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A refinement of the abc conjecture
by

O. Robert, C.L. Stewart* and G. Tenenbaum

Abstract. Based on recent work, by the first and third authors, on the distribution
of the squarefree kernel of an integer, we present precise refinements of the famous
abc conjecture. These rest on the sole heuristic assumption that, whenever a and b

are coprime, then the kernels of a, b and c = a + b are statistically independent.

Classification AMS: Primary: 11N25, 11D99, Secondary: 11N56.

1. Introduction

For any non-zero integer n let k(n) denote the greatest squarefree factor of n, so that

k(n) =
Y

p|n

p.

k(n) is also called the core, the squarefree kernel and the radical of n. The abc conjecture,
proposed by Oesterlé and Masser [9], is the conjecture that for each ε > 0 there exists a
positive number A0(ε) such that for any pair (a, b) of distinct coprime positive integers

(1·1) c < A0(ε)k
1+ε,

where

(1·2) c = a + b and k = k(abc).

The conjecture has a number of profound consequences [3], [8], [10], in particular in the
study of Diophantine equations.

An explicit upper bound for c in terms of k was first established by Stewart and
Tijdeman [16] in 1986. Subsequently Stewart and Yu [17] proved that there is an effectively
computable positive number A1 such that for all pairs (a, b) of coprime positive integers

c < exp
�

A1k
1/3(log k)3

 

.

Several refinements or modifications to the abc conjecture have been put forward [1],
[2], [11], [4], [5], [6]. For instance, van Frankenhuijsen, see (1.4) and (1.5) of [5], proposed
that there exist positive numbers A2 and A3 so that (1·1) may be replaced by

(1·3) c < k exp
�

A2

p

log k/ log2 k
�

and that there exist infinitely many pairs (a, b) of distinct coprime positive integers for
which

(1·4) c > k exp
�

A3

p

log k/ log2 k
�

.

Here and in the sequel, we let logj denote for j > 2 the jth iterate of the function
x 7! max(1, log x) (x > 0).

The purpose of this article is to provide a refinement which is more precise than those
proposed previously. It is based on the recent work of Robert and Tenenbaum [13] on the
function N(x, y) which counts the number of positive integers n up to x whose greatest
squarefree divisor is at most y. We shall base our conjecture on the heuristic assumption
that whenever a and b are coprime positive integers k(a + b) is statistically independent
of k(a) and k(b). This is the only assumption that we require.

* The research of the second author is supported in part by the Canada Research Chairs Program
and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.
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Conjecture A. There exists a real number C1 such that, if a and b are coprime positive

integers, then, with c and k as in (1·2),

(1·5) c < k exp

 

4

s

3 log k

log2 k

✓

1 +
log3 k

2 log2 k
+

C1

log2 k

◆

!

.

Furthermore, there exists a real number C2 and infinitely many pairs of coprime positive

integers a and b for which

(1·6) c > k exp

 

4

s

3 log k

log2 k

✓

1 +
log3 k

2 log2 k
+

C2

log2 k

◆

!

.

We remark that it follows from Conjecture A that for each ε > 0, we can select
A2 = 4

p
3 + ε in (1·3) for large k, and A3 = 4

p
3 − ε in (1·4).

There have been several computational studies undertaken in order to test the plausibil-
ity of the abc conjecture. The most extensive is Reken mee met ABC [12],[7] based at the
Universiteit Leiden. It is a distributed computing program involving many individuals.
Associated with each triple (a, b, c) of coprime positive integers with a + b = c are two
quantities, the quality q defined by

q = (log c)/ log k

and the merit m defined by

m = (q − 1)2(log k) log2 k.

B. de Smit maintains a website [14] to keep track of exceptional triples, measured by the
sizes of their quality and merit, which have been found by virtue of the above project.The
largest known quality of a triple is ⇡ 1.63 and the five triples known with quality larger
than 1.55 have c at most 1016. It follows from Conjecture A that the limit supremum
of m as we range over all pairs (a, b) of distinct coprime positive integers is 48. To date
nineteen triples have been found with merit larger than 30, each with c at least 1020, and
eighty-three with merit larger than 25. The triple with largest known merit was found by
Ralf Bonse. It is

a = 25434 · 182587 · 2802983 · 85813163, b = 215 · 377 · 11 · 173, c = 556 · 245983,

and has merit ⇡ 38.67.

In [16] Stewart and Tijdeman proved that for each positive real number ε there exist
infinitely many pairs (a, b) of coprime positive integers for which

(1·7) c > k exp
�

(4 − ε)
p

log k/ log2 k
 

.

Subsequently, van Frankenhuijsen [5] improved 4 − ε in (1·7) to 6.068.
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2. Further refinements of Conjecture A

Conjecture A is based on our heuristic assumption, recall §1, and a careful analysis of
the behaviour of the function N(x, y) which counts the number of positive integers n up
to x for which k(n) is at most y. Thus

(2·1) N(x, y) :=
X

n6x
k(n)6y

1.

Set

(2·2) ψ(m) :=
Y

p|m

(p + 1) (m > 1), F (t) :=
6

π2

X

m>1

min(1, et/m)

ψ(m)
(t > 0).

As stated below (see Proposition 3.1), we have N(x, y) ⇠ yF (v) with v := log(x/y) in a
wide range for the pair (x, y).

It was announced in Squalli’s doctoral dissertation [15] and proved in [13] that there
exists a sequence of polynomials {Qj}

1

j=1 with deg Qj 6 j, such that, for any integer
N > 1,

(2·3) F (t) = exp

⇢
r

8t

log t

✓

1 +
X

16j6N

Qj(log2 t)

(log t)j
+ ON

✓

⇣ log2 t

log t

⌘N+1
◆◆�

(t > 3).

In particular,

Q1(X) := 1
2X− 1

2 log 2+1, Q2(X) := 3
8X2 +(1− 3

4 log 2)X +2+ 2
3π2 + 3

8 (log 2)2− log 2.

The following version of the conjecture, which is expressed in terms of the function F , is
slightly more precise than Conjecture A. Indeed, it corresponds to the extra information
that, for large k, we have

(2·4) max(C1, C2) < λ := 1 − 1
2 log(4

3 ).

Conjecture B. There exist positive numbers B0 and B1 such that if a and b are coprime

positive integers, then, with c and k as in (1·2),

(2·5) c < B0kF
�

2
3 log k

�3−B1/ log2 k
.

Furthermore, there exists a positive number B2 and infinitely many pairs (a, b) of distinct

coprime positive integers with

(2·6) c > kF
�

2
3 log k

�3−B2/ log2 k
.

To see that the two conjectures are equivalent provided one assumes (2·4), it suffices to
appeal to (2·3) taking the form of Q1 into account. Condition (2·4) corresponds to the
condition that B1 and B2 are positive.

As will be seen in the final section, Conjecture B is itself a consequence of a further
refined conjecture, involving the implicit function H(k) defined in (4·6) below in terms of
solutions of certain transcendental equations. Using techniques developed in [13], it may
be shown that, for any fixed integer J , we have

(2·7) log H(k) = −
s

log k

log2 k

(

X

16j6J

Rj(log3 k)

(log2 k)j
+ O

 

✓

log3 k

log2 k

◆J+1
!)

(k ! 1)

where Rj is a polynomial of degree at most j. In particular, R1(X) = 8(log 2)/
p

3 is a
positive constant.
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Conjecture C. Let ε > 0. There exists a positive number B3 = B3(ε) such that, if a and

b are coprime positive integers, then, with c and k as in (1·2), we have

(2·8) c 6 B3kF (2
3 log k)3H(k)(log k)11/2+ε.

Furthermore, infinitely many such pairs (a, b) satisfy

(2·9) c > kF (2
3 log k)3H(k)/(log k)3/2+ε

Remarks. (i) We did not try to optimize the exponents of the log-factors in (2·8) and (2·9).
(ii) It follows from Conjecture C and the value of R1 given above that, given any ε > 0,

we may select B1 = log 4− ε, B2 = log 4+ ε in Conjecture B, and C1 = β + ε, C2 = β− ε,
where β := 1 + log 3 − 13

6 log 2, in Conjecture A.

Furnishing an estimate for c = a + b which is sharp up to a power of log k, this last
formulation has a nice probabilistic interpretation which brings some further insight into
the problem: the F -factor takes care of the statistical distribution of the squarefree kernel,
and the H-factor corresponds to the condition that a and b should be coprime. Indeed,
integers with a small core have a strong tendency to be divisible by many small primes;
hence the probability that two such integers should be coprime is very small. Thus the
factor H(k) above may be seen as playing the same rôle, for pairs (a, b) with maximal
k = k(abc), as the well-known probability 6/π2 for unconstrained random integers.

3. Estimates for N(x,y)

Let

(3·1) f(σ) :=
X

n>1

1

ψ(n)nσ
=
Y

p

⇣

1 +
1

(p + 1)(pσ − 1)

⌘

(σ > 0),

and put
g(σ) = log f(σ).

For v > 6, we let σv denote the solution of the transcendental equation

(3·2) −g0(σ) =
X

p

pσ log p

(pσ − 1){1 + (p + 1)(pσ − 1)}
= v

and make the convention that σv = 1
2 when 0 6 v < 6. Thus, for v > 6, σ = σv renders

the quantity eσvf(σ) minimal. The function σv has been extensively studied in [13]. For
any given integer K > 1, we have

(3·3) σv =

r

2

v log v

⇢

1 +
X

16k6K

Pk(log2 v)

(log v)k
+ OK

✓

(log2 v)K+1

(log v)K+1

◆�

(v > 3),

where Pk is a suitable polynomial of degree at most k. In particular,

(3·4) P1(z) = 1
2 (z − log 2), P2(z) = 3

8z2 − (3
4 log 2 + 1

2 )z + 1
2 log 2 + 3

8 (log 2)2 + 2
3π2.

Here and in the sequel, we put

v = log(x/y), Yx := e
1
4

p
2 log x(log2 x)3/2

, Et(x, y) :=

p
vσv log y

yσv/t
+

1

x1/16
(t > 0).
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We recall from [13] that Yx is an approximation to the threshold of the phase transition
of the asymptotic behaviour of N(x, y): given any ε > 0, we have N(x, y) ⇠ yF (v) for
y > Y1+ε

x and N(x, y) = o
�

yF (v)
�

whenever y 6 Y1−ε
x . The following statement, which is

a consequence of theorem 3.3 and proposition 10.1 of [13], provides the effective version
we shall need.

We recall Vinogradov’s notations f ⌧ g and f � g, meaning, respectively, that
|f | 6 C|g| and |f | > C 0|g| for suitable positive constants C, C0. The symbol f ⇣ g
then means that f ⌧ g and f � g hold simultaneously.

Proposition 3.1. Let ε > 0. We have

N(x, y) = yF (v)
�

1 + O
�

E1(x, y)
� �

x ! 1, Y1+ε
x 6 y 6 x

�

(3·5)

N(x, y) ⌧ yF (v) (x > y > 2).(3·6)

We also make use of the following result concerning the size and variation of F . Here
again, we state more than necessary for our present purpose, but less than proved in [13]
(Theorem 8.6, Propositions 8.8 and 8.9).

Proposition 3.2. We have

F (v) ⇣
⇣ log v

v

⌘1/4

evσvf(σv) = e2vσv+O(vσv/ log v) (v > 2),(3·7)

F (v + h) ⌧ F (v)eσvh (v > 0, v + h > 0),(3·8)

F (v + h) − F (v) =

(

1 + O

 

log v + |h|p
v log v

!)

hσvF (v)
�

v > 2, h ⌧
p

v log v
�

.(3·9)

Finally, we state the following result, where, for a > 1, we employ the notation

Na(x, y) :=
X

n6x
(n,a)=1
k(n)6y

1, Fa(v) :=
6

π2

X

(m,a)=1

min(1, ev/m)

ψ(m)
, r(a) :=

Y

p|a

⇣

1 +
2
p

p

⌘

,

and let ϕ denote Euler’s totient.

Proposition 3.3. We have

Fa(v + h) − Fa(v) �
X

m>ev+h

(m,a)=1

ev

mψ(m)
(a > 1, v > 2, h ⇣ 1),(3·10)

Na(x, y) =
yk(a)Fa(v)

ψ(a)

n

1 + O
⇣

r(a)E2(x, y)
⌘o

(Y2
x 6 y 6 x, a 6 x).(3·11)

Proof. The bound (3·10) immediately follows from the definition of Fa(v) by restricting
the sum to m > ev+h.

Estimate (3·11) may be proved along the lines of proposition 10.1 in [13], which
corresponds to a = 1. We avoid repeating the details here since they are identical to
those of [13], simply carrying the condition (m,a) = 1 throughout the computations and
appealing to the saddle-point estimate for Fa(v). ut

To state our next lemma, we introduce some further notation. Let us define

(3·12) H(s, z) :=
Y

p

⇣

1 +
1

(p + 1)(ps − 1)
+

1

(p + 1)(pz − 1)

⌘

(<e s > 0, <e z > 0).
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For v > 0, we denote by ϑv > 0 the unique solution to the equation

(3·13)
X

p

pσ log p

(pσ − 1){2 + (p + 1)(pσ − 1)}
= v,

so that (s, z) = (ϑv,ϑv) is a real saddle-point for (s, z) 7! e(s+z)vH(s, z). Moreover, it can
be checked that

(3·14) ϑv = σv{1 + O(1/ log v)} (v > 2).

Finally, we set

(3·15) h(σ) := log H(σ,σ) (σ > 0)

and note that

(3·16) H(σ,σ) = eh(σ) = f(σ)2
Y

p

✓

1 − 1

{1 + (pσ − 1)(p + 1)}2

◆

(σ > 0).

Proposition 3.4. Let κ 2 (0, 1
2 ), µ > 0. For xκ 6 y 6 x1−κ, and suitable B = B(κ), we

have

(3·17)
X

x<a6eµx
a/eµ<b<a, (a,b)=1

k(a)6y, k(b)6y

1 � y2e2vϑv+h(ϑv)

v3/2(log v)5/2
� y2F (v)2−B/ log v.

Proof. Let D(x, y) denote the double sum to be estimated. By (3·11) and (3·10), we have

D(x, y) > D1 − R1

with

D1 � evy
X

x<a6eµx
k(a)6y

k(a)

ψ(a)

X

m>ev+µ

(m,a)=1

1

mψ(m)
� yev

log v

X

x<a6eµx
k(a)6y

X

m>ev+µ

(m,a)=1

1

mψ(m)
,

R1 ⌧ y2F (v)2−κ1 ,

for some positive constant κ1 depending only on κ. Next, we invert summations in our
lower bound for D1 and appeal to (3·11) and (3·10) again. We get D1 > D2 − R2 with

D2 � y2e2v

log v
S, S :=

X

m,n>ev+µ

(m,n)=1

k(m)

mnψ(m)2ψ(n)
, R2 ⌧ y2F (v)2−κ1 .

It remains to bound S from below. To this end, we restrict the sum to pairs (m,n) in
(ev+µ, ev+2µ]2 to get e2vS � T/ log v with

T :=
X

ev+µ<m,n6ev+2µ

(m,n)=1

1

ψ(m)ψ(n)

=
1

(2πi)2

Z

(σv+iR)2

H(s, z)e(v+µ)(s+z)(eµs − 1)(eµz − 1)

sz
dsdz

where H(s, z) is defined by (3·12).
We estimate the last integral by two-dimensional saddle-point method. Since similar

calculations have been extensively described in [13], we only sketch the proof.
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Writing s = ϑv + iτ , z = ϑv + it, we deduce from lemma 5.13 and formula (7.7) of [13]
that, for a suitable absolute constant η, we have

|H(s, z)| 6 e−η(log v)2H(ϑv,ϑv)

provided (log v)5/4/v3/4 ⌧ max(|τ |, |t|) 6 exp{(log v)38/37}. Truncating the larger values
by standard effective Perron formula (see, for instance, [18], theorem II.2.3), we may
evaluate the double integral on the remaining small domain by saddle-point analysis,
taking advantage of the fact that

(3·18) h(s, z) :=
X

p

log
⇣

1 +
1

(p + 1)(ps − 1)
+

1

(p + 1)(pz − 1)

⌘

,

where the complex logarithms are understood in principal branch, defines a holomorphic
continuation of h(s, z) in a poly-disc of centre (ϑv,ϑv) and radii 1

2ϑv.
(1)

We thus arrive at

T ⇠ µ2e2vϑvH(ϑv,ϑv)

2πj(ϑv)
(v ! 1),

with

j(σ) :=
X

p

pσ(log p)2{(p + 1)(p2σ − 1) + pσ + 2}

(pσ − 1)2{2 + (pσ − 1)(p + 1)}2
⇣ 1

σ3 log(1/σ)
(σ ! 0+).

This plainly yields the first lower bound in (3·17).
To prove the second lower bound, we appeal to (3·16), note that the estimate (3·14)

implies 2vϑv + h(ϑv) = 2vσv + h(σv) + O
�

vσv/ log v
�

, and insert the lower bound

Y

p

✓

1 − 1

{1 + (pσv − 1)(p + 1)}2

◆

� F (v)−c0/ log v,

for a suitable absolute constant c0 > 0. ut
4. Justification for Conjectures B and C

We shall establish Conjectures B and C under the heuristic assumption that, whenever
a and b are coprime integers, the kernel k(a + b) is distributed as if a + b was a typical
integer of the same size. Albeit conjecture B formally follows from Conjecture C and
(2·7), we shall provide a direct, simple proof. Notice that if (a, b) = 1 and a + b = c, then
k(abc) = k(a)k(b)k(c).

We start with the upper bounds. Under the above assumption, we may write

P(x, z) :=
X

x<a62x
b<a, (a,b)=1

k(abc)6z

1 6
X

x<a62x
b<a, (a,b)=1

1

x

n

N
⇣

4x,
z

k(a)k(b)

⌘

− N
⇣

x,
z

k(a)k(b)

⌘o

.

To prove (2·5), it suffices to show that, for z = Zx := x/F (2
3 log x)3−B4/ log2 x and suitable

B4 > 0,we have

(4·1)
X

r>1

P(2r, Z2r) < 1.

Indeed, this plainly implies that the conditions k(abc) 6 z for some pair (a, b) with
x < a 6 2x, b < a, are realized only for a bounded number of integers x. This argument
is similar to that of the Borel-Cantelli lemma.

1. See [13], lemma 8.4 for the details, in a similar situation, of the continuation, and theorem 8.6,
for those of the saddle-point analysis.
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Applying (3·6) and (3·8) taking (2·3) and (3·3) into account, we obtain

P(x, z) ⌧ z

x

X

x<a62x
b<a, (a,b)=1

F
�

log(xk(a)k(b)/z)
�

k(a)k(b)
⌧ zF (v)

x

X

x<a62x
b<a, (a,b)=1

x−2σv/3

k(a)1−σvk(b)1−σv

with v := 2
3 log x. By Rankin’s method, we thus infer, writing P (n) for the largest prime

factor of an integer n with the convention that P (1) = 1,

P(x, z) ⌧ zF (v)

x

X

P (a)6x

x2σv/3

aσvk(a)1−σv

X

P (b)6x
(b,a)=1

x2σv/3

bσvk(b)1−σv

⌧ zF (v)e2vσv

x

X

P (a)6x

1

aσvk(a)1−σv

Y

p6x
p - a

⇣

1 +
1

p(1 − p−σv)

⌘

.

Since a standard computation yields, taking (3·7) into account,

evσv

Y

p6x

⇣

1 +
1

p(1 − p−σv)

⌘

⌧ F (v)v5/4

(log v)1/4
,

we get

P(x, z) ⌧ zF (v)2evσvv5/4

x(log v)1/4

X

P (a)6x

1

aσvk(a)1−σv

Y

p|a

✓

1 − 1

1 + p(1 − p−σv)

◆

⌧ zF (v)2evσvv5/4

x(log v)1/4

Y

p6x

✓

1 +
1

p(1 − p−σv)

◆✓

1 − 1

{1 + p(1 − p−σv)}2

◆

⌧ zF (v)3−K0/ log v

x
,

where K0 is a suitable positive constant.
This establishes the upper bound for c in Conjecture B.
We now embark on proving (2·8) and first define the quantity H(k), noticing that we

shall now select in (4·1)

z = Zx :=
x

F (2
3 log x)3H(x)(log x)11/2+ε

·

Given x > 2, we let u = ux be the solution to the equation

(4·2) σu = ϑw (w := log x − 1
2u).

It is easy to see that

u = 2
3 log x + O

⇣ log x

log2 x

⌘

, w = 2
3 log x + O

⇣ log x

log2 x

⌘

and a further computation actually yields u− 2
3 log x ⇠ 8(log 2)(log x)/9 log2 x. Recalling

notation (3·15) and introducing g(σ) := log f(σ) (σ > 0), we then put

(4·3) H1(k) := e2σu(w−u)
Y

p

✓

1 − 1

{1 + (pϑw − 1)(p + 1)}2

◆

= e2σu(w−u)+h(σu)−2g(σu),

with u := uk, w := log k − 1
2uk.
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We shall set out to prove

(4·4) c 6 B3kF (uk)3H1(k)(log k)11/2+ε,

and

(4·5) c > kF (uk)3H1(k)/(log k)3/2+ε

instead of (2·8) and (2·9) respectively. However, it can be shown that F (uk)/F (2
3 log k)

satisfies a relation of type (2·7) with a different sequence of polynomials Rj . From this
observation, the required result will follow with

(4·6) H(k) := F (uk)3H1(k)/F (2
3 log k)3.

Applying (2·3), (3·3), (3·6) and (3·8) again, we get

P(x, z) ⌧ z

x

X

x<a62x
b<a, (a,b)=1

k(ab)6x

F
�

log{xk(ab)/z}
�

k(a)k(b)

⌧ z

x

X

m+n6log x

F (m + n) + F (1
3 log x)

em+n
S(m,n),

with
S(m,n) :=

X

a62x, b62x
(a,b)=1

em−1<k(a)6em+1, en−1<k(b)6en+1

1 (m > 1, n > 1).

Now, for all m, n and any ϑ 2]0, 1[, we may write

S(m,n) 6
X

a62x, b62x
(a,b)=1

⇣2x

a

⌘ϑ⇣2x

b

⌘ϑ⇣em+1

k(a)

⌘1−ϑ⇣en+1

k(b)

⌘1−ϑ

⌧ x2ϑe(1−ϑ)(m+n)
Y

p62x

⇣

1 +
2

p1−ϑ(pϑ − 1)

⌘

⌧ x2ϑe(1−ϑ)(m+n)H(ϑ,ϑ)(log x)2.

Writing s := m + n, t := log x − 1
2s, we infer that

F (m + n)S(m,n)

em+n
⌧

⇣ log s

s

⌘1/4

esσs+g(σs)+2tϑt+h(ϑt)(log x)2.

By (4·2) and the definition of ϑv, the argument of the exponential is maximal when
s = u := ux, t = w := log x − 1

2ux. For this choice, the last upper bound is equally valid

when F (m + n) is replaced by F (1
3 log x) ⌧ F (u)x−σu/4.

Selecting the above values for s, t and carrying back our estimates in the upper bound
for P(x, z), we thus obtain that

(4·7) P(x, z) ⌧ zF (u)e2wϑw+h(ϑw)u4

x
⇣ zF (u)3H1(x)u9/2

x
p

log u
·

The bound (4·7) is sufficient to ensure the convergence of the series (4·1) provided ε > 0.
This completes our argument in favour of the upper bound in conjecture C.
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In order to justify the lower bounds, we show that, still under the assumption that k(c)
behaves independently of k(a) and k(b), we have P(x, z) ! 1 for an appropriate value
z = zx.

Let us start with Conjecture B. According to the above hypothesis, we may write, for
x2/3+ε < z 6 x

P(x, z) >
X

x<a62x
a/2<b<a, (a,b)=1

k(a)6x1/3, k(b)6x1/3

2

3x

n

N
⇣

3x,
z

k(a)k(b)

⌘

− N
⇣3x

2
,

z

k(a)k(b)

⌘o

� z

x
F
�

2
3 log x

�2−(B+1)/ log2 x
F
�

5
3 log x − log z

�

� z

x
F
�

2
3 log x

�3−(B+1)/ log2 x
,

where we successively appealed to (3·5), (3·9) and (3·17). Selecting

z = x/F (2
3 log x)3−(B+2)/ log2 x,

we obtain the required estimate.
Finally, we establish the lower bound in Conjecture C. For x2/3+ε < z 6 x, u := ux,

y := eu/2, w := log x − u/2, we have

P(x, z) >
X

x<a62x
a/2<b<a, (a,b)=1
k(a)6y, k(b)6y

2

3x

n

N
⇣

3x,
z

k(a)k(b)

⌘

− N
⇣3x

2
,

z

k(a)k(b)

⌘o

� zσu

x

X

x<a62x
a/2<b<a, (a,b)=1
k(a)6y, k(b)6y

F (log{xk(a)k(b)/z})

k(a)k(b)
·

At this stage, we observe that, for sufficiently large x, we have

(4·8) F (u) 6 F
�

log(xeu/z)
�

⌧ F
�

log{xk(a)k(b)/z}
� eu/2

p

k(a)k(b)

uniformly for all a, b in the last range of summation. Indeed, the first inequality readily
follows from the fact that z 6 x, and the second bound is obtained by applying (3·8) with
v = v(a, b, x, z) := log(xk(a)k(b)/z) and h = h(a, b, x, z) := log

�

eu/k(a)k(b)
�

: since h > 0
and v ! 1 uniformly in a, b as x ! 1, we plainly have σv 6 1/2 for large x, which
implies (4·8).

Inserting (4·8) in our previous lower bound for P(x, z) yields

P(x, z) � zσuF (u)

x

X

x<a62x
a/2<b<a, (a,b)=1
k(a)6y, k(b)6y

1
p

k(a)k(b)eu/2
� ze2wϑw+h(ϑw)F (u)

xu2(log u)3

� ze2wϑw+h(ϑw)+uσu+g(σu)

xu9/4(log u)11/4
⇣ ze3uσu+3g(σu)+2(w−u)σu+h(σu)−2g(σu)

xu9/4(log u)11/4

⇣ zF (u)3H1(x)

xu3/2(log u)7/2
,

where we successively appealed to (3·5), (3·9), (3·8), (3·17) and (3·7). Selecting

z = x(log x)3/2+ε/F (u)3H1(x),

completes the proof.
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France

olivier.robert@univ-st-etienne.fr

Cameron L. Stewart
Department of Pure Mathematics,
University of Waterloo,
Waterloo, Ontario,
Canada N2L 3G1

cstewart@uwaterloo.ca
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