively, the spatial

repeatability-based model is based on the fact that the multipath relies on the orbital position in

the sky [8,25,26]. The multipath model could be generated as the function of satellite elevation and

azimuth angle. Secondly, the Signal-to-Noise Ratio (SNR) data could be applied to model the multipath

effects. SNR is a measurement in GNSS raw data to express the signal power [27]. The reflection and

diffraction signals from an obstruction could have a low or high frequency fluctuation in the SNR

time series. Thus, the multipath or diffraction signals can be extracted from SNR time series with

spectrum analyzing methods [28,29]. Similarly, a spatial or temporal model can also be built. In the

third category, three-dimensional (3D) maps [30,31], Ray-Tracing technology [32], a terrestrial laser

scanner (TLS) or SNR data [7,33–36] could be used to recognize and exclude the non-line-of-sight

signals (NLOS). All the methods stated here may have a good performance in a specific application.

However, they may have drawbacks, such as complex implementations, inadequate resolutions and

inapplicability to routine surveying tasks.

As for the stochastic model related method, the SNR measurements are often used to weight the

one-way carrier phase observations. As previously mentioned, the SNR measurements can express the

signal quality. The SNR based stochastic model will be more reasonable than the elevation-dependent

weighting model. Brunner et al., Wieser and Brunner and Luo et al. have all explored the SNR

based models [12,27,37]. The experiments confirmed that these methods can effectively reduce the

multipath effect, improve the ambiguity resolution (AR) success rate and enhance the repeatability of

site coordinates [9,12,27]. However, these studies only focus on the functional relationship between

the satellite elevation and SNR data. The relationship between the precision of raw observation and

SNR data is rarely studied. Meanwhile, more GNSS systems, such as GLObalnaya NAvigazionnaya

Sputniovaya Sistema (GLONASS), BeiDou Navigation Satellite System (BDS) and Galileo, are available

now to provide positioning, navigation and timing (PNT) services. The GPS related formulates may

not be feasible to other systems.

Under such cases, a refined SNR based stochastic model, which is applicable to any GNSS system,

is proposed to deal with the site-specific errors. At the beginning, the relationship between SNR

time series of GPS and GLONASS with elevation and precision of carrier phase is studied based on

the GeoSHM (GNSS and Earth Observation for Structural Health Monitoring of Bridges) platform.

Then, the stochastic modelling method is introduced. In the end, the performance of the new SNR
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based stochastic model used in observation environment assessment and in ambiguity resolution and

positioning is analyzed.

In Section 2, the experiment data used in the paper from the GeoSHM platform is introduced

first for the beneficial of understanding the refined model and the following experiments. In Section 3,

we compare and discuss the features of GPS and GLONASS SNR data and describe the method of

refining the SNR based stochastic model. In Section 4, several experiments are carried out to show the

effectiveness of the refined model in observation evaluation and data processing. A discussion will be

shown in Section 5, and Section 6 gives the conclusions about this paper.

2. Data Description

The experiment data are from GeoSHM, which is a project hosted by the University of Nottingham,

Ubipos UK Ltd. and other partners under the sponsorship from European Space Agency (ESA) [2].

The aim of the project is to study and develop a stable and reliable bridge health monitoring system

with the integration of multiple sensors, such as GNSS, Inertial Navigation System (INS) and Earth

Observation (EO), and realize the real time monitoring and assessment of bridges. The layout of the

system is shown in Figure 1. Up to date, the Feasibility Study and Demonstration development stages

have completed, and the system has been used in Forth Road Bridge in the UK and two Yangtze River

bridges in China.

 

 

Figure 1. Layout of the GeoSHM system.

The data source used in this paper is collected from the GeoSHM system, including the receiver

testing bed on the roof of the Nottingham Geospatial Building on the Jubilee Campus of the University

of Nottingham, UK and the real-life bridge monitoring on the Forth Road Bridge (FRB) in Scotland, UK.

