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Abstract

Femtocell technology addresses the severe problems of poor network capacity and indoor coverage. Meanwhile, the

emergence of high-capacity air interfaces and dense deployment of small cells result in increasingly high backhaul

cost in cellular wireless networks. Purchasing on leased lines can guarantee the service provision during busy hours,

however, purchased capacity goes to waste in off-peak time. Hybrid mode is the most promising one among all

femtocell access modes which allows macro users to associate with adjacent femtocells with idle bandwidth

resources. Femto holder (FH) is egoistic and unwilling to share bandwidth with transferred users from macrocells

without any compensation, thus the successful implementation of hybrid access becomes a challenging problem. In

this paper, we present an economic refunding framework to motivate hybrid access in femtocells. Macro users can

opportunistically associate with adjacent femtocells with excess backhaul capacity. FH can receive certain refunding

from wireless service provider (WSP) in exchange for traffic offloading. FH employs congestion pricing policy so as to

control the cell load in the femtocell. Within this framework, we design a general utility maximization problem for user

association that enables macro users to associate with femtocells based on traffic status, cell load, and access price.

Dual decomposition is used to obtain an approximate solution. The impact of congestion pricing on the aggregate

throughput and load balancing is also analyzed. Extensive simulations show the proposed scheme achieves a

remarkable throughput gain compared with that with no compensation and compensation with usage-based pricing

policy. Load balancing is substantially improved as well.
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1 Introduction
In recent years, there has been a dramatically increase in

the number of mobile users and high-speed data services,

which places a greater pressure on the conventional cel-

lular network infrastructures. In spite of the necessity for

small cells deployed to meet the enormous requirements

for traffic data, there are still many technical challenges to

be settled. One of the key challenges is to provide exten-

sive backhaul connectivity economically [1]. Backhaul is

a term commonly used to describe wired or wireless

connectivity between base stations (BSs) and associated

mobile switching nodes in a cellular system, as illustrated
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in Fig. 1.Wired and wireless technologies have been inves-

tigated as backhaul solutions for small cells [2]. For wired

backhaul, copper lines and optical fibers are the major

mediums, which provide suitable support for voice and

other services with low latency and delay. Wireless back-

haul solutions incorporate millimeter wave technologies

of 60 and 70–80 GHz, microwave technologies between 6

and 60 GHz, and sub 6-GHz radio wave technologies in

both licensed and unlicensed bands. The backhaul con-

struction significantly depends on the locations of small

cells, the cost of implementing backhaul connections, traf-

fic load intensity of small cells, latency, and target QoS

requirement of small cell users and hardwares. Accord-

ing to the recent statistics, the number of small cells now

deployed has reached up to 13.3 million reported in Small

Cell Forum survey [3] and this number is forecasted to
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Fig. 1 Backhaul network framework. The eNBs are interconnected

with each other by means of the X2 interface. Assume that there is an

X2 interface between the eNBs that need to communicate with each

other. The eNBs are also connected by means of the S1 interface to

the service gateway (SGW). The S1 interface support a many-to-many

relation between SGWs and eNBs. Some capacity constraints always

exit in the backhaul network

reach nearly 40 million by 2018 [4]. Such a large backhaul-

ing demand is bound to increase the cost substantially.

Cost-effective strategies are necessary to relieve the back-

hauling burden. Therefore, the considerations of backhaul

construction and operating costs become extremely cru-

cial in modern communication systems.

Fortunately, various network access modes provide the

possibility to relieve the pressure of backhaul cost. Indeed,

how to make each user access the appropriate net-

work substantially affects the network performance [5].

Femtocell hybrid access is a promising choice to con-

trol user association between macrocells and femtocells

[6, 7], rather than the closed access and open access

mode which render femtocells fully closed and open

to macro users. Hybrid access permits macro users to

exploit remaining femtocell resources after each femto

user reserves its own capacity. Usually, macrocells and

femtocells are controlled by wireless service providers

(WSPs) and femto holders (FHs), respectively. FHs are

egoistic to share bandwidth with transferred macro users.

Incentive mechanisms should be designed from the per-

spective of economic compensation. Otherwise, FHs do

not accept hybrid accessmode if they have no benefit from

offering own resources to transferred macro users. With

the compensation, FHs are willing to share the remain-

ing resources with macro users. Meanwhile, macro users

should pay for the used bandwidth from FHs.

