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1 In this paper, we continue the work begun in [ 1], refounding modal logic.
In [1] we constructed some systems of propositional modal logic and saw
how the technique involved resolved many of the awkward problems
surrounding such logics. The technique was then extended to modal
predicate logics in a natural (but we now think philosophically insignificant)
way. In this paper we extend the technique to modal predicate logics in a
different way which, we think, resolves many of the problems associated
with quantified modal notions.

Modal logic as presently conceived is ill-founded. And it is precisely
for this reason that it seems to have run into a blind alley. When Lewis
constructed the first modal logics, he constructed them as extensions of
first-order languages (i.e., as first-order languages with one new connec-
tive <), since these were the only logics formalized at the time. No one has
since questioned this assumption, which we think is wrong. As we argued
in [1], necessary truth, like truth, is a semantic concept. It is hence
impossible to formalize it properly within an extended first-order theory,
and now that we have formalized semantic theories (since [9]), we are ina
position to correct Lewis’s mistake. Had, in fact, modal logic been
invented in the 1960’s instead of the 1920’s, then it would have been
originally formulated as a semantic theory. Now, reading necessity as a
semantic operator is in accordance with Quine’s first grade of modal
involvement (see [4]), which he considers safe but uninteresting. We will
show it to be far from uninteresting. Since quotation is referentially opague,
he considers quantified modal logics impossible on this reading. We will
show that this is not the case. Further, he regards all sentences of the third
degree of modal involvement (i.e., quantified modal statements) as
confused, meaningless, and leading to metaphysical commitment. We will
show how we can make perfectly good sense of quantified modal statements
without endangering such unpleasant ends. Finally, in the introduction, we
note that one of the arguments we used in [1] to show that modality is a
meta-concept, viz. the compulsive Liar paradox, is used by Prior in [6] to
refute exactly this position. He assumes however, that modal logic must
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be a first-order Lewis-type system, which we used the compulsive Liar
paradox to refute.

2 The language we construct in this paper is, in fact, an object-meta-
language pair as in the system ¢, of {1]. For the object language O, we
take the two-valued predicate calculus. (Although we could carry out the
same construction with any first-order, intuitionist, or many-valued theory
with quantification. We note also that we could choose any of these for the
logical basis of the meta~language ¢/, and in this context, a free logic,
i.e., one valid in the empty domain would be particularly appropriate.)

Object language, 0 The two-valued predicate calculus, with any of the usual
axiomatizations.

Notation
Connectives: A v, 1, o, >
Quantifiers: v, 3
Predicates: A B, C,...
Variables: Xos Vos Bos + »

and perhaps some
Individual Constants: a,, by, Cq, - - -
We write ‘I;’ for ‘is a thesis of 0’.

Meta-Language # We want the language G# to be able to talk about the
formulas of 0. We could supply a name for each symbol of O, e.g., ‘V’ for
Y, 6X? for ‘x’, ‘=>’ for ‘-7, ‘¢’ for ‘A’, ‘-’ for ¢7°, etc., and then
stipulate that the name of any formula of O is its corresponding structural
description, e.g., the name of Vx,A x, — 1A %, would be VX, § X, = -6 X,.
However, because there is an obvious isomorphism between every formula
and its structural description, we can use wffs of 0 autonomously, and
dispense with the need for new symbols. Hence, we make the following
convention:

Convention C If a formula of O occurs within the scope of a ¢ I5°’, (or any
other meta-language predicate we introduce) then the symbols do not have
their normal meanings, but are autonomous,i.e., they name themselves; and
their concatenation names the formula of O which is the concatenation of
them.

We make this convention since, as we shall see, no confusion can arise
as to whether the symbols are being used autonomously or not, this being
determined unambiguously by the context. Further this makes the symbol-
ism more easy to read, brings it in line with an informal mode of speech,
and brings out the connection between G# and the more usual systems of
modal logic.

We note also that according to Frege (see, e.g., [7]) something very
similar happens in ordinary language, where quotation marks produce an
oblique context, within which each expression denotes itself.
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Notation of GP

Individual Constants: Any symbol or linear concatenation of symbols of O
is an individual constant symbol of GP

Predicates: The only predicate is ‘I’

Connectives and quantifiers: v, », 1, —, ¥, 3

Variables: x, y;, 2, . . .