The stations’ setup of receiver testing bed is shown in Figure 2. A Leica GM30 receiver is set as a

reference station (SHM7). Two Leica GM30 (SHM5, SHM6) and two PANDA TI4100 (SHM8, SHM9)
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receivers are connected to one antenna as a monitoring station. More detailed information can be seen

in Xi et al. [38]. Xi et al. have used the data set to estimate the precision of raw phase observations and

refined the elevation dependent stochastic model. In this paper, as a follow-up research, the features of

SNR data of GPS and GLONASS, and the functional relationship between SNR and phase precision is

further studied in Section 3. Only the data collected from LEICA receivers will be used in this paper

and the receivers were set to collect GPS and GLONASS data. The data were collected for two days

(48 h) with a sampling interval of 1 s. The cutoff elevation was set to 10◦.
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Figure 2. Receiver testing bed of GeoSHM system.

On the Forth Road Bridge, four stations in the GeoSHM system will be selected to do the test.

Among the stations, SHM1 is the reference station, which is mounted at the roof of the bridge control

room. SHM2 and SHM3 are two monitoring stations on both sides of the middle span, and SHM4 is

the one sitting on the top of the southwest tower of the Forth Road Bridge (FRB) [2]. All stations are

equipped with a LEICA GM30 receiver and a LEIAR 10 antenna (same with the receiver testing bed).

Sampling rate is set to 10 Hz. Figure 3 depicts the landscape of the FRB, the locations of stations on the

FRB and the baseline lengths, and the observation environment of the stations.
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Figure 3. (a) The landscape of FRB, (b) antenna setting-ups on the Forth Road Bridge and the baseline

lengths and (c) the observation environment of the stations.

3. The Refined SNR Based Stochastic Modelling Method

3.1. GPS/GLONASS SNR Measurements Analysis

Before the stochastic modelling, features of the SNR measurement of GPS and GLONASS should

be analyzed first and the regularity with the variance of satellite elevation and phase precision should

also be tested.

Figure 4 shows the averaged GPS and GLONASS SNR measurements in 22 January 2017. One

can observe that all the GPS satellites share a same feature that the L1 SNR is 5 to 10 dB higher than the

L2 counterpart. The differences between satellites are within 8 dB. For GLONASS satellites, except for
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several satellites whose L2 SNR data is obviously lower than the L1, the two frequencies show the

nearly same pattern of the averaged SNR value. However, a large distinction may be seen between

different satellites.

 

 
Figure 4. Mean value of GPS and GLONASS SNR measurements in site SHM5 for 22 January 2017

(DOY = 22).

Figures 5 and 6 are the SNR time series versus the variation of satellite elevation for site SHM5

and SHM7. In the figures, different colors denote the individual satellites, and every dot indicates

the averaged SNR value within one degree of elevation. It can be seen that, except for some slightly

detailed differences, two stations have a similar feature in the SNR time series. Therefore, for the same

type of GNSS receivers, they should have almost the same data collection performance under a similar

observation condition.

In addition, it is interesting that GPS satellites have a coincident fluctuation feature; however,

different patterns were separately shown for GLONASS satellites in dual-frequency signals. However,

their elevation dependent features were similar. Then, we gave the precision of carrier phase

observations with the variance of elevation in Figure 7. The precision estimation approach is shown

in Xi et al. 2018b [38]. We can observe from Figure 7 that the GPS and GLONASS phase observation

precision is elevation dependent and no obvious different patterns are shown in GLONASS phase

precision. Therefore, we may conclude that the absolute SNR value may not be appropriate to give

weight for the one-way observation directly with a formula as Hartinger and Brunner (1999) [37].
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Figure 5. GPS and GLONASS SNR average value within one elevation versus elevations at site SHM5.
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Figure 6. GPS and GLONASS SNR average value within one elevation versus elevations at site SHM7.
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Figure 7. Phase precision estimation of every one-degree elevation for GPS and GLONASS.