Several refunding mechanisms between WSP and FHs

are investigated in the past few years. Chen et al. early

propose a framework of utility-aware refunding [8], where

WSP provides the certain refunding to motivate FHs to

open their resource for macro users then FHs decide

the resource allocation among femto and macro users. A

Stackelberg game is formulated to maximize the utilities

for both WSP and FHs. Shih et al. present an economic

framework based on the game theoretical analysis [9],

where the FHs determine the proportion of femtocell

resources they will share with public users, while WSP

maximizes its benefit by setting the ratio of the rev-

enue distributed to FHs. Yang et al. show the refunding

mechanism for small cell networks with limited-capacity

backhaul [10], in which small cell holders receive refund-

ing as incentives to serve guest users with their remaining

backhaul capacity. WSP decides individualized refunding

and interference constraints to different small cell hold-

ers; meanwhile, each small cell holder serves guest users

in a best-effort manner while maximizing its own util-

ity. Li et al. show a rate-based pricing framework within

which the macro BS provides profit to motivate femto

BSs to adopt hybrid access policy and guarantee trans-

mission rates of associated users [11]. Ford et al. study a

model where third parties provide backhaul connections

and lease out excess capacity to WSP when available [12],

presumably at significantly lower costs than guaranteed

connections. Multi-leader multi-follower data offloading

game is investigated in [13], where macro BSs propose

market prices and accordingly small cells determine the

traffic volumes they are willing to offload. Shen et al. pro-

pose an auction mechanism to establish the hybrid access

[14], where femto access points (FAPs) decide their bids

independently by maximizing their own utilities. After

receiving the bids, the macro BS searches the winner FAP

and optimizes the number of offloaded macro users. The

compensation is paid by the macro BS to the winner FAP

for serving the additional macro users. A price discount

strategy for WSP to promote the hybrid access mode of

femtocell is developed in which WSP provides a price

discount in exchange for the FHs to share part of their

resource with macro users [15]. An interference man-

agement scheme for the two-tier femtocell networks is

studied [16], where the macro BS protects itself by pricing

the interference from the femtocell users. Price bargain-

ing between femtocell users and macrocell exists so as

to maximize the revenues and protect the QoS require-

ments. Zhu et al. design an incentive mechanism in which

WSP pays the small cell service providers for the shared

radio resource [17]. A hierarchical dynamic game frame-

work is proposed in which an evolutionary game is used

to model and analyze the service selection of users in the

lower lever while a Stackelberg differential game is for-

mulated where WSP and small cell service providers act
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as the leader and followers, respectively. A utility gain

framework where each femtocell reserves a fraction of

resource to macro users and gets a gain fromWSP is pro-

posed [18]. A learning mechanism allows both WSP and

FH to choose the best strategy to reach a win-win situ-

ation. Iosifidis et al. present a market where WSPs lease

multiple FAPs and each FAP can concurrently serve traf-

fic from multiple WSPs [19]. An iterative double-auction

mechanism is designed to ensure the maximization of

differences between offloading benefits of operators and

offloading costs of FAPs. Zhang et al. propose an incentive

method where macro BS allocates a portion of subchan-

nels to FAP for spurring the FAP to servemacro users [20].

The FAP allocates the subchannels and power to maxi-

mize the femtocell network utility and the throughput of

the served macro users. Yang et al. propose a bargain-

ing cooperative game where spectrum leasing is used as

the incentive mechanism to motivate small cell working

as the relays [21]. Macrocell leases some of its dedicated

spectrum to the selected relay small cell, and then cooper-

ative bargaining strategy between the relay small cell and

the macrocell is formulated to enhance the system spec-

tral efficiency and balance the capacity. In [22], Liu et al.

propose an opportunistic user association inmulti-service

HetNets, where the opportunistic user association is for-

mulated as an optimization problem which can be solved

by Nash bargaining solution (NBS).

However, cell load congestion problem in networks will

also affect the achieved network performance. Congestion

can severely degrade the QoS performance, user’s satis-

faction, and obtained revenues. Congestion pricing, early

proposed in [23], is a promising solution that can help alle-

viate the problem of congestion. Al-Manthari et al. survey

recent congestion pