A reflective Newton method for minimizing a
quadratic function subject to bounds on some of
the variables !

Thomas F. Coleman and Yuying Li
Computer Science Department
and
Advanced Computing Research Institute?
Cornell University

[thaca, New York 14853

December 7, 1992

Abstract. We propose a new algorithm, a reflective Newton method, for the minimiza-
tion of a quadratic function of many variables subject to upper and lower bounds on
some of the variables. The method applies to a general (indefinite) quadratic function,
for which a local minimizer subject to bounds is required, and is particularily suitable
for the large-scale problem. Our new method exhibits strong convergence properties,
global and quadratic convergence, and appears to have significant practical potential.
Strictly feasible points are generated. Experimental results on moderately large and
sparse problems support the claim of practicality for large-scale problems.

! Research partially supported by the Applied Mathematical Sciences Research Program (KC-
04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-
86ER25013.A000, and by the Computational Mathematics Program of the National Science Founda-
tion under grant DMS-8706133, and by the Cornell Theory Center which receives major funding from
the National Science Foundation and IBM Corporation, with additional support from New York State
and members of its Corporate Research Institute.

2 The Advanced Computing Research Institute is a unit of the Cornell Center for Theory and
Simulation in Science and Engineering (Theory Center).

1

1. Introduction. In this paper we propose a new algorithm for solving the box-
constrained quadratic programming problem

e 1
(1.1) min{q(x) Ty §SCTHCE s <z <u}.

The matrix H is symmetric and, in general, indefinite; [€ {RU {—o0}}", u € {RU
{o0}}", | < u. We denote the feasible region F = {z : [< < u} and the strict
interior, int(F) = {z: [<& < u}. When H is indefinite we are interested in locating
a local minimizer.

Problem (1.1) arises as a subproblem when minimizing general nonlinear functions
subject to bounds and as a problem in its own right. The box-constrained quadratic
programming problem represents an important class of optimization problems and has
been the subject of considerable recent work (e.g., [1, 5, 12, 13, 16, 19, 21, 24, 26, 27, 32]).
A special subclass deserves mention: the box-constrained least-squares problem,

(1.2) rrgn{HAJ; —b|l2: <z <u},

where A is a rectangular m-by-n matrix with m > n. Our proposed algorithm can
of course be applied to this special case if we form H = ATA and ¢ = —ATbh. The
determination of a version of our algorithm which does not involve the formation of the
matrix H is an open question.

We propose a new approach, a reflective Newton algorithm. The algorithm gen-
erates a sequence of strictly feasible iterates, {z\}, which converges under standard
assumptions to a local solution of (1.1), z., at a quadratic convergence rate. Coleman
and Li [10] establish theoretical properties of the reflective Newton approach applied to
the general nonlinear box-constrained problem — as we indicate in Section 5 these re-
sults apply directly to the reflective Newton procedure proposed here for the quadratic
minimization problem (1.1). In this paper we discuss the nature of the reflective trans-
formation (Section 2); we discuss the reflective Newton approach as applied to problem
(1.1) with emphasis on a specialized line search to exploit the special structure of this
problem (Section 3); numerical experiments involving an implementation of the re-
flective Newton method applied to box-constrained quadratic minimization (1.1) are
discussed (Section 4).

The sequence {z;} generated by the algorithm is strictly feasible: therefore, the
algorithm can be regarded as an “interior-point” algorithm. However, this is a mis-
leading classification. The algorithm differs markedly from methods commonly referred
to as “interior-point” algorithms. For example, the proposed algorithm does not use a
barrier function to ensure feasibility. The algorithm generates descent directions for ¢
and then follows a piecewise linear path, reflecting off constraints as they are encoun-
tered. Most interior point methods, on the other hand, generate descent directions (for
some function) and then restrict the step, along this straight-line direction, to ensure
feasibility.

The algorithm most similar to our current proposal is probably the recent method
due to Coleman and Hulbert [6]. (There is also a strong connection to previous work

2

by Coleman and Li [7, 8, 9, 20] on various norm minimization problems.) Both are
driven by the nonlinear system of equations representing first-order optimality condi-
tions. Both methods require piecewise quadratic minimization. The methods differ
in that our new algorithm is more general: positive definiteness of H is not required
and it is not necessary to have finite upper and lower bounds on all the variables —
the Coleman/Hulbert method requires both these restrictive properties. Finally, the
Coleman/Hulbert method is an exterior-point method, requiring strict decrease in a
piecewise quadratic “dual” function, whereas the new method generates feasible iter-
ates, requiring strict decrease in the original quadratic function gq.

There are four key observations that underpin our new approach.

First, it is possible to change the constrained problem (1.1) to an unconstrained
problem without using a penalty parameter. We can replace (1.1) with an unconstrained
problem,

(1.3) min §(y)

where ¢(y) is a continuous piecewise quadratic function of y, and y € R" is unrestricted.
Details of this transformation are given in the next section including a result, Theorem
1, proving the equivalence of (1.3) with (1.1). One view of our algorithm is that it is
designed to find a local minimizer of §(y). Variables x and y are related by a piecewise
linear transformation, a reflective transformation, * = R(y). Transformation R yields
a feasible sequence {z;}. Moreover, evaluation of ¢(y) corresponds to evaluation of
o(R(y))

Alternatively, one can view our approach entirely in the original variables z. Then,
instead of describing the method as a descent algorithm for the transformed problem
¢(y), our method can be described as a method that generates feasible iterates by
following a piecewise linear path induced by the reflective mapping R. We discuss this
below.

The second key observation is that the first-order optimality conditions for (1.1),
or equivalently (1.3), can be expressed as a single system of nonlinear equations,

(1.4) F(y)=0

and a Newton step for this system is a descent direction for ¢ in a neighbourhood of
a local solution y.. Moreover, in a neighbourhood of a local solution to (1.3) a full
Newton step for (1.4), i.e., a unit step size in the Newton direction, yields decrease in
G(y). This is a very important point because it suggests that a Newton process for (1.4)
is compatible with (1.3), at least in the neighbourhood of a solution. It suggests that
ultimate second-order convergence can be achieved while decreasing ¢(y).

The third observation leads to globalization of the Newton process. It turns out that
the Newton equation for (1.4), the nonlinear system representing first-order optimality
conditions, can be written in the form:

(1.5) M(y)s = =V,4
3

where M is a symmetric matrix.®> Moreover, it turns out that M is positive definite in
a neighbourhood of a minimizer of § and M can be interpreted, loosely, as a second
derivative matrix for ¢(y) . This suggests the use of an ellipsoidal constraint to ensure
a descent direction when far from the solution. Specifically, solve

: .1 _
(1.6) msln{sTqu + §5TM(y)3 c |D7 s < AY

where D is a positive diagonal scaling matrix and A is positive. As we discuss in [10],
a good choice for matrix D(z) is

B[

(1.7) D(z) = diag(v(2)]?),

i.e., D is a diagonal matrix with the ¢** diagonal component equal to |vz(1:)|% Vector
v;(z) is defined in Figure 1 where

def

g(z) = Vq(z)=Hz +c.

Diagonal matrix D plays an important role in this paper — henceforth we reserve the
notation D, without superscript, to refer to definition (1.7). Of course Dy, refers to (1.7)
with all quantities defined at the current point xy.

(1) If ¢; <0 and u; < oo then v; = z; — u;.

(i) If ¢; > 0 and [; > —oo then v; = x; — [;.
(ii1) If ¢; < 0 and w; = oo then v; = —1.
(iv) If g; > 0 and [; = —oo then v; = 1.

Fi1G. 1. Definition of v(x)

Solving (1.6) involves solving a symmetric positive definite system,
(1.8) (DMD + M)s¥ = =DV ,q

for a suitable A, and then s « DsY. Thus it is easy to see that (1.6) leads to a descent
direction for ¢ at the current point. It may be felt that solving (1.6) is an expensive way
to determine a descent direction in the large-scale setting. With this is mind a restricted
version of (1.6) is used in our algorithm. In particular, similar to [2] we usually restrict
s to be in a low-dimensional subspace S. So (1.6) is replaced with

1
(1.9) msin{sTVyc} + §3TM(y)s C D7 s|ls < Ays € S}

where S is a low-dimensional subspace of R". Provided the ellipsoidal constraint
|D~'s]|2 < A becomes inactive near the solution, and the low-dimensional subspace S

3 The function ¢ is a piecewise quadratic function of y: therefore, V,¢ does not always exist. How-
ever, the proposed algorithm only generates points where V¢ is defined.

4

ultimately includes the Newton direction, the solution to (1.9) will eventually be the
Newton step (1.5).

The fourth major ingredient of our approach is the line search. Once a descent
direction sy is determined, a one-dimensional line search is performed to approximately
locate a minimizer of i («) e Gr(yr+asy). But ¢ has structure: ¢ is a one-dimensional
piecewise quadratic function and so an efficient specialized line search procedure can be
used. (Alternative view: A one-dimensional piecewise linear search is performed along
a “reflective path”, pi(«), defined by the reflective transformation R and beginning at

We conclude the introduction with a short review of optimality conditions for prob-
lem (1.1).