Now the variables of G# are to range over the individual constant symbols
of 0. This is a very important point; the objects quantified over in the
meta-language are symbols, viz. ay, by, ¢y, etc. We could clearly have
variables ranging over all the formulas of 0. We would then, however, have
to introduce additional machinery such as a predicate for ‘is an individual
constant symbol of 0, for our purposes.

Formation Rules
We will use the following syntactic variables:

p, g, ... will denote wifs of O.
P, @, . . . will denote wifs of G&.

ag, Bo, . . . Will denote variables of 0.
dy, By, . . . will denote variables of Gf.
plag . . . Bo) will mean that the variables of p occur amongst a; . . . f,.

plag . .. B)Y will denote plap...B,) with a,... B, substituted for some
occurrences of a5 . . . 3.

And

a) i pis a wif of GF.
b) If P(ag . . . Bo) is a wif, then P(a, . . . B,) is.
c) If P, Q are wffs, so are 1P, P — @, (3a,) P.

These clauses form a complete recursive definition of the wifs of G#.
Definitions

D1 The usual definitions of a, v, V, etc.
D2 Lp =ay ¥ p.
D3 Mp =qf 1L 1p.

By D2 we do not intend to imply that ‘necessarily true’ means ‘provable’ in
some system or other. Axiomatization is usually a post-hoc characteriza-
tion or a body of truths. We assume that the set of truths we are interested
in has been axiomatized for us. So ‘L’ is, in effect, a primitive constant.
We note and accept Quine’s thesis that necessity is not definable in terms
of non-circular concepts. However, this does not mean that necessity is
meaningless: many meaningful concepts can only be defined in circular
terms (e.g., set, collection, class, etc.). ‘i’ will mean ‘is a thesis of GF”.

Axioms

MI1-M5, as in [1]. These form a complete axiomatic basis for the two-
valued predicate calculus.
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M6 Lp — Mp
M7 L(p— q) — (Lp — Lq)

M6 and M7 state the consistency of O and the validity of modus ponens in O,
respectively. (We note in passing that the converses of M6 and M7, viz,

L 1p — Lp and (Lp — Lgq) — (L(p — q))

state forms of the completeness of O and the deduction theorem for O,
respectively.) Plus some of M8-M11.

M8& }—l(aal)Lp(al) — L(3ao) pao)
M9 HL(Vag) plao) — (Vai) Lp(ay)
M10  w(Vay) Lp(a,) — L(Vag) plag
MI11  HL(3ag) plao) — (Jay) Lpay)

Exactly which of M8-MI11 one chooses is a matter for philosophical
deliberation, which we will not enter into here. In this paper we will just
say which combinations we use, and when. As a formalization of the
concept of logical necessity, the order 8-11 represents in increasing order
of dubiousness, the desirability of inclusion in the system. The line is
normally drawn between 9 and 10. M8 and M9 state the rules of existential
generalization, and instantiation for O, respectively. Alternatively, since
M8 asserts that inferences from p(a) to (3x) p(x), are valid in @, this can be
taken as saying that all the individual constant symbols of O denote. If we
were to choose for O a language in which this does not hold, we would have
to modify M8 and M9 in a fairly obvious way. Further, if O had terms in it
other than individual constants, e.g., if O had function symbols or a
description operator, we may or may not choose to let the variables of GF
range over all the terms of 0. We will consider this point later in another
context, but for the moment, we will just note that if we do allow this, and
if these terms can fail to denote, then we shall need to make similar modi-
fications to the axioms. MI0, the Barcan formula in thin disguise, states in
effect, the w-completeness of O (or what would be w-completeness if O
were some formal arithmetic). MI1 states the w-consistency of O
similarly.

Rules of Deduction for GP

a) Modus Ponens: From HP and HP — @ infer HQ-
b) Universal Generalization: From P infer K (Va,)P.
¢) Rule T: This translates between O and G&.

From i p infer K Lp and vice-versa.
This completes the specification of G&.