3.2. The Refined SNR Based Stochastic Model

As previously mentioned, the absolute SNR value may not be properly used to weight GNSS

phase observations, and the SNR time series is elevation dependent. Hence, we firstly normalize

the SNR observations to range from zero to one. This process can eliminate the different patterns

phenomenon in GLONASS system. Although there are no different patterns in GPS, the normalization

approach is also appropriate for GPS. The normalization process can be written as:

x′ =
x− xmin

xmax − xmin
(1)

where x′ is the normalized SNR value; x is the measured SNR value; xmin and xmax are the minimum

and maximum value, respectively, in Figures 5 and 6. The normalized SNR value for SHM5 is shown

in Figure 8.

From the figure, the normalized SNR tend to approach to the maximum value at around 50 degree

of elevation. The values lower than 50 would have a liner trend feature. As for the GLONASS system,

the normalized dual-frequency SNR data from different satellites gather together and toward to a

similar trend. This demonstrates that different GLONASS satellites’ antenna gain against the satellite

elevation may be different from each other, however, the variation of SNR along with the elevation

variation tend to have a same pattern.

We also calculate the mean value of normalized SNR from all GPS and GLONASS satellites in

the dual-frequency band (Figure 9). The sample of elevation is one degree. Under such cases, GPS

and GLONASS have a same SNR variation trend against the elevation. However, when the elevation

is in the range of 40 to 70, the averaged normalized SNR of GPS L2 is slightly lower than other

satellite signals.
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Figure 8. The normalized SNR time series for SHM5.
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Figure 9. The mean value of normalized SNR of all satellites for one elevation in dual-frequency GPS

and GLONASS.

As proposed by Xi et al., Li et al. (2015) [10,38], the elevation-dependent precision of GNSS carrier

phase observations can be fitted with an exponential or sinusoidal type of predefined function of

elevation. Similar to this theory, the exponential type function was applied to fit the normalized SNR:

x′f it = c0 + c1 × exp(−θ/θ0) (2)

where x′
f it

is the fitted normalized SNR value and c0, c1 and θ0 are the fitting parameters. Figure 10

shows the normalized SNR data and their fitted models. In the figure, the carrier phase precision
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estimation is also shown to illustrate the links between SNR data and precision estimations. It shows

that the exponential function model fits the time series well. With the increase of elevation, the

normalized SNR grows up steady and the observation precision increases gradually, and the two

lines intersect at around 25◦ for all types of observations. Furthermore, an inversely proportional

relationship can be observed from these figures. Therefore, the paper treats elevation as an index to

align the normalized SNR data (as x-axis) and the observation precisions (as y-axis), in which the

estimates (blue points) and modelling results (green points) are displayed (in Figure 11).

 

0 1 0exp( / )

0 1 0

 
Figure 10. The estimated elevation-dependent precisions in Xi et al. and normalized SNR data, and

their modelling with the exponential type predefined models.

 

max min

max min

max

min

Figure 11. The functional relationship between normalized SNR data and the precision of

phase observations.
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One can clearly observe a linear relation between the normalized SNR data and the precision

of phase observations in dual-frequency observations of GPS and GLONASS. Then, the coefficients

are resolved with a linear least-squares method, and the fitting model and the linear equations are

also shown in Figure 11. In this case, the linear model shown in Figure 11 could be used as a refined

SNR-based stochastic model to weight the phase observations.

3.3. The Flow Chart of the Refined SNR Based Stochastic Model and the Application Strategy

As previously mentioned, the precision of phase observations and the normalized SNR data

should be linked in advance. The GNSS carrier phase precision estimation and the elevation related

model can be built with the approach proposed by Xi et al. [38]. The interval is in the unit of one

degree. For the SNR sub-step, we need to record and average the SNR observations each elevation

angle of 1◦, and obtain the maximum and minimum values xmax and xmin (Figures 5 and 6). Then,

the averaged SNR observations of each elevation angle of 1◦ can be normalized with Equation (1).

Therefore, the elevation related feature of the normalized SNR can be obtained (Figure 8). Finally, we

treat elevations as an index to align the normalized SNR data (as x-axis) and the observation precisions

(as y-axis) (Figure 10), and a linear least-squares method is applied to fit the model (Figure 11). It

should be noted that the model is only applicable for the same type of receivers.

In the GNSS data processing, when we get the SNR observations, it should be normalized by

Equation (1) with the recorded xmax and xmin. Then, the phase observation precision can be obtained

by substituting the normalized SNR into the linear stochastic model. If the practical SNR is larger than

xmax, the highest precision will be given. However, if the practical SNR is lower than xmin, the output

precision may be used, or the observation of this satellite would be moved out directly due to the

unreliable quality of this observation. Therefore, we can understand that, if the pre-prepared model is

established for a specialized receiver, it can be used in real-time mode of data processing.

4. Experiments and Results

4.1. Assessment of Station Observation Environment

Before the data processing, SNR observations are often used to assess the observation environment

of stations. Figure 12 shows a one-day SNR related sky-plot of GPS and GLONASS satellites at station

SHM5 (22 January 2017). The color demonstrates the raw SNR observations from a GNSS receiver. It is

clearly shown that, for the L1 phase observation, the SNR is elevation related, and the value is larger

than 46 dB-Hz for the elevation higher than 45◦. Then, it begins to reduce with the declining elevation.

However, several satellites have a lower SNR value for the whole session. For the L2 phase observation,

the SNR value is clearly lower than L1. Though the elevation dependent feature is noticeable, it shows

a large difference between different satellites. In this case, it is difficult to distinguish the orientations

of the disturbed signals.

Figure 13 shows the phase precision related sky-plot of GPS and GLONASS at SHM5. The phase

precision is the output of the linear stochastic model previously built when the observed SNR value

shown in Figure 12 is as the input. From Figure 13, the elevation dependent feature of the phase

precision can be clearly noticed no matter for L1 and L2 observations. Mostly, the precision is better

than 6 mm for the open viewing observation environment. Only the observations whose elevations

are lower as to 10◦ show a low precision, and the numbered 1-4 cycles show the orientations with a

lower precision.
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Figure 12. SNR-based sky-plot of GPS and GLONASS at SHM5.

 

 

Figure 13. Carrier phase precision (mm) related sky-plot of GPS and GLONASS at SHM5.

Figure 14 gives the realistic observation condition for SHM5. It shows the potential obstructions

whose heights are slightly higher than the station, which has been numbered 1–4. Compared with

Figure 13, the precision decreases in Figure 13 are basically caused by the obstructions. Especially for

the hollowed-out architecture in position 2, GNSS signals passing through it can cause serious signal

diffraction, which may reduce the phase precision to lower than 10 mm.
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Figure 14. The observation environment for SHM5.

4.2. Bridge Monitoring Experiment Analysis

An experiment is carried out on the Forth Road Bridge in Scotland. The data were collected on

6 January 2018. Based on the SNR observation data, the refined SNR-based stochastic model built

previously is applied to plot the precision sky-plot in Figure 15. Compared with Figure 13, the L1

precision sky-plot of stations on the bridge are mostly same as SHM5 in Figure 13. However, it is

significantly worse for the L2 precisions than for SHM5. This may be because the L2 signal is easily

influenced by the multipath effect from water surface or obstructions. In addition, from the precision

sky-plot, one can easily identify the obstructed orientations for the station. It shows that the data

of east side of SHM1 and southeast side of SHM4 is contaminated by the multipath or obstructions.

The precision of L1 signal is around 9–10 mm, which is significantly lower than the regular quality

ones for 4–5 mm. Therefore, if the elevation dependent stochastic model was applied, the weight of

GNSS observations could not be reasonably given, which may have an adverse effect for the ambiguity

resolution and positioning.
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4.3. Ambiguity Resolution Performance Analysis

In this section, we process the baseline SHM1-SHM2 and SHM1-SHM4 of GPS and GLONASS

data to analyze the single epoch ambiguity resolution performance in a real-time mode. Due to that

SHM2 and SHM3 share a similar observation condition, the results in SHM3 will not be shown in the

following statements. The data processing software was home-developed and supports integration

processing of GPS/GLONASS data. The processing configurations and strategies can be found in

Xi et al. [38]. For the comparing purpose, four observation weighting schemes will be applied in the

data processing are shown in Table 1.

Table 1. Four weighting models and formulas.

Model Names Weighting Strategies

EEM (Elevation Empirical Model) σ j =
√

a2 + b2/ sin2(θ), a = b = 3 mm [39–41]

ERM (Elevation Refined Model) σ j = c0, j + c1, j × exp(−θ/θ0, j) [38]

SEM (SNR Empirical Model) σ j =

√

C j·10
−(xS

ij
/10)

[42]

SRM (SNR Refined Model)



















σ j = α
S
j
·x′Sij + β

S
j

x′Sij =
xS

ij
−xS

min,i j

xS
max,i j

−xS
min,i j

(Figure 4)

In Table 1, σ is the standard deviation of the undifferenced carrier phase observations. j denotes

the frequency number ( j = 1, 2). The EEM model is the widely used empirical elevation model in GNSS

data processing [39–41]. a and b are the parameters and θ is the elevation. The ERM is the model

established in Xi et al. [38], which is a refined elevation model established for the GeoSHM project.

The parameters of ERM have the same meaning as Equation (2) and the estimations can also be found

in Xi et al. [38]. The SEM model is the first SNR-based stochastic model proposed by Brunner et al.

(1997) [27], and the parameter C j is from Dai et al. (1998) [42]. The SRM model is the refined SNR based

stochastic model proposed in this paper and the coefficients α and β are shown in Figure 11. S indicates

the GPS (G) or GLONASS (R), and i indicates the PRN number of GPS (i = 1~32) and GLONASS

(i = 1~24). x and x′ represent the raw SNR observations and the normalized ones, respectively. Since

the sampling rate is high, we applied the TEQC software to resample the GNSS data into 15 s for

each station.

In the data processing procedure, the ambiguity parameters of L1 and L2 will be reformed into

wide-lane (WL) ambiguity and be searched with the LAMBDA (Least-squares ambiguity decorrelation

adjustment) method first. If the WL ambiguity is successfully fixed, the L1 ambiguity parameter (NL)

then will be searched by LAMBDA. From the long-term data processing experience, the ratio value

could be set to 1.8 for the validation.

Figure 16 shows the single epoch WL ambiguity resolution success rate with different ratio values

for the schemes listed in Table 1. Firstly, it should be noted that the ambiguities cannot be fixed in

the whole section for the SEM model. This is most likely because the parameters of SEM model are

not appropriate for GLONASS data. Thus, only EEM, ERM and SRM results are shown in Figure 16.

From the figure, the SRM model always shows a better performance than the ERM and EEM model

for the two baselines. Due to the better observation environment of SHM2, the ASR (Ambiguity

Successful-fixed Rate) can even reach up to 100% when the ratio value is set to 2, and it can still

achieve to over 70% at the ratio of 6. Compared with the ERM model, the SRM model has only a small

advantage. However, for SHM4, when the obvious obstructions exist around the station, the SRM

model shows a much better result compared with EEM and ERM models. When the ratio value is set

to 2, the ASR can still reach to 95%, while the ASR decreases dramatically when increasing the ratio

value. In this case, it is found that the refined elevation model and the SNR-based stochastic model

would have a same performance in ambiguity resolution for the open viewing stations. However, the

refined SNR-based model is superior under the obstructed environment.
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Figure 16. Success rate of WL ambiguity resolution for schemes of EEM, ERM and SRM.

After fixing the WL ambiguity, Table 2 shows the ASR of NL ambiguity resolution when the

ratio is set to 2. The three models show the same performance on NL ambiguity resolution at each

station. However, the ASR of SHM2 is much better than that of SHM4. This is still because of the less

obstructions around SHM2.

Table 2. ASR of Narrow-lane ambiguity resolution.

Station and Model ASR for All Epochs (%)
ASR with Fixed WL

Epochs (%)
Correctly-Fixed Rate

(%)

SHM2 EEM 99.13 99.65 100
SHM2 ERM 99.57 99.76 100
SHM2 SRM 99.64 99.77 100
SHM4 EEM 85.97 91.93 100
SHM4 ERM 90.33 92.45 100
SHM4 SRM 91.15 91.99 100

4.4. The Positioning Performance Analysis

It is well known that the stochastic model is mainly used to weight the observations. It may

influence the noise level in the deformation time series to some extent. Therefore, we process the

GPS/GLONASS data of baselines SHM1-SHM2 and SHM1-SHM4 on 6 January 2018. The sampling

rate is 15 s. The four stochastic models are applied, respectively, to compare the performances. In

the data processing procedure, when the ambiguities are fixed successfully, they will be kept to the

next epochs until the cycle slip occurred. To make SEM model available, the correct ambiguities will

be used as inputs in the data processing. The deformation time series and corresponding FFT (Fast

Fourier Transform) analysis results are shown in Figures 17 and 18. It should be noted that the time

series shown in the figures are the movements of the bridge under wind, traffic loadings etc.
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Figure 17. Deformation monitoring time series of SHM2.

 

 

 
Figure 18. Deformation monitoring time series of SHM4.
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From Figure 17 except for the SEM model, the other three models generate almost the same time

series and the FFT spectral results are overlapped together. Again, possibly due to the inappropriate

parameters of model the SEM counterpart shows a high noise level. For SHM4, it is clearly noticed that

the EEM, ERM and SRM produce the same time series, and SEM has a severe turbulence. From the FFT

spectral results, the elevation related (EEM and ERM) and SNR-based (SEM and SRM) models show a

quite different feature. The noise level of the results from EEM and ERM models are much higher than

SEM and SRM models at the high frequency band (higher than 0.005 Hz). The severe turbulence in the

result of SEM model results in a high-level noise in the low frequency band (lower than 0.0001 Hz).

SRM model always shows the best results. That means, the refined SNR-based model can reasonably

weight GNSS observations under obstruction conditions, which would be a great benefit for the mode

parameters estimation.

5. Discussion

The refined SNR stochastic model proposed in this paper is based only on GPS and GLONASS.

However, the modelling method is applicable of any other GNSS satellite systems. More studies need

to be carried out to see the features of SNR data for other GNSS systems. In addition, the model

proposed is also compared with the existing models in Table 1 with the high-rate observations (e.g.,

10 Hz). However, no obvious difference can be seen from the high-rate displacement time series and

the FFT results. Possibly, the reason is that only a few satellites are affected by the obstructions within

a short period and the multipath effects could be distributed in the adjustment. Thus, the weighting

performance is only shown in the low-level sampling rate data. More experiments and analysis are

needed in the future to cope with the high-rate observation weighting. However, the model proposed

would be more applicable to the long-term monitoring data analysis and can be used in the aspect of

real-time multipath eliminating, which will also be tested and demonstrated in the future.

6. Conclusions

In this study, a refined SNR based stochastic model is proposed to weight the GNSS observations

taking according of site-specific effects. The elevation dependent feature of GPS and GLONASS SNR

measurements is firstly studied, and the links of SNR measurements and phase precision are analyzed.

Some useful conclusions are listed as follows:

1. Obvious different patterns can be observed in the GLONASS elevation-dependent SNR time series

of Leica receivers. However, the phase precision has no different pattern features. That means the

values of GLONASS SNR data cannot be applied to weight the phase observation directly.

2. A normalized method is proposed to process the GNSS SNR data and a linear relationship

between the normalized SNR data and the precision of phase observations in dual-frequency

observations of GPS and GLONASS system can be observed for LEICA receivers. Hence, a linear

SNR based stochastic model can be established, which is appropriate to show a precision sky-plot

for assessing the site observation environment.

3. Compared with the empirical elevation and SNR dependent stochastic models, and even the

realistic elevation model, the refined SNR based stochastic model proposed in this paper shows

the highest integer ambiguity resolution success rate in the data processing. The noise level in the

data processing time series caused by obstructions can be significantly reduced with the proposed

stochastic model.
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