The first-order optimality conditions can be written: If a feasible point z, is
a local minimizer of (1.1) then

(1.10) D%g, = 0.
Let F'ree, denote the set of indices corresponding to “free” variables at point z.:
Free.={i:l; < (x.); < w}.

Second-order necessary conditions can be written?: If a feasible point z, is a local
minimizer of (1.1) then D?g, = 0 and H"®* > (where H"*** is the submatrix of H
corresponding to the index set Free,

These conditions are necessary but not sufficient. To state practical sufficiency
conditions we first need a definition of degeneracy.

DEFINITION 1. A point x € R™ is nondegenerate if, for each index i:

With this definition we can state second-order sufficiency conditions: If a
nondegenerate feasible point x, satisfies D?g, = 0 and H'"*** > 0, then z, is a local
minimizer of (1.1).

2. The Reflective Transformation. One interpretation of our approach to solv-
ing the box-constrained quadratic programming problem (1.1) involves a transformation
to an unconstrained piecewise quadratic minimization problem (1.3). The purpose of
this section is to introduce this transformation. Since some of the ideas involved are
more generally applicable, we begin our discussion at a more abstract level and gradually
work our way back to the box-constrained quadratic programming situation.

4 Notation: If a matrix A is a symmetric matrix then we write A > 0 to mean A is positive definite;
A > 0 means A is positive semi-definite.

5

Consider the problem
(2.1) min{f(z) : z € C}

where f is a continuous function, f : 8 — R!, and C is a closed connected region of .
We consider when the constrained problem (2.1) can be replaced with an unconstrained
minimization problem of the form,

(2.2) min f(R(y)),

yeR™

where R is a continuous onto mapping, R : R” e c.

What further restrictions on the mapping R make this an acceptable transfor-
mation? To see that continuity is not enough consider the following one-dimensional
example. Let f(z) = —z and let C = [0, 1]. Obviously there is only one local solution
(the global solution), x. = 1. However, let R(y) be any continuous function, mapping
R onto [0, 1], with a strict local maximizer at y with & = R(y) € (0,1). It is easy to
see that y is a local minimizer of f(R(y)) but z is clearly not a local solution to the
original problem.

The following property plays the key role in answering this question.

Open Mapping : Let R: R* — C. Then R is an open mapping if for each ¢ > 0 and pair
{y,z = R(y)} there exists 6 > 0 such that

(2.3) {R(y):y € N.(5)} 2 Ns(z)NC.

See Munkres [25], for example, for a discussion of open mappings. We can now
answer our question.

THEOREM 1. Let R : R" — C be a continuous onto mapping. Further, assume R

is an open mapping. Then,
(1) Ify. is a local minimizer of (2.2) then & = R(y.) is a local minimizer of (2.1).
(ii) If z. is a local minimizer of (2.1) then for each y € R" such that R(y) = .,
y is a local minimizer of (2.2). Moreover, there exists at least one y such that

R(y) = ..
(iii) Problem (2.1) is unbounded below if and only if problem (2.2) is unbounded
below.

Proof. (1) Assume y, is a local minimizer of (2.2). Let # = R(y.). Since y. is a
local minimizer, there exists ¢ > 0 such that

f(R(y)) > f(R(ys)), Yy € Ne(y.).
6

But by (2.3) there exists § > 0 such that

(2.4) {R(y) 1y € Ne(y)} 2 Ns(z) NC.

Hence for each z, € Njs(z) N C there exists § € N,(y.) such that R(j) = « and
f(z) = F(R()) > f(R(y.)) = f(2).

Therefore, z is a local minimizer of (2.1).

(ii) Assume z, is a local minimizer of (2.1). But R is an onto mapping and therefore
there exists y € R such that + = R(y). Since . is a local minimizer, there exists € > 0
such that

flz) > f(z.), Va e N(z.)NC.

By continuity there exists 6 > 0 such that y € Ns(y) implies R(y) € N.(xz.) N C.
Therefore, for all y € Ns(y),

Hence, y is a local minimizer of (2.2).
(iii) Suppose {yx} is a sequence such that
lim F(Rly)) = —co.

Clearly if z;, = R(yx), k =1: 00, then {z} € C and limy_., f(z}) = —oc.
Alternatively, assume {z;} € C and

klim flzg) = —o0.

But R is an onto mapping; therefore, for each) there exists y, such that R(yx) = xx
and

lim F(R(ye)) = —ox,
and therefore (iii) is established.]

To illustrate, consider the problem
(25) min{f(z) : ¢ > 0},

z:x > 0}. A definition of R that clearly satisfies the open mapping property

.)_: Y-*xy «“

5 7 denotes component-wise multiplication. Note that R is

where

differentiable and the Jacobian of R, J®(y), is nonsingular if and only if R(y) € int(C),
where int(C) is the interior of C. Specifically, V, f = JEV,.f = DYV, f and

RA\T R
Vif(y) = V.fVER+ (JIV2fIR = D7+ DYHDY,

where D79 is the diagonal matrix diag(V,f) and DY is the diagonal matrix diag(y). (Note
that VZQIR is a tensor term and szVf/R is a matrix — diagonal in this case.) Therefore,
this definition of R leads to an unconstrained twice-differentiable minimization problem
and standard techniques can be used to solve (2.2). Unfortunately, our numerical
experience with this approach has been mixed: In particular, as problems become large
and ill-conditioning (and near-degeneracy) increases, the number of iterations required
by standard minimization algorithms, to achieve good accuracy, becomes quite large.
We feel this is due in part to the fact that this transformation causes an increase in
the complexity of the function to be minimized: e.g., a quadratic function becomes a
quartic. Our objection to this approach is largely numerical — ill-conditioning in the
original problem is accentuated when the problem is transformed to a more complex
form. Note also that the transformed problem may have many more local minimizers
— by Theorem 1 this, in itself, is not a problem. However, along with this increase in
the number of local minimizers comes an increase in negative curvature and this may
cause some optimization algorithms some difficulty. In any event, our experience with
this simple differentiable transformation has not been satisfactory: the subject of this
paper is an alternative definition of R.

For problem (2.5) consider R(y) = |y|, where if v is a vector, |v| denotes the vector
whose components are the absolute values of the vector v. It is clear that the open
mapping property holds. Note that R is not everywhere differentiable. In particular,
R is differentiable at point y if and only if R(y) € int(C), i.e., y; # 0. In this case
JB(y) = diag(sgn(y)) and J%(y) is obviously nonsingular. Using this transformation,
f(R(y)) has a piecewise differentiable nature as a function of y. For example, if f(z) is
a quadratic function then f(R(y)) is a piecewise quadratic function of y.

We now extend the absolute value approach, R(y) = |y|, to handle the more general
situation,

(2.6) C=F ={z: 1< z<u}

where for each index 7 either u; is finite or u; = oo. Similarly, for each index 2 either [;
is finite or {; = —oco0. We assume [< u.

For simplicity we assume that the finite values of u are all equal to unity and the finite
values of | are all equal to zero (a simple translation and scaling can achieve this form?).

The transformation we propose, ©+ = R(y), is a diagonal transformation, i.e., for

5 A definition of the reflective transformation applied directly to the general problem is given in [10]

8

1=0

Fi1G. 2. The 1-Dimensional Reflective Transformation (Finite Upper and Lower Bound)

each index ¢, x; depends only on y;. This transformation, x = R(y), induces a piecewise
linear “reflective” path in x.

For example, if u; = 1 and [; = 0 then R; is illustrated in Figure 2.

If ; =0 and u; = oo then R; is the absolute value function; if [; = —oc and u; =1
then R; is illustrated in Figure 3.

Finally, if u; = —oo and [; = 400 then R;(y;) = x;. The four cases are described
more formally in Figure 4.

It is easy to verify that R satisfies the requirements of Theorem 1; therefore, use
of R does not introduce extraneous local minimizers nor does it restrict the set of local
minimizers.

Using the reflective transformation, problem (1.1) can be replaced with the un-
constrained piecewise quadratic minimization (1.3). In principle, problem (1.3) can be
solved by a descent direction algorithm, e.g., Algorithm 1 in Figure 5.

An advantage of using this piecewise linear transformation R is the linear as-
pect of the transformation: when y is a differentiable point the local complexity of
f(y) =l f(R(y)) is the same as the local complexity of f(x). When f = ¢ is a quadratic
function, f = § is a piecewise quadratic function. The apparent disadvantage is the
piecewise nature of f(y) This lack of differentiability means that conventional nonlinear
minimization methods cannot be used.

In particular, in order to guarantee convergence, restrictions on the nature of the
descent direction s¥ must be imposed. To see this suppose that y; is very close to a
hyperplane z; = R(y;) = [; and s¥ is a descent direction for ¢ at yx. If s¥ is nearly
perpendicular to this hyperplane then the usual descent condition, V,¢7s¥ < 0, may
only result in a very small step since V,q is not continuous at z; = R(y;) = {;. In [10]
we describe two properties, “constraint-compatibility” and “consistency”, which help
guarantee sufficiently long steps and, consequently, global convergence. We discuss this

9

1=0

FiGg. 3. The 1-Dimensional Reflective Transformation with Infinite Upper Bound

briefly in Section 3.