3 We will now give a few proofs in G#. In the following proofs, theses of 0
and predicate calculus valid theses of G will be taken for granted and
usually omitted from the proof. ¥ contains a complete axiomatic basis for
the system , of [1] Hence, any thesis of ¢, is derivable in #, and this
forms the modal propositional logic basis of GP. At the beginning of each
proof we will note which of M8-M11, we use in the proof.
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GPI (M8) +(V%,) Lp(%) — L(3xo) p(xo)

Proof:
@ k(3% Lp(x,) — L(3xo) p(xo) (M8)
(i) (vVx) Lp(xy) — (Ix) Lp(x,) (Pred. calc.)

so by (i), (ii), and a tautology, we have GPI.
GP2 (M10) v (Vx,)Lp(xy) — 1L(3xg) 1p(x,)

Proof:

k(Y8 Lple) — LVE) plxd) (M10)
(1) 1 L(Vx0) plxg) — 1L (V%) p(%o) (M6)
(i) K (Vo) plxe) <> (3x,) 1p(x0) (Pred. calc.)
(iv) K L (V%) plxo) <> L(3x,) 19(%o) ((iif), T, M7)

so by (i), (ii), (iv), and a tautology we have GP2.
GP3 (M9) W (3x) 1Lp(x,) — TL(V,) p(x,)

Proof:
1) I'iL(\leo)P(-"u) — (Vxy) Lp(x) (M9)
(ii) Ly WVxy) Lp(xy) — 1L(V%) plx,) ((1) and taut.)

so by (ii) and the predicate calculus, we have GP3.

GP4 (M9) + (3x) 1Lp(x1) — M(3x,) 1p(xo)

Proof:

(i) EALp <> M 1P (D3)
so by i), GP3, and the predicate calculus, we have GP4.

GP5 (M9) W L(Vx,) p(xe) — (3x,) Lp(xy)

Proof:
() K L(VZg) p(xo) — (Vx,) Lp(xy) (M9)
(i) K (Yx) Lplx,) — (3xy) Lplxy) (Pred. cale.)

so by (i), (ii), and a tautology we have GP5.

Notice that since many things of the form (Vx,)p(x,) are provable in O,
GP5 implies that there are some individual constants in 0. Since in our
construction these were optional, this seems rather strange. However, a
moment’s reflection shows that this is a result of the fact that the predicate
calculus is only valid in non-empty domains, and this is how this result
slips in. So a free logic would be more appropriate for the logical basis of
GP. However, this is not of too great importance.

4 Semantics We now consider some semantics for GF. From now on we
shall only consider closed formulas of G#. (An open sentence is deduc-
tively equivalent to its closure.) These have the property that all variables
occurring in them have their semantic category determined unambiguously
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by their context. Thus the indices of variables may be dropped. We define
P' to be the sentence P with subscripts omitted. Models, definitions of
validity and completeness proofs for the above systems (i.e., with various
of M8-M11) are easily found along the lines of Kripke semantics. The
variations to the standard cases (S4 and S5) are straightforward. It is also
easy to prove semantically that if P is any closed wif of G#, then S4 P’
iff M1-M9+P and B + S4+P' iff MI-MI0O+P. A much more natural
concept of model is, however, obtained as follows:

Since the vocabulary and theorems of a ¢/ meta-language are in part
determined by its object language, 0, we define truth and validity for an
0-G# pair. For the moment we consider the case where G# has axioms
MI-M9 and we will extend this later. So let O be any fixed but arbitary
object language which is a) consistent and in which b) modus ponens,
c¢) existential generalization, d) instantiation hold.

We define: (' is an extension of O if all the vocabulary of O is vocabulary
of 0', and every axiom or axiom scheme of O is an axiom or scheme of 0.

We define: an O0-GP model is a consistent extension of O with at least one
individual constant symbol.

Given any O0-GP model (', the variables of G# range over the individual
constant symbols of 0', and the interpretation of L is the set of sentences

{p; O'Fp}, i.e., Lp is true in Q' iff O'+-p.

The definition of truth for wffs of G4 is then in the usual way, by induction
over the lengths of sentences.

We define: A wff is valid if it is true in every O-G# model, It is easy to
check that every # theorem of an 0-G# pair is valid.

We have a very neat completeness proof for the above semantics. First we
prove the Satisfaction Theorem.

Satisfaction Theorem If 2 is a consistent set of sentences of an Q- GP paiv
with vespect to the rules and axioms of GF then T has an 0-GP model.

Proof: Given 0-GF, let 0' be the extension of 0 whose vocabulary is
precisely that of O plus the set of individual constants {@i; i, jew} (the
case when O is uncountable is as usual) and whose axioms and schemes are
precisely those of 0. We can extend T to a maximally consistent (with
respect to the rules and axioms of Q'-GF) set of sentences = of 0'-GP,
such that if (3a,) P(a)e=® then for some i, jew, Pla;)eZ® and if
(3ag) play) € 2%, then for some i, jew, pla;;) € =%, in the usual way. Now let
0" be the language whose vocabulary is that of 0' and whose axioms are
all the sentences of 0" in =, Let A be the set of axioms of 0'' then

peA iff p is a wif of 0' and p € Z°.

A is clearly maximally consistent and 0’ is trivially an extension of Q' and
0. Further, conditions a)-d) above hold in 0", since all instances of axiom
schemes M6-M9 are in £“. Hence (" is an 0-G# model. Hence all we
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have to do is prove that it is a model for Z. Since A is maximal, if pis a
wif of 0'', then

ArFpiff peA.
It is now easy to prove by the usual induction that for any wff P of ¢/,
Pe Z?iff P is true in 0",

The proof is by induction over the length of P, All the induction steps are
exactly as for the usual Henkin-type proof. We will prove the basis

LpeZ% iff pe =° (by rule T)
iff pe A
iff A p
iff Lp is true in Q.

Hence 0" is the required model for =% and thus Z.

Completeness Theorem If P is a valid O-GP sentence, then P is provable
in O-GiP.

Proof: This follows from the Satisfaction Theorem in the usual way.

To modify the above for the case where M10 or MI1 is included, we
simply specify that for models of MI10, any 0-G# model will satisfy the
extra condition:

e) If p(a) is provable for every individual constant a, then (Vxg) p(x,) is
provable.

And for M11, the extra condition:

f) If (3x,) p(xo) is provable, then there is some individual constant @, such
that p(a) is provable.

The above completeness proof now goes through verbatim. The only
new point is checking whether 0" satisfies conditions e) and f), and this is
straightforward.

Permeability We now consider an application of our semantics. We say
that a wif P of O is permeable if it is not a thesis of O, and yet there is a
proof of Lp (i.e., iz p) in G/P. Are there any permeable wifs in ¢#? This
was a question which was answered negatively for ¢, and related systems
in [1]. We now determine the answer for G/#. Whereas before, however,
the proof was quite long, our semantics and completeness proof just
developed give us the answer for ¢# immediately.

Consider all the theses of GF of the form ‘Lp’. Since the theses of G/
are precisely the valid wifs, then Lp is provable in GP iff p is provable in
every O-GP model. Now define the minimal extension, 0°, of O to be the
extension of 0 with only one new individual constant* and no new axioms or

*Or none if there are already some in the vocabulary of O.
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schemes (N.B. 0° may not be an 0-G# model if G/ contains MI10 or M11).
Then p is provable in 0° iff p is provable in every 0-G# model.

Proof: Since 0° is contained in every extension of O, one way round is
trivial. Conversely, if p is not provable in 0° then {1p} U O is consistent.
Extend it in any possible way to satisfy conditions a)-f) above, and we have
the result. Thus, we have the Permeability Theorem:

Permeability Theorem O-G#P has pevmeable wifs iff 0° is not a conserva-
tive extension of O.

Corollary If Ois a fivst-ovder language then 0° is a conservative extension
of 0.

So by the Completeness Theorem for first-order logic, we have that Lp is
valid iff p is true in every model (in the usual sense) of 0.

Comment 1 The only sort of theory that come to mind in which 0° is not a
conservative extension of 0, are free logics in which nothing of the form
(Ix) p(x) is provable unless something of the form p(a) is provable.

Comment 2 Suppose we had used a free logic as the logical basis of G£.
(We noted earlier that this would be appropriate.) We would then have no
need to stipulate the existence of an individual constant in the definition of
extension and minimal extension. Hence O would always be the minimal
extension of itself and there would be no permeable wffs; another reason
why a free logic would be more appropriate.

5 We now consider some natural extensions of ¢# and their consequences.

Identity and description We can take for O, a first-order language with
identity and description and this is straightforward, since description
operators will always be within the scope of any L’s. Identity and
description can also be introduced into G4, and this is more interesting.
G# can have two sorts of identity, a) natural identity and b) necessary
identity.

a) Natural identity is the true identity on the range of the variables of ¢#,
i.e., the individual constant symbols of 0. So we introduce a new two-place
predicate ‘=’ into G/ and x, =y, means that x, is the same individual
constant symbol as y,. Hence a, = a,, a4 # b,, etc. Further, we need new
axioms for ‘=’, and we take the usual axioms for identity. With this sort of
identity, we see that the quantifiers in ¢/ have the meaning suggested by
R. B. Marcus in [8]. She suggests that ‘(3x)Lp(x)’ could mean ‘Some
substitution instance of Lp(x) is true’. However, as an explication of what
happens in ordinary discourse, this is unsatisfactory for a number of
reasons, one of which we will consider in connection with descriptions in

Go.

b) Necessary identity is really an equivalence relation. We will use ‘=’ as
the symbol for necessary identity, and we have the explicit definition:

D4 %, =y, =45 L%, = 3,)
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where the second ‘=’, being in the scope of an ‘L’, is the identity of 0. The
properties of necessary identity can be inferred from the properties of the
identity of 0, and hence we need no new axioms in GFf. For example, we
prove:

a) H(Vx) x;, =~ x;

Proof:

(i) k(Vxg) x5 = %o (Axiom of O identity)
(i) R L(Vx) %, = %, (Rule T)
(iil) K L(Vxp) %o = %o — (V&) L%, = x,) (M9)
(iv) K(Vx) L(x, = %) ((ii), (iii), and modus ponens)
V) H(Vx) %, ~x; ((iv), D4)

b) K x, =y, — (Plx,) <> P(y))
Proof: Let P(x,) be of the form Lp(x,), then

(1) R (V%) (Vyo)(xo = yo — (D(x0) <> D)) (Axiom of O identity)
(i) & RL(YENVY) (%o = ¥o — (%) <> p(¥4))) (Rule T)
(iit) ~ K (Vxl)(vy1) Lix, =y, — (px) <> p(y1) (M9)

(iv) =~ K(Vx)(Vy) L(x, = y,) — (Lp(x,) <> Lp(yy)
(M7 and L(p rq) — (Lp ALq))
(v) R{Vx)(Vy) [(xl =~ ) — (Plx) < P(yl))] ((iv), D4)

This forms the basis for an induction over the length of P. The rest of the
induction is as usual.

These are, of course, the normal axioms for identity.

Descriptions can also be introduced into G# in any of the usual ways. The
question then arises, which form of identity it is best to use in connection
with description. Considerations such as the following show that necessary
identity is the appropraite one. Take as 0, Peano arithmetic, and consider
the sentence of G/,

7<% L8 <xax<10) (1)

i.e., seven is less than the number that is necessarily between eight and ten
(which must clearly be nine). Now (1) is equivalent to

(TN (8 <xax < 10)a 7T = x), where (I 1x) A(x) means as usual (2)
@A) A (V2)AR) — x = 2) (3)

If we interpret the equality in (3) as natural identity, then there is no such
unique object as (2) asserts. For

L(8<9,9<10)
and

L(8 < 32432 < 10)
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but it is not the case that 9 = 3° in the sense of natural identity, since they
are not the same term. However, if we interpret the identity in (3) in the
sense of necessary identity, then D4 itself guarantees the existence of such
a unique object, since

if L(8 <xax < 10), then L{x = 9), i.e., x ~ 9,
Thus, the unique thing is nine or anything necessarily equivalent to it.

Intensional objects With necessary identity, the objects in our domain are,
in effect, equivalence classes of terms of 0 under the equivalence relation
L(x,=%,). We see that these objects have exactly the properties of the
intensional objects invented by Church, Carnap, and others (see, e.g., [5]) in
an attempt to make sense of quantified modal logics, viz. the law of
substitutivity of equivalents holds for them in all contexts (see b) in the
previous section). We see now what these strange objects really are. This
brings us back to a point mentioned earlier. Namely, whether or not, if. 0
has terms other than individual constants, to allow G4 variables to range
over all terms of 0. Now, inferences of the form:

L(Cicero is Cicero) (4)
(3x,) L(x, is Cicero) (5)

are always valid in G#. If we allow the variables to range over all terms
of O the following inference is valid:

L(The winner of the next game of chess will win the next game of chess) (6)
(3x,) L(x, will win the next game of chess) (7

Now this is an intuitively repugnant conclusion, and would seem a very
good reason for having the quantifiers of G# ranging over only the
individual constant symbols of 0. The point to note here, however, is that
someone may accept some intensional objects, namely individual concepts,
and so believe the validity of (4)-(5), but may not accept them all, and
believe that (6)-(7) is not valid. (E.g., the individual concept of Cicero
satisfies (5), but there is no individual concept that satisfies (7).) Someone
who accepts all intensional objects, however, would accept even the validity
of (6)-(7), since the winner of the next game of chess qua intensional object
satisfies (7). See, e.g., [2] for a discussion of this in connection with M11.
We now see exactly what the difference is between these two positions, and
why one understands that there is a sense in which (7) is true, although not
the usual sense. It all depends on the range of the meta-language variables.
While we are on the subject of intensional objects, we will clear up an
objection to them. This objection is due to a misunderstanding of their
nature. For a full account of the objection see, e.g., [3]. If we restrict the
range of our variables to intensional objects (the argument runs), then it
must be the case that if two things are the same then they must necessarily
be the same, i.e.,

x=y—Lx=y) (8)