The straight-line direction s} corresponds to a piecewise linear path in x. This
piecewise linear path can be described as follows. For simplicity, and without loss of
generality, assume y; = ;. Let s§ = s}. Define the vector®

(2.7) BR, = max[(l — x) ./ sz, (u—xx) ./ s§)l.

Component ¢ of vector BR), records the positive distance form z; to the breakpoint
corresponding to variable z, in the direction sf. The piecewise linear (reflective) path
is defined by Algorithm 2 in Figure 6. Since only a single outer iteration is considered,
we do not include the subscript & with the variables in our description of Algorithm 2
- dependence on k is assumed.

Given the current point x; and a descent direction s, let p;(«) denote the piecewise
linear path defined by Algorithm 2: For ;' < o < i,

(2.8) pe(e) = b + (@ = 371}

Note that it is now possible to describe Algorithm 1 entirely in z-space without
explicitly introducing either the function ¢ or the variables y. We do this in Algorithm
3-Figure 8.

The difference between Algorithm 1 and Algorithm 3 is notational. The view
presented by Algorithm 3 has the advantage that it is in the original space — visualization

6 For the purpose of computing BR we assume the following rules regarding arithmetic with infinities.
If @ is a finite scalar then a + 0o = 00, @ — 00 = —00, £ = oo -sgn(a), == = —oco -sgn(a), & =

sgn(a) - oo, G = oo, and =5> = —oo, where sgn(a) = +1if a > 0, sgn(a) < 0 if a < 0.
10

Case 1: ([,=0, u;=1)
To evaluate z; = R(y); :

w; = |y;| mod 2, z; = min(w;,2 — w;).
If z; # 0,1 then we can differentiate R to obtain the i'* diagonal element of
the diagonal Jacobian matrix J:

If w; <2—w;, JE =sgn(y;), else J& = —sgn(y).

K3

Case 2: ([; =0, u; = c0)
To evaluate z; = R(y); :

zi = |yil.

If z; # 0 then we can differentiate R to obtain the " diagonal element of the
Jacobian matrix J%:

‘]i]i% = Sgn(yl)

Case 3: ([; = —o0, u; = 1)
To evaluate x; = R(y); :

Ifyi <1, ai=vyi, elsex;=2—y;.
If #; # 1 then we can differentiate R to obtain the :** diagonal element of the
Jacobian matrix JF:

Ifyi<1then JE=1, else Ji=—1.

Case 4: ([; = —o00, u; =).

In this case there are no constraints on x; and so x; = v;, J;} = 1.

FiGc. 4. The Reflective Transformation R

11

Algorithm 1
Choose y;1 € int(F).
For k =1,2,...
1. Determine a descent direction s} for ¢(y) at yi
2. Perform an approximate line minimization of ¢(yx + assj,), with respect to
a, to determine an acceptable stepsize oy (such that «y does not corre-
spond to a breakpoint)
3. Yrg1 = Yk + sy

F1c. 5. Descent dir’n algorithm for f(y)

Algorithm 2 [Let 8% = 0, p' = 5%, set 6° = xy.]
[2, is a finite upper bound on the number of segments of the path to be determined|

For:=1:1,
1. Let B be the distance to the nearest breakpoint along p':

B3 =min{BR: BR >0}

2. Define i"* breakpoint: b' = b'~1 + (B° — B~1)p'.
3. Reflect to get new dir'n and update BR:
(&) pz—l—l — pz - -
(b) For each j such that (6'); = u; (or (6°); =)
o BR(j)=BR(j)+ |52

o (pt);=—(p");

Fia. 6. Determine the linear reflective path p

of the reflective process is natural. The advantage of the first view, Algorithm 1, is that
the algorithm is a straight line descent direction algorithm, a familiar structure. It is
probably useful for the reader to keep both views in mind. In this paper we will primarily
work in the z-space and Algorithm 3. For simplicity we now drop the superscripts y
and z (e.g., s* becomes s).

It is well known that a descent direction algorithm demands sufficient decrease at
every step in order to achieve reasonable convergence properties. We use conditions
suggested by Goldfarb [18] for use in the unconstrained setting: Given 0 < 07 < 0, < 1
and a descent direction sg, «a;, satisfies our approximate line search conditions if

1 .
(2.9) a(we1) < g(2k) + oulargy s, + Saf min(sy Hsy, 0))
and

1 .
(2.10) q(xr41) > qlar) + au(ozkg;{sk + iaz mln(ngsk, 0)),

12

Tg = Uy

IS
"
ol
Q

1'2212

Fia. 7. A Reflective Path

Algorithm 3
Choose 1 € int(F).
For k =1,2,...
1. Determine an initial descent dir’'n s for ¢ at x € int(F). Determine the
piecewise linear reflective path pi(«) via Algorithm 2.
2. Perform an approximate piecewise line minimization of ¢(z+pr(«)), with
respect to «, to determine an acceptable stepsize oy (such that oy does
not correspond to a breakpoint).

3. Tpy1 = xp + prlow).

Fia. 8. A reflective path algorithm

where gy i Vq(zg). Note that zp41 = xp + pe(ar) = R(yr + axsk) where py is the
piecewise linear path defined by (2.8). Condition (2.9) can be interpreted as restricting
the step length from being too large relative to the decrease in f; condition (2.10) can
be interpreted as restricting the step length from being relatively too small.

A basic reflective path algorithm for problem (1.1) can now be stated, Algorithm
4. To allow for flexibility, especially with regard to the Newton step, we do not always
require that both (2.9) and (2.10) be satisfied. Instead, we demand that either both
these conditions are satisfied or (2.9) is satisfied and «y is bounded away from zero,
e.g., a > p > 0. The latter conditions are used to allow for the liberal use of Newton
steps and do not weaken the global convergence results.

Note that Algorithm 4 generates strictly feasible points; i.e., since x1 € int(F), it
follows that xy € int(F).

13

Algorithm 4 [p is a positive scalar.]
Choose 1 € int(F).
For k =1,2,...
1. Determine an initial descent dir’n s; for ¢ at x; . Note that the piecewise
linear path py is defined by xy, si.
2. Perform an approximate piecewise line minimization of ¢(z+pe(e)), with
respect to a, to determine «y, such that:
(a) ai does not correspond to a breakpoint
(b) condition (2.9) is satisfied
(c¢) Either
i. ay satisfies condition (2.10), or
. ap >p>0
3. Tpy1 = xk + prlow).

Fia. 9. A reflective path algorithm satisfying line search conditions

3. Algorithm Specifics. A framework for our reflective Newton approach was
presented in the previous section, Algorithm 4. In this section we specify more precisely
how the search directions will be generated as well as the mechanics of the line search,
specialized to the quadratic problem (1.1).

The convergence analysis given in [10] uses two important properties of the se-
quence of search directions, “constraint-compatibility” and “consistency”. “Constraint-
compatability” is needed to guarantee that a sufficiently long step is taken before the
first constraint is encountered. The usual descent condition, that g!s, is sufficiently
negative, is not enough in the context of a reflective algorithm because this condition
takes no account of the proximity of the constraints. “Consistency” is a more standard
notion capturing the idea that first-order descent, represented by the term g sz, be con-
sisitent with first-order convergence. Following (1.7), define D} = D?*(x;) = diag(|vk]).

DEFINITION 2. A sequence of vectors {wy} is constraint-compatible if the se-
quence {Dy*wy} is bounded.

DEFINITION 3. A sequence of vectors {wy} salisfies the consistency condition
if {wlgr} — 0 implies {Dygr} — 0.

Central to our approach, both in terms of achieving quadratic convergence and the
satisfaction of constraint-compatibility and consistency, is the frequent use of a reduced
trust region problem to determine sj:

. 1
(3.1) msln{sngC + §5TM;C3 D sl < Ay, s € Skl

14

where Sy i1s a subspace of R"™, Dy is a positive diagonal scaling matrix, and Ay > 0.

The matrix My is defined:

(3.2) M(z) =[H+ J"D]

where JV is the Jacobian” of v, where v is defined in Figure 9. Matrix D7 is a diagonal
g +

matrix with component ¢ defined D} = Iii‘((;))l’ fori =1 : n; vector g7 () is an “extended

gradient”, extended to deal with possible degeneracy. In particular,

(3.3) + _ { lgi| + 75 if gi| + |vil]z < 7y

g = lg:] otherwise,

where 7, is a small positive constant. Clearly if = is a nondegenerate point and 7, is
sufficiently small then gt = |g|. If both ¢; = 0 and v; = 0 (which implies that z is
degenerate) then g = 7, > 0.

The diagonal matrix D(z), used in (3.1), is defined by (1.7), i.e.®,

).

This choice yields a well-defined trust region problem (3.1). To see this note that using
(3.4), (3.1) becomes

B[

(3.4) D(z) = diag(|v()|

. 1o
(3.5) mgm{ngk + §§TMk§ : 18]l < Ag, Dis € Si}
where
(3.6) My = DyMDy, = DyHyDy + JP DY i = Drgr, 5= D;'s,

and D" is a diagonal matrix, D" = diag(g*). Note that M, is positive definite in a
neighbourhood of a nondegenerate point satisfying the second-order sufficiency condi-
tions. Moreover, unlike { My}, {M,} is bounded. Matrix M} is a featured performer in
our reflective Newton algorithm. A Newton step is defined when M}, is positive definite:
Si\f déf Dkgiv = —Dk(Mk)_lgk.

A final remark on the choice of scaling matrix (3.4). If we assume that D has the
form D = diag(|v(x)[?), then p = § is the only reasonable choice. To see this suppose

D = diag(|v(z)[?) and consider that

g+

o)

DMD = DHD + J%diag(

7 Matrix JV is a diagonal matrix with each diagonal component equal to zero or unity. For example,
if all the components of u and v are finite then J¥ = I. If variable z; has a finite lower bound and an
infinite upper bound (or vice-versa) then strictly speaking v; is not differentiable at a point g; = 0; we
define Jj; = 0 at such a point. Note that v; is discontinuous at such a point but v; - g; is continuous.

8 Notation: If z is a vector then |z|Z denotes a vector with the i*# component equal to |z|z.

15

If p < 1then I —2p > 0 and the calculation of DMD involves division by [v(z)|"~*
which includes components which go to zero as * — z.. On the other hand, if p > %
then 2p — 1 > 0 and DM D approaches singularity as @ — . (consider v} = 0).

We will specity subspace S below; it is important to realize that the cardinality of
Sk, |Sk|, satisfies |Si| < 2 in our implementation. Therefore, the cost of solving (3.1)
is negligible. Given Sj, the subspace trust region problem (3.5) can be approached
in the following way. Let Sp be defined by the ¢; independent columns of an n-by-t;
matrix Vi, i.e?, S =< V4 >; Therefore, s = Visy, for some vector sy,. Let Y; be an
orthonormalization of the columns of D;'V;. Hence,

D;ls = D;lvksvk = Yisy,
for some vector sy,. Therefore problem (3.5) becomes
(3.7) min{s] V75, + 500 VT MYesy, ¢ Jlsnl2 < A}
and set sy = D;Yysy,. The solution to (3.7) is of negligible cost once the matrices are

formed, provided |S| is small (see Appendix).
Algorithm 5 in Figure 10 presents a second-order reflective path algorithm.

Algorithm 5
Choose 1 € int(F).
For k =1,2,...,

1. Ap = min{max{Ay, ||vg|| }, Au})

2. Determine initial descent dir’'n s, for ¢ at x,: If My is positive definite
and |[sY|| < Ay, choose sy = Dy5Y. If My, is not positive definite choose
Ay € [Ar, Ay], choose subspace S, and solve (3.1) to get si.

3. Determine ay: If s, = si and x; + pi(1) satisfies (2.9), then set oy = 1;
otherwise, perform an approximate piecewise line minimization of ¢(xy +
pr(@)), with respect to «, to determine ay, such that
(a) ay is not a breakpoint
(b) «y satisfies (2.9) and (2.10).

4. xpg1 = x5 + prlag).

Fia. 10. A second-order reflective path algorithm

Note: If ap = 1 is accepted by the line search but corresponds to a breakpoint, then
modify ay:

(3.8) ap = Qg défl — €

where &y, is not a breakpoint, & satisfies (2.9), and €, < xa||Drgk|| for some x, > 0.

9 If A is a matrix then < A > denotes the space spanned by the columns of A.
16

It remains to be more precise about the determination of s, and Sy and to fully
specify the line search. We begin with s; and S. Algorithm 6 in Figure 11 describes
our procedure.

Algorithm 6 [Let 71, 72, 73, €, be positive constants.]

Case 0: M is positive definite and ||5]| < Ay.
Set Sk — Si\] = —DkMk_lgk = Dkgiv.
Case 1: M, is positive definite and HE{CVH > Ay

if [|7(57, gu)ll >

S =< Digy,sh > solve (3.1) to get s;.
else

set sy = —Digp
end

Case 2: M, is not positive definite. Compute wy = Djw;, where wy, is a unit vector
such that {w} is constraint-compatible and

wl Mywy, < max{—eéne, ToAmin(M)}

Dksgn(gk)

Let 2k = 15, 5gn (o1

if HT(’LD}C,Ek)H < maX(HDkng, —Tg’LDI{Mk‘lﬂk)

Sk =< Disgn(gx) >, solve (3.1) to get sg.
else

Sk =< Disgn(gx), Dywy, >, solve (3.1) to get sg.
end

Fic. 11. Determination of the descent direction sy

Remark on Case 2: We determine an appropriate negative curvature direction in
the following way. If a (sparse) Cholesky factorization of Mj, does not complete then
Mj, is not positive definite and a unit direction of non-positive curvature, wy, is readily
available and easily computable (e.g., [17]). Algorithm 6 can make use of w; provided
sufficient negative curvature is displayed by wy, i.e.,

(39) ’LDng‘lZ’k § —€pne

and {w; = Dywyg} is constraint-compatible. A constraint-compatibility test is imple-

17

mented by introducing a large constant, x.,, and requiring,

|w,

2

|'Ukz‘

(3.10)

If either condition (3.9) or condition (3.10) is not satisfied then w; must be rejected. In
this case we can turn to a Lanczos process [10] to get a unit vector wy such that both
(3.9) and (3.10) are satisfied. It is interesting to note that in our extensive numerical
experimentation, with results reported in Section 4, conditions (3.9) and (3.10) were
always satisfied by the (partial) Cholesky factorization method — the backup Lanczos
procedure was never required.

The Line Search. We have designed a specialized approximate line search proce-
dure to efficiently exploit the structure of this problem and to guarantee the line search
conditions in Algorithm 5. Before describing the approximate procedure, we develop
an exact line search procedure — this is possible because the problem is to find a local
minimizer of a quadratic function along a piecewise linear path. In the end we do not
use the exact line search per se but rather we use a truncated version of it, subroutine
“improve”, within an overall approximate strategy. But we begin with the exact search.

The Exact Line Search. We are initially concerned with the exact determination
of af where af is a local minimizer of g(x + pr(«)). Note: It is convenient to describe
the exact line search in terms of the y-variables, i.e., yry1 = yr + arsy and xp1q =
R(yk+1) = @k + pr(ax). With this view we have a straight-line minimization of a
piecewise quadratic function ¢;(«):

() = 4y + ask) = q(R(yx + asi)) = g(zx + pr(a)).
Henceforth in this section we omit the major iteration subscript.

The function §(«) =l gr(a) is a continuous piecewise quadratic function. The ray
y + as, a > 0 can be divided into intervals from left to right, I, = [8°, B'], I, =
(8%, 3?], ..., where 3° = 0 and ¢(«) is smooth on each interval. Denote the restriction
of ¢(a) to the ;' interval by ¢’(a) — note that ¢/(«a) is a quadratic function of a single
variable.

Our exact line search algorithm visits the intervals I3, I5, ..., in a left-to-right fashion
in an attempt to locate the first local minimizer of gx(a). Assume we have not located
a local minimizer on intervals Iy, I, ..., I;_; and assume that (¢’)'(37~) < 0. There are
two possibilities: either ¢’(a) has a minimizer strictly within the interval I; or it does
not. If it does, i.e., ol € (8771, 37) where (¢’)/(a?) = 0, then (a}). « of. However, if
¢’ does not admit a minimizer within /; then we must consider the possibility that 3/
is a minimizer of §z(a). This is now the case if (¢/+1)(3’) > 0. If o is not in int([;)
and (¢/*1)/(87) < 0 then this process is repeated on interval ;.

Algorithm 7 in Figure 12 presents a compact description of the exact line search
algorithm we have sketched above.

Step (1.2) in Algorithm 7 follows from the observation that if (a* = oo and 8% =
then s is a direction of infinite descent for §, beginning at y and therefore, by Theorem
1, z(a) = R(y + as) yields infinite (feasible) descent for (1.1).

18

Algorithm 7 [Exact line search along direction s beginning at point y]

(0) Determine the array of breakpoints BR according to (2.7). 3° « 0.

(1) For k=1,2,...,
(1.0) g% « min{BR : BR > 0}.
(1.1) Determine o, the minimizer of ¢*, if it exists; otherwise, set af = oco.
(1.2) If a* = 0o and 8% = oo then exit (problem (1.1) is unbounded).
(1.3) If of € int(I) = (B*1, %) then a. « of, exit.
(1.4) If (¢"*1)'(B%) > 0 then a. « BF, exit.
(1.5) If j is the index such that BR(j) = 8*, update BR(j) according to
Algorithm 2.

Fic. 12. The Ezact Line Search Algorithm

Our final concern, with regard to the exact line search, is an efficient implementation

of step (1.1). In theory this computation is straightforward. Assume ¢*(a) = af+afa+
taka®. If af > 0, then of = —%; if a§ < 0, then ¢*() is unbounded below; if a5 = 0,
then ¢*(a) is unbounded below (unless a¥ = 0 in which case ¢* is constant). However,
the challenge is to determine af and af efficiently, for k = 1,2, ...,. (Note that af is not
required.)

The key to efficiency here is the observation that the reflective transformation R
is linear on each interval I, = [3*71, 3], i.e., J® is constant within each interval. For
each interval I;, define o* to be the vector of diagonal elements of J¥ evaluated at any
point in the interval (y + 8*~!s, y + 3*s). Then, if z* = R(y + 3*~'s), it follows that
R(y+ B3 s+ as) = 2" + aD,o* for a € [0, 3% — 3*71], where D, = diag(s). Therefore,

iy + B"s + as) = (R(y + B + as)) = q(a* + aD,o*)

for a € [0, 8% — B*1]. It follows that

2

(3.11) () = q(z*) + a(c*)" D, V,q(2*) + %(ak)TDSHDSa’“.
Therefore, in the terminology used above, af = ¢(z*), a¥ = (6¥)TD,V,q(z*), and

ak = (ak)TDSHDSUk.
A straightforward implementation for determining a¥, a% requires O(n?) work per

breakpoint (af is not needed). However, there is considerable structure that can be

exploited; in particular, o**?

o” in exactly one component. We can exploit this to reduce the work in the line search

, a vector with each component equal to +1, differs from

to O(n) per breakpoint.
Suppose we have determined that [, does not contain of and we have at hand the
following quantities:

(3.12) w* = [D,HD,]o",

19

where D, = diag(s),

(3.13) ay = (6%)" D, V.q(2"),

(3.14) a]:f = (O'k)TDSHDSO'k = (Uk)T'wk,

and z*, the value of z at the k" breakpoint. If j is the index such that BR(j) = 3*
then

(3.15) okt = oF — 2(Jk)jej.

k

The vector w* can be updated as follows:

wttt = [DHD,)o*
= [DHD;)(0" = 2(c%);e;),
= w* — [DHD,]2(c")je;,
(316) = ’Ll)]C — QSj(O'k)]‘DsH]‘,

where H; is column j of H. Coefficient a5*! is simply computed:
(3.17) aftt = ("t Tkt
Coefficient af*! can be efficiently computed by considering the following equalities:

k+1 (O_k-|—1 T S(H:L,k-H _I_ c)]7

) D
= ("™ [D,(Hz* + ¢)] 4+ 6 (") D,H Dyo*,
(“)T[DS(H 2+ o)) + (o™)T,

(3.18) —2(0")jsHi 2" — 2(0")55¢; + 8 (") Tk,

where 6§, = ¥ — ¥, Finally, 2**! is computed:

(3.19) 2" = 2F 4+ 6. Dot

In summary, the coefficients ak‘H at™ and the intermediate quantities z*t1, wy 1,

can be computed, given a¥, a¥, 2%, w*, using (3.16),(3.17),(3.18) and (3.19). This amounts

to approximately 4n work. Of course the initial quantities, w®, a?, aj must be computed

k+1

from scratch requiring O(n?) work. Therefore, if k;, denotes the number of breakpoints
crossed, the total cost of the exact line search is:

(i) O(n?*) for initialization of w?,aY, a9,

(ii) O(n) for determination of BR,
(ii1) O(kpyn) for steps (1.0) - (1.5).

20

The Approximate Line Search. The exact line search described above is not
practical, for two reasons. First, an exact minimizer along a line may correspond exactly
to a breakpoint, i.e., a boundary point, and the algorithm requires strictly feasible
points. This is actually not a serious problem since a small perturbation would yield
strict feasibility and the reflective Newton method is not very sensitive to boundary
proximity.

A more serious objection to the exact line search is economy: despite the efficient
implementation described in the previous section, the relative cost can be high if the
number of breakpoints crossed, ky,, is large. Certainly if there are a large number of
tight variables at the solution, say something close to n, then the total cost of the exact
line search algorithm ultimately becomes O(r?) per line search. This is unsatisfactory
and unnecessary since an economical approximate line search can be just as effective.

In this section we describe an approximate line search, henceforth refer to as subrou-
tine improve, which uses the exact line search, described above, in a limited fashion—
beginning at an approximate minimizer, subject to a bound, k,, on the number of
breakpoints permitted to cross. In particular, improve is used in a cleanup role: after
determining an initial approximate minimizer by a bisection strategy, improve is called
upon to apply the exact line search strategy. Thereby the approximate minimizer is
further improved at cost O(k,n), where k, is typically chosen to be small, e.g., k, = 20.
(In emprove we also impose an approximate upper bound auay on the size of a. That
is, the size of the improvement is bounded by amax)-

Subroutine ¢mprove has the following calling sequence:

a = improve(y, ky, Omax, S)

A more precise description of the approximate line search algorithm is given in
Figure 13, Algorithm 8. The basic idea is as follows. First, if the direction s is a
Newton direction s&¥ then a unit step is attempted. If (2.9) is satisfied then the full
Newton step is accepted subject to further improvement by subroutine improve and
possible (slight) adjustment to avoid a breakpoint. Second, if s, does not corrspond to
a Newton direction or if it does but a unit step does not satisfy (2.9), then a bisection
procedure is executed on the interval (0, a,) where o, > 1 is an upper bound on the
step size. A point is located satisfying both (2.9) and (2.10) and then possibly further
improved with subroutine tmprove.

21

Algorithm 8 [Approximate line search along direction s beginning at point y]
If s;, = s and a unit step along s, satisfies (2.9)

o set &y = 1, Qmax = Xal| Drgrll

o set &y = improve(yr + QrSk, Ky, Cmax, Sk)

o if & satisfies (2.9), set &y = s

e if & corresponds to a breakpoint, set ay = & — ¢, where a4, is not a breakpoint
and 0 < e < {x1 min{||Drgrl||, o — p}}; else, set ar =

else { s;, # sl or a unit step along s does not satisfy (2.9)}

e use bisection to find &; € (0, v,) satisfying (2.9) and (2.10) such that é; is not
a breakpoint

sAet Omax = Oy — Qi

G = tmprove(yr + Qksk, Ky, Omax, Sk)

if &y satisfies (2.9), ay = &y

if &, corresponds to a breakpoint, set ap = &y — ¢ where ay, s not a breakpoint
and 0 < € < & — ay; else, set i, = a;
end

Fia. 13. Approzimate Line Search Algorithm

4. Numerical Experiments. We have implemented our algorithm in a version
of Matlab which allows for sparse matrix data structures [15], now Matlab 4.0. In this
section we present some preliminary numerical results.

With the exception of the results reported on Table 12, all experiments were per-
formed on Sun Sparc workstations in the Matlab environment [22]. Experiments re-
ported in Table 12 were performed in a heterogeneous environment involving an Intel
IPSC/860 32-node multiprocessor as the “backend”, and a Sun Sparc workstation as the
“frontend”. Matrix factorizations and solves were performed on the “backend”, in C,
while the main Matlab program executed on the “frontend”. Communication between
“frontend” and “frontend” over ethernet was implemented through the use of Matlab
“MEX?” files. We used this environment to facilitate the solving of very large problems.
(Details on this heterogeneous environment are given in [3].)

Starting and Stopping: In all the experiments reported in this paper the starting value

of x, i.e., x1, is as follows. For component j where both upper and lower bounds are

Li4u;
2

to component j are infinite in size, choose (x1); = 0. If [; is finite and u; = oo, choose

(x1); = l; +1; if [; = —oo and wu; is finite, choose (x1); = u; — 1. (Note: The
reflective Newton approach is not particularly sensitive to starting value. For example,

finite, choose the midpoint, (z1); = . If both upper and lower bound corresponding

22

we repeated many of the experiments reported here using a random (strictly) feasible
starting point — very little difference in behaviour was detected.)

Choosing a robust stopping rule in optimization is not easy. Our primary stop-
ping rule is based on the relative difference in function value. This is reasonable partly
because strict feasibility is always maintained, and partly because often the real ob-
jective in practical optimization is to achieve a point of relatively low function value.
Specifically, are primary stopping rule is:

(4.1) q(zr) = q(arsr) < tol+ (14 |g(2e)]).

We choose tol = 100 * g where g is unit roundoff (machine epsilon), i.e., in Matlab on
a Sun Sparc workstation, g = 2.2204 * 107, We do have secondary stopping criteria
as well - designed to determine when progress is deemed too slow. This secondary rule
tends to kick in when solving degenerate or ill-conditioned problems and a very flat
region around the solution has been entered.

Parameter settings: There are a number of parameters in the algorithm: most are
either in the very large or very small category. Here are the settings we used in our
experiments:

e 7,: Used in the determination of scaling matrix D, see (3.3): 7, = 107'2

e o, Used in the line search, see (2.9): o, = .1

e 0,: Used in the line search, see (2.10): o, = .9.

e k,: A bound on the number of breakpoints crossed in subroutine improve:
k, = 20.

e p: A lower bound on the stepsize, see Algorithm 8: p = .1.

Yo: If the line search produces a unit step which turns out to be a breakpoint,
this point is perturbed by an amount bounded by x| Dxgk||, see (3.8): xo = 1.
Xep: Used to test for constraint-compatibility, see (3.10): x., = 10%.

€nc: Used in the negative curvature test, see (3.9): €, = .0001.

71, 7o, T3: Used in Algorithm 6: 7 = 7, = 73 = p, where g is unit roundoff.

x1: Used in Algorithm 8: y; = 1.

o, An upper bound on the bisection process used in Algorithm 8: «, = 1.9.

4.1. Positive Definite Problems. We have generated a number of quadratic
test problems with certain properties. In the first set of results we concentrate on
the case where H is symmetric positive definite. In the results reported below we use
sparse matrices H with sparsity patterns representing 3-dimensional grid using a 7-
point difference scheme. The Moré/Toraldo [24] QP-generator was adapted to generate
problems with a given sparsity pattern (see also [6]). We will not review the generator
characteristics here: our generator is a straightforward adaptation of the Moré/Toraldo
scheme to the sparse setting. We use several sparse Matlab functions (e.g., “sprandsym”,
“sprand”).

In Tables 1-3, the dimension of the test problems is n = 1000 in each case. The
parameter “pctbnd” indicates the percentage of variables tight at the solution — ap-

23

proximately evenly divided between upper and lower bounds. Parameter “deg” reflects
the degree to which the solution is (nearly) degenerate - the larger the value of “deg”,
the greater the amount of (near) degeneracy. Technical details of “deg” are discussed in
[6]. Parameter “cond” reflects the conditioning of the matrix H: the condition number
of H is approximately 10,

The upper and lower bound vectors, u and [, were generated as follows. Approxi-
mately 75% of the components of [were chosen to be finite and assigned the value of zero
— the index assignment was made in a random fashion. Similarly, approximately 75%
of the components of u were chosen to be finite and assigned the value of unity. Again,
the index assignment was made in a random fashion, independent of the assignment of
[.

Each row of Tables 1-3 reflects the results of 10 independent runs with the same
parameter settings. The third column, labelled “max”, indicates the maximum number
of iterations required, over the set of 10 independent runs, to achieve the stopping
criteria; the fourth column, labelled “avg” records the average number of iterations
required to reach the stopping criteria over the 10 problems; the last column, labelled
“acc”, records the number of digits of accuracy achieved in the function value (the true
solution is known).

TABLE 1
Positive Definite Problems, pctbnd = .1, n = 1000

deg | cond | max | avg | acc
3 3 5] 14| 15
6 3 16 | 15.6 | 15
9 3 15| 15| 15
3 6 141127 15
6 6 16 | 15.3 | 15
9 6 15| 15| 15
3 9 131127 15
6 9 16 | 15.3 | 15
9 9 16 | 15.7 | 15

Observations on Tables 1-3: First, we observe the remarkable consistency of our re-
flective Newton method on these problems. In terms of iterations required to achieve the
stopping criteria and accuracy attained in the function value, there is apparently very
little sensitivity to degeneracy, conditioning, or number of variables tight at the solution.
Of course we do not claim that accuracy in z is independent of condition/degeneracy
— it surely is not. However, it is usually acceptable in optimization to attain a point
with nearly optimal function value and we have been quite successful in that (on this
test collection).

Second, the absolute number of iterations required to obtain a very accurate so-
lution (in terms of the function value ¢) is modest in every case, i.e., less than 20.

24

TABLE 2
Positive Definite Problems, pctbnd = .5, n = 1000

deg | cond | max | avg | acc
3 3 15 15| 15
6 3 7] 17| 15
9 3 17116.7| 15
3 6 16 | 15.3 | 15
6 6 181173 15
9 6 17 17| 15
3 9 151143 15
6 9 7] 17 15
9 9 171163 | 15
TABLE 3

Positive Definite Problems, pctbnd = .9, n = 1000

deg | cond | max | avg | acc
3 3 171 16.7 | 15
6 3 18 | 17.3 | 15
9 3 171163 | 15
3 6 16 | 15.7 | 15
6 6 18 | 17.3 | 15
9 6 18 | 17.3 | 15
3 9 16 | 15.3 | 15
6 9 171 17| 15
9 9 171 16.7 | 15

TABLE 4
Positive Definite Problems: Timing Breakdown

n| it | acc | totM | totls
216 | 9| 15 .6m .Tm
512 | 14| 15| 7.4m | 2.9m
1000 | 16 | 16 | 20.5m | 4.9m
1728 | 17| 16 | 96.5m | 11.1m
2744 | 14 | 15| 347m | 19.4m

This is very encouraging considering the dimension of the problems (n = 1000) and the
spectrum of problem characteristics being considered.

It is important to know where the algorithm spends its time. To this end we gen-
erated larger problems, with the same structure, and we have broken down the timing
information. In Table 4 we consider a representative positive definite problem with “av-
erage characteristics”, i.e., “deg” = 6, “cond” = 6, “pctbnd” = .5, and vary the problem
dimension n. (The sparsity structure remains the same.) The second column, labelled
“it”, records the number of iterations required to achieve the stopping criteria; “totM”
records the total number of flops used by the (partial) Cholesky factorization (“m”
represents a million); “totls” records the number of flops used in the approximate line
search algorithm. Over 95% of the total flop count on these problems is represented by
the sum of the “totM” and “totls” columns — the remaining work in the algorithm, such
as the 2-dimensional trust region solution, is negligible in comparison (see Appendix
for more detail on the solution of trust region problems).

Observations on Table 4: First, there is no significant growth in number of iterations
as the problem dimension n increases. High accuracy is maintained for larger values
of n as well. As n increases the sparse matrix factorization work, “totM”, increases
relative to the lines search cost, “totls”. Therefore, speedup of the (partial) sparse
Cholesky factorization aspect of the algorithm (e.g., use of parallelism, exploitation of
specific particular structure) will have significant impact on the overall computing time.
Conversely, improving the approximate line search (in terms of cost) is not a crucial
computing issue, at this point, for large-scale problems.

In addition to these randomly generated, but structured, positive definite problems,
we have experimented with three specific test cases. Two of these problems are from
the literature (e.g., [12, 24]) and the third example is new. In Tables 5 and 6 we report
on the “obstacle” problem — in the first case there are lower bounds only, in the second
case there are lower and upper bounds. In defining the specific example used we have
chosen the same parameter settings and specific functions used in [24]. Table 7 reports
on the elastic-plastic torsion problem. Again we used the same parameters as reported
in [24] to define the problem.

In Table 8 we report on a linear spline approximation problem. This type of prob-
lem arises, for example, in a particle method approach to turbulent combustion sim-
ulation [28]. The problem results in a large sparse least-squares problem subject to

26

nonnegativity constraints on the variables. To set up a sample problem we assume
an m-by-m-by-m 3-dimensional grid. Within each cell are a set of particles randomly
located (we use approximately 10 particles per cell in our experiments). Each particle
p has a known function value, ¢(p). Associate with each grid intersection point a linear
basis function and determine the best set of coefficients, x, for the basis functions, in
the least-squares sense, subject to nonnegativity constraints on z. The function ¢ we
used in our experiments is defined: given a point in 3-space, p = (p1, p2, p3):

é(p) = .3sin(9.2p;) sin(9.3pz) sin(9.4p3).

TABLE b
Obstacle Problem: Lower Bounds Only

m n | its | norm
30 900 | 11 12
40 1600 | 13 13
50 2500 | 14 13
60 3600 | 14 11
100 | 10,000 | 15 12

TABLE 6
Obstacle Problem: Lower and Upper Bounds

m n | its | norm
30 900 | 11 11
40 1600 | 12 12
50 2500 | 14 12
60 3600 | 13 13
100 | 10,000 | 14 10

TABLE 7
Elastic-plastic Torsion Problem

m n | its | norm
30 900 | 11 13
40 1600 | 11 13
50 2500 | 11 12
60 3600 | 11 13
100 | 10,000 | 11 12

Observations on Tables 5-8. The most noteworthy observation is the apparent
insensitivity of our method to problem size for each of these problems. The number of
27

TABLE 8
Linear Spline Approzimation

m n | its | norm
18 5832 | 16 12
20 8000 | 17 11
22 110,648 | 17 11
24 113,824 | 17 10
25 | 15,625 | 16 10

iterations does not grow, for a given problem class, as the dimension of the problem
increases. For example, for the linear spline problem, 16 iterations are required when
n = 5832, 16 iterations are required when n = 15,625. Moreover, the number of
iterations is always modest, on this test set, i.e., less than 20. High accuracy is achieved
in all cases.

4.2. Indefinite Problems. We have adapted the Moré/Toraldo QP generation
scheme, in combination with sparse matrix functions in Matlab 4.0, to generate large
sparse indefinite matrices with a given sparsity pattern and given approximate set of
approximate eigenvalues. In the indefinite case we chose finite upper and lower bound
vectors, [=0, u = 1. (This is to avoid the generation of unbounded problems.)

In each of the problems in Tables 9-12 roughly 10% of the eigenvalues of H are neg-
ative. The column labels are the same as before however here “acc” does not represent
the number of accurate digits compared with the true solution since the true solution
is unknown due to indefiniteness of H. Instead, “acc” records the number of matching
digits in the objective function ¢ in the last 2 iterations. (In each case the optimality
conditions were verified to hold at the final point.)

TABLE 9
Indefinite problems. petbnd = .1,n = 1000

deg | cond | max | avg | acc
3 3 18 | 16.7 | 15
6 3 19 17| 15
9 3 23 1193 15
3 6 141 13.7] 15
6 6 321227 | 15
9 6 26 | 21.7 | 15
3 9 5] 141 15
6 9 16 | 15.7 | 15
9 9 16 | 15.7 | 15

Observations on Tables 9-11: Iteration counts indicate that our method is not quite
as consistent or efficient on indefinite problems compared to the performance on positive
definite problems. Still, the overall efficiency seems very good — the average number of

28

TaBLE 10
Indefinite Problems. pctbnd = .5,n = 1000

deg | cond | max | avg | acc
3 3 171157 15
6 3 19 18| 15
9 3 18 116.7| 15
3 6 151133 15
6 6 181173 15
9 6 19 | 17.7 | 15
3 9 141113 15
6 9 16 | 15.7 | 15
9 9 25 | 183 | 15
TaBLE 11

Indefinite problems. pctbnd = .9,n = 1000

deg | cond | max | avg | acc
3 3 16 | 13.3 | 15
6 3 18| 16| 15
9 3 16| 11| 15
3 6 13 12| 15
6 6 4] 13| 15
9 6 16 | 14.3 | 15
3 9 121 11.3 | 15
6 9 15| 13.7 | 15
9 9 151127 15

29

iterations required for any problem category is always less than 23.
In Table 12 we indicate where the algorithm spends its time on indefinite problems
by considering a representative example and increasing the dimension.

TABLE 12
Indefinite Problems: Timing Breakdown

n| it | acc | totM | totls
216 | 9| 15 .6m .Tm
512 | 12| 15| 7.4m | 2.9m
1000 | 10 | 16 | 20.5m | 4.9m
1728 | 17| 16 | 96.5m | 11.1m
2744 | 14 | 15| 347m | 19.4m

Remark on Table 12: We see no apparent growth in required iterations as n increases.
Clearly the “totM” column dominates the “totls” column as n increases. Recall that
“totM” represents the matrix factorization flop count while “totls” represents the num-
ber of total flops required by the line search procedure. Therefore, to obtain further
improvements in efficiency for this type of approach it is best to focus on the matrix
factorization aspect of the overall procedure.

5. Theory and Conclusions. The numerical results obtained to date strongly
support the notion that a reflective Newton method represents an efficient way to accu-
rately locate local minimizers of large-scale (indefinite) quadratic functions subject to
bounds on some of the variables. The theory is supporting also: our reflective Newton
method is globally and quadratically convergent. Coleman and Li [10] present impor-
tant theoretical properties of reflective Newton methods for general nonlinear functions,
subject to bounds on some of the variables. The method in this paper is a specialization
of the general method to the quadratic case. Therefore, the general theory applies.

We make a compactness assumption before formally stating the main result.

Compactness Assumption: Given initial point x; € F, it is assumed that the level
set L={z: x € F and ¢q(z) < g(x1)} is compact.

THEOREM 2. Let {xy} be generated by Algorithm 5 with {sy} generated by Algo-
rithm 6 and with {ay} determined by the approximate line search algorithm (Algorithm
7). If 3 < ﬁ, then!?,

o Fvery limit point of {x} is a first-order point.

10 pas is the maximum spectral radius of M(z) on £ = {z : = € F and gq(z) < g(z1)}. Since p(M (z))
is continuous on £, a compact set, the upper bound pp; exists. Recall that 73 is a constant used in

Algorithm 6.
30

o Lvery nondegenerate limit point satisfies the second-order necessary conditions.

o [f a nondegenerate limit point x, satisfies second-order sufficiency conditions
then, provided 7, is sufficiently small, {xy} is convergent to x.; the convergence
rate is quadratic, i.e.,

251 = 2]l = Ollz — 2]]*).

Proof. This algorithm is in the class of algorithm described in [10] and all the
assumptions of Theorem 20 in [10] are satisfied. The result follows from Theorem 20 in

[10].]

In conclusion, strong theoretical and computational results indicate that a reflective
Newton method is an efficient and reliable way to solve problem (1.1) to high accuracy.
The computational results reported in this paper support this claim.

6. Acknowledgement. We thank our colleagues Jianguo Liu and Danny Ralph
for many helpful discussions on this work. Danny Ralph drew our attention to the
topology reference [25].

31

7. Appendix: The trust region problem. The trust region problem is
1
(7.1) min{g’s + §5TA5 sl < A}

where A is a real symmetric matrix and || - || denotes the 2-norm. The purpose of this
section is to review the nature of problem (7.1) and discuss a possible solution suitable
for low-dimensional problems. (In the context of our reflective Newton method for
problem (1.1), A is matrix M(z), a symmetric matix of order 2. The computational cost
of the procedure we describe to solve (7.1) is negligible compared to the other required
computations in the reflective Newton algorithm we propose.) For larger problems a
more approximate procedure is usually preferred, e.g., [14, 23, 30, 31]. Much of the
material in this section can be found elsewhere, e.g., [2, 4, 11, 14, 23, 29, 30, 31].

Diagonalization. We begin with an extremely useful characterization of the global
solution to (7.1).

THEOREM 3. Vector s solves (7.1) if and only if there exists a scalar X > 0 such
that
(a) (A+Al)s = —y,
(b) (A4 AI) is positive semude finite,

(c) lIsll <A,
(d) (llsl]l =A)A=0.
Proof. A proof is given, for example, in [30]. [

The usefulness of this result is best revealed after diagonalization. Suppose A =
VAVT where the columns of V are the orthonormal eigenvectors of A and

(72) A= diag()\l, ...,)\n),)\1 S)\2 S S)\n
Obviously then A+ A = V(A + M)VT and so (a) is equivalent to
(7.3) (A+ANs=a _VTy s Vs

By (b), A > =1, and so all vectors s satisfying (a, b) are of the form

(7.4) s= Y (gt X

{2:A;+2>0} {i:\;+A=0}

The vector 3 is arbitrary with respect to (a,b) but can sometimes help with respect
to satisfying (c,d). A basis for an algorithmic approach to this problem is to assume
the form given in (7.4) and strive to satisfy (c,d) by choosing A, and in some cases
3, appropriately. (plays a role only if A\, = —A;, where A, is the value of X at the
solution.)

The situation where (c,d) can be satisfied with ||s|| < A and A = 0 is easily
dispensed with (first half of Case 1 below). Therefore the primary task, assuming form
(7.4), is to determine A, and sometimes /3, to satisfy

(7.5) s — A = 0.
32

We divide our approach into three possibilities. Define Z = {i: A\; = A\ }.

Case 1: Ay > 0. In this case either the Newton step is within the sphere ||s||2 < A or it
is not. If ||[A™'¢|| < A then the optimal solution s, = —A~'g, A, = 0. Otherwise, for
A > 0 define s(\) = Zle(ﬁ)vz

Case 2: Ay <0 and for some ¢ € T, a; # 0. For A > —)\q, define s(\) = Zle(%)vz
Figure 2 illustrates ||s())|| for A around —\;. Obviously ||s(A)|| — oo as A — — AT, and
|s(A)|| — 0 as A — oo. Moreover, ||s(A)|| is convex; therefore, ||s(A)|| intersects A in

exactly one place for A > — ;.

Case 3: Ay < 0 and Vi € Z,a; = 0. Let 51(\) = Ziez(ﬁ)vi- Clearly |[[s1(=A1)]|
is finite. Consider figures 3,4. There are now two possibilities. If ||s;(=X1)| > A
then there is a solution to (7.5) to the right of —X;, s(A) = s1(A). Otherwise, s =
$1(—A1) + Xier Bivi with 3 chosen to ensure (7.5), and A, = —A;. Note that if |Z]| > 1

then the null space component of s may not be unique.

The Reciprocal Secular Equation. In theory we can build an algorithm on the
remarks given above. However it is better, numerically, to replace condition (7.5) with
def 1 1

(7.6) rsec(A) = N SO0 =0

Equation (7.6) is more linear in shape than equation (7.5); therefore, equation (7.6) is
more amenable to solution via Newton’s method.
Considering the definition of rsec()),
1 1
(7.7) rsec(\) = TRy — T
() + (52 + -+ ()]

it is easy to verity the following:

D=

. rsec(A) is convex on (—Ap, 00] and limy_ rsec(A) = —o0.

N =

2. lzmAﬁ_A;rrseC()\) is finite. d
3. If a; # 0, for some ¢ € Z, then rsec(—A;) 2 limA_>_A1r rsec(A) = . Obviously
a single zero of rsec exits to the right of —\; in this case.

4. Vi € Z,a; = 0, then rsec(—\;) =l lim,_,_y+ rsec(A) = £+ — ———.
1 [E1€I(ﬁ)2]

[N

Algorithmic and Numerical Concerns. We assume that a solution to (7.1) is
sought and we are willing and able to compute full eigenvalue information, A = VAVT,
(If this is not the case, perhaps due to the cost, then it is possible to approximately
solve (7.6) using an iterative scheme involving the Cholesky factorization of A + AI,
(14, 23].)