350 GRAHAM PRIEST

But, if p is an arbitrary true statement, then x = (1y)(x = yap). Hence
Lix = (19)(y = xap)), so L(x = xap), and hence Lp. So all modalities col-
lapse.

The fallacy in this argument is in failing to realize that intensional
objects are not actual objects, but merely facons de parler. If (8) is talking
about intensional objects, then it must mean:

Mx ey, — Lx, =)

where ‘=’ is, of course, the identity of 0. This is indeed true by the very
definition of ‘~’, It is also the case that

Bp—a=Qyy=anp).
However, it does not follows that
Ha=~y)y=anp)

without the premis F, p, i.e., Lp, which was supposed to be the paradoxical
conclusion. The whole thing is then basically a confusion over identities.

Itevation of modalities and trvanslational meta-languages Finally in this
section we consider extensions of ¢/ that allow for iterated and different
degrees of modality. In ¢# we have only formulas with one degree of
modality. However, we can obtain iterated modalities by constructing a
hierarchy of G# meta-languages. We can obtain formulas of mixed modality
(e.g., Lp — p), by making ¢F a translational meta-language, that is,
making O a sub-language of G#. We will have reason to refer to this
theory in subsequent sections, and will call it ‘Translational G#’. For
further comments on the above two extensions of G#, see [1].

6 In his paper [3], Quine examines some of the problems of standard
quantified modal logics, which lead to paradoxical results and metaphysical
commitment. We will now consider three such problems and see how they
are resolved in GP.

A) Consider the inferences:

1) Necessarily, if there is life on the morning star then there is life on the
morning star. '

2) The morning star is the evening star.

3) Hence, necessarily if there is life on the morning star then there is life
on the evening star.

4) Necessarily Cicero is Cicero.

5) Cicero is Tully.

6) Hence, necessarily Cicero is Tully.

To explain the prima facie paradoxical results 3) and 6), one must either
find some reason to reject the principle of extensionality, and thus falsify
the inferences, or one must interpret 3) and 6) in such a way that they are
true. In which case it is odd that astronomers can discover truths or
reason by looking down telescopes. Anyway, in G/ the inferences to 3) and
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6) are invalid; not because the principle of extensionality fails, but because
1) and 4) are expressions in an informal mode of speech of

17) “If there is life on the morning star then there is life on the morning
star’ is necessarily true,

and
4"} ‘Cicero is Cicero’ is necessarily true,

i.e., in 1) and 4), ‘the morning star’ and ‘Cicero’ occur autonomously,
which they do not in 2) and 5).

B) The other side of the coin is as follows: In most modal predicate logics
with identity, the following is provable,

7) (VX)(VyNx =y — L(x = y)).

Now this is a strange result which means that if I wished to know whether
Cicero really was Tully, then I should sit in an armchair and deliberate
on the meanings of ‘Cicero’ and ‘Tully’, or at worst do a few pencil
calculations on my shirt cuff. To accept this result has distinct meta-
physical implications. In @GP, however, ) is not provable. Trivially
because the intended interpretation of both ‘=’ signs in T) is identity
between physical objects, i.e., the identity of 0. So 7) is not even a wff of
GP. 1t is, however, a wif of Translational ¢/ but it is still not provable in

this. For further comments see [1].

C) A closely associated problem, and in fact the one at the root of the
controversy over quantified modal logics, is the meaning of quantified
modal statements. For consider, from 2) we get:

8) (3x) Necessarily if there is life on x then there is life on the
morning star.

Now, what is this x? Presumably it is the morning star; that is, Venus;
that is, the evening star; but this cannot be the case since 3) is false. It is
exactly this sort of reasoning that leads to Quine’s view that ‘being the
evening star is not a property that is actually possessed by the lump of
rock that is the evening star, but of the way we refer to it’. Or to put it
another way, a thing does not have necessary properties in itself, but only
properties that necessarily follow from a certain specification of it. It is
precisely this view of logical necessity that is embodied in the system GA.
Now the way out of the above dilemma taken by Church, Carnap, and
others, is to postulate the existence of intensional objects. But the nature
of such things is very unclear and their existence dubious, unless one
accepts our explanation in section 5 of what they really are. Let us look at
8) in the terminology of G#. Let ‘e’ be the evening star, ‘m’ the morning
star, and A(x) be ‘there is life on x>. Then it is true that

(2x0) L(A(x,) — A(m)) is meaningless, but not so
8") (3x) L(A(x,) — A(m))
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which is true, since it is obtained by existential generalization in ¢/ from
L(A(m) — A(m)). We note also that L(A(e) — A(m)) is false. It is clear
then that we can attribute meanings to quantified modal statements without
the usual paradoxical results and metaphysical obscurities, by simply
considering them as expressions in an informal mode of speech of the
corresponding statements in G/, e.g., 8') for 8).

There is a standard argument against this sort of explication, viz.
Church’s translation argument. Now of the many dubious points on which
this argument rests, one is the assumption that there are things called
meanings, a particular one of which is assigned to every meaningful
sentence of every language. Such an argument can then convince only
people who have this over-simplified view of meaning. A second point on
which the argument rests is the assumption that a quotation is nothing
more than a name, and that constituents of the quotation occur merely as an
orthographic accident {c.f., ‘cat’ in ‘cattle’). This is certainly false,
however. Firstly, the object which a quotation names can always be
recovered from the quotation, and this is not true in general of names.
Secondly a quotation has a discernible inner structure isomorphic to the
structure of that which it names, and this is certainly not true of single
indissoluble entities. Hence, we will reject this assumption and with it the
argument, and leave the point.

7 Finally, in this paper we consider a point which is often a problem for
theories of this sort, namely, how we are to interpret sentences which
appear to have quantifiers of mixed semantic category. Consider how, for
example, we are to interpret

1) There is something that is greater than 9 and necessarily greater than 9,
i.e.,
2) (3x)(x > 9aL(x >9).

The problem is that as it stands 2) can be neither a sentence of 0, nor ¢/,
nor Translational g}P, since we have a quantifier that binds variables both
inside and outside an ‘L’. We have three courses open to us.

a) We can declare all such sentences meaningless. However, this is not
very satisfactory, since we would certainly like to infer 2) from

3) 10 > 9AL(10 > 9).

b) As was suggested in [1] in another context, we could introduce another
predicate ‘T’ into @GP, carry over convention C about autonomous usage,
and axiomatize ‘7’ in such a way that it is possible to interpret ‘Tp’ as
‘p is true’. E.g., we would have axioms such as:

Lp — Tp.
T — 1T 1p, etc.

‘TP’ is now a statement in G/ which has exactly the same intuitive strength
as p. We can hence, infer
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4) T(10 > 9AL(10 > 9) from 3)
and
5) (Fx ) (T(x,> 9Ya L(x; > 9)) from 4),

and interpret 2) as 5), which has the same meaning (and even rhetorical
content) as 2).

¢) One object may have many names, but it is an assumption of classical
logic that all names name only one thing (or at least that all ambiguities
are theoretically eliminable). Hence, if @ is a term of 0, we introduce a
new function symbol ( )p into G where (2)p is to mean the object denoted
by ‘a’. ( )p is the projection of the terms of O into those objects of which O
talks. We then add the new axiom:

(@)p = a for every closed term a, of O,

(where ‘=’ is the identity of @, and hence, we must work in Translational
GP). We can now interpret 3) in Translational ¢# as:

(3x J(L(x, > 9) a{x)p > 9), or by an abuse of notation: (Ix)(L{x, > 9ax, >
9), since this can be interpreted in no other way. Similarly we interpret
‘There is something that is necessarily greater than 8 and equal to the
number of planets’ as:

(3x)L{x, > 9) A (x)p = the numbers of planets.

Thus we see that we can interpret sentences with quantifiers of mixed
semantic category, in the way of either b) or ¢), quite satisfactorily.

8 We conclude then, this exposition of modal logic as a semantic theory.
We claim that it is a much clearer, more natural way of formulating modal
logic, and eliminates most standard problems. It allows us to make
meaningful quantified modal statements without having to do a lot of
ontological wriggling, explains intensional objects, and throws much light
on the nature of logical necessity.
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