33

The method using A = VAVT appears to be straightforward.

Case 1: Ay > 0. If ||[A~'g|| < A then the Newton step, —A~'g, is the solution with
A= 0. If ||[A™tg]| > A then we can determine the zero of rsec(A), A > 0.

Case 2: Ay <0 and for some : € 7, a; # 0. Then limA_HA;r rsec(A) = % and rsec admits
a single solution to the right of —\;.

Case 3: \y <0 and Vi € Z,a; = 0. Let s = s1(\) + Sv; where s1()\) = Eigz(%)vi-
If ||s1(—A1)]| > A then there is a zero of rsec()) to the right of —A; with s(A) = s1(X).
Otherwise, a solution to (7.1) is given by (7.4), s = s1(—A1) + ;7 Bivi, with 3 82 =
A% — ||s1(=A1)]]%, and A = —Ay.

Unfortunately, the situation is not quite so clean from a numerical point of view:
there is fuzziness between the second and third cases. In particular, if ay is small the
equation rsec(A) = 0 is very ill-conditioned for A near —A; and it can be quite difficult
(nigh impossible) to compute A such that rsec(\) is small. This extreme ill-conditioning
is due to the following “disagreement”.

Assume Z = {1}, for simplicity, and note that, if oy = 0,

de 1 1

foq-
(78) rsec(—)\l) = lim I’SGC()\) =~ - - -
A=A A G+ o+ (5225

B[

On the other hand, if a; # 0, rsec(—)\l)déf lim, ,_,+rsec(\) = % which is not, in
general, the limiting value of (7.8). Therefore nearbylproblems (n =0 .vs. a3 =€)
can yield very different solutions to (7.6), and this is the cause of the ill-conditioning
of (7.6). Our solution to this ill-conditioning problem (trust.m) is to first attempt to
find a solution to rsec(\) = 0,A > —\;. However, if |rsec())| is not small, where X is
the computed “zero” returned by the zero-finder, then we set A, = —A; and compute a
solution to (7.1) via (7.4).

This strategy works because the solution to (7.6) with «; small for ¢ € 7 is close to
a solution of (7.1) with the corresponding «; at zero. To see this, initially assume that
T = {1}; that is, A\; < As,.

Now first consider the case where a; = 0. Then the solution to (7.1) is:

(7.9) s = Z(& Jvi + By,
i>1 Ai =M

where 3% = A? — Ei>1(Ai—i,\1)2 (we assume A? < Ei>1(,\fi—i,\1)2§ otherwise, the result

is obvious). Define s; = 3,5, (%5)vi; hence, the solution to (7.1) can be written
s = 51+ PBug.
Next consider a; = €, a small number. We can write the solution to (7.1) as
o a7
7.10 A) = ;i vy
(7.10) S0 = DT+ (o

But as a; — 0, A — =Xy (to keep ||s(A)|| = A). But as A — —)q, Zbl(%)vi — 81,
which implies

aq

AL+ A

(7.11) () — B% as a; — 0.

Therefore, the solution to (7.1) with «y = € is near to the solution to (7.1) with a; = 0.
In general, if |Z| > 1 a solution to (7.1), with some components «; near to zero, is

near to a solution of (7.1) with those components set to zero. In this case, where several

coefficients «; equal to zero, ¢ € Z, problem (7.1) does not enjoy a unique solution [see

(7.4)] but the range space component is unique.

35

[23]

REFERENCES

A. Biorck, A direct method for sparse least squares problems with lower and upper bounds,
Numerische Mathematik, 54 (1988), pp. 19-32.

R. H. BYrD AND R. B. SCHNABEL, Approzimate solution of the trust region problem by min-
imization over two-dimensional subspaces, Mathematical Programming, 40 (1988), pp. 247-
263.

S. CHINCHALKAR, Ipsc-matlab reference manual, Tech. Rep. CTC92TR106, Advanced Comput-
ing Research Institute, Theory Center, Cornell University, September 1992.

T. F. CoLEMAN AND C. HEMPEL, Computing a trust region step for a penalty function, SIAM
Journal on Scientific and Statistical Computing, 11 (1990), pp. 180-201.

T. F. CoLEMAN AND L. A. HULBERT, A direct active set algorithm for large sparse quadratic
programs with simple bounds, Mathematical Programming, 45 (1989), pp. 373-406.

—, A globally and superlinearly convergent algorithm for convex quadratic programs with simple
bounds, Tech. Rep. TR 90-1092, Computer Science Department, Cornell University, February,
1990 (to appear in STAM Journal on Optimization).

T. F. CoLEMAN AND Y. Li, A quadratically-convergent algorithm for the linear programming
problem with lower and upper bounds, in Large-Scale Numerical Optimization, T. F. Coleman
and Y. Li, eds., STAM, 1990, pp. 49-57. Proceedings of the Mathematical Sciences Institute
workshop, October 1989, Cornell University.

——, A global and quadratically-convergent method for linear lo, problems, SIAM Journal on
Numerical Analysis, 29 (1992), pp. 1166-1186.

—, A globally and quadratically convergent affine scaling method for linear l; problems, Math-
ematical Programming, 56, Series A (1992), pp. 189-222.

———, On the convergence of reflective Newton methods for large-scale nonlinear minimization
subject to bounds, Tech. Rep. TR 92-1314, Computer Science Department, Cornell University,
1992.

A. R. ConN, N. I. M. GouLp, AND P. L. ToiNT, Global convergence of a class of trust region
algorithms for optimization with simple bounds, SIAM Journal on Numerical Analysis, 25
(1988), pp. 433-460.

R. S. DEMBO AND U. TuLowITZKIl, On the minimization of quadratic functions subject to box
constraints, Tech. Rep. B 71, Yale University, 1983.

R. FLETCHER AND M. P. JACKSON, Minimization of a quadratic function of many variables
subject only to lower and upper bounds, Journal of the Institute for Mathematics and its
Applications, 14 (1974), pp. 159-174.

D. M. Gay, Computing optimal locally constrained steps, STAM Journal on Scientific and Sta-
tistical Computing, 2 (1981), pp. 186-197.

J. GILBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in matlab: Design and implemen-
tation, tech. rep., in preparation, 1991.

P. GiL. AND W. MURRAY, Minimization subject to bounds on the variables, Tech. Rep. Report
NAC 71, National Physical Laboratory, England, 1976.

P. E. GiLL, W. MURRAY, AND M. H. WRIGHT, Practical Optimization, Academic Press, 1981.

D. GOLDFARB, Curvilinear path steplength algorithms for minimization algorithms which use
directions of negative curvature, Mathematical Programming, 18 (1980), pp. 31-40.

J. J. JUpicE AND F. M. PIRES, Direct methods for conver quadratic programs subject to box
constraints, departamento de matematica, Universidade de Coimbra, 3000 Coimbra, Portugal,
1989.

Y. L1, A globally convergent method for l, problems, Tech. Rep. 91-1212, Computer Science Dept.,
Cornell University, 1991 (to appear in STAM Journal on Optimization).

P. LoTSTEDT, Solving the minimal least squares problem subject to bounds on the variables, BIT,
24 (1984), pp. 206-224.

C. B. MOLER, J. LITTLE, S. BANGERT, AND S. KLEIMAN, ProMatlab User’s guide, MathWorks,
Sherborn, MA, 1987.

J. J. MoRE AND D. SORENSEN, Computing a trust region step, STAM Journal on Scientific and

36

[30]
[31]

[32]

Statistical Computing, 4 (1983), pp. 553-572.

J. J. MoRE AND G. ToRrALDO, Algorithms for bound constrained quadratic programming prob-

lems, Numerische Mathematik, 55 (1989), pp. 377-400.

J. MUNKRES, Topolgy, A First Course, Prentice-Hall, 1975.

D.

U.

S.

P. O’LEARY, A generalized conjugate gradient algorithm for solving a class of quadratic
programming problems, Linear Algebra and its Applications, 34 (1980), pp. 371-399.
OREBORN, A direct method for sparse nonnegative least squares problems, PhD thesis, De-
partment of Mathematics, Linkoping University, Linkoping, Sweden, 1986.

PorE, Application of the velocity-dissipation PDF model to inhomogeneous turbulent flows,
Phys. Fluids A, to appear (1991).

. A. ScHurrz, R. B. ScHNABEL, AND R. H. BYRD, A family of trust-region-based algorithms

for unconstrained minimization with strong global convergence properties, SIAM Journal on
Numerical Analysis, 22(1) (1985), pp. 47-67.

. SORENSEN, Trust region methods for unconstrained optimization, SIAM Journal on Numerical

Analysis, 19 (1982), pp. 409-426.

. STEIHAUG, The conjugate gradient methods and trust regions in large scale optimization, STAM

Journal on Numerical Analysis, 20 (1983), pp. 626-637.

. K. YaNG AND J. W. ToLLE, A class of methods for solving large convex quadratic programs

subject to box constraints, tech. rep., Department of Operations Research, University of North
Carolina, Chapel Hill, North Carolina, 1988.

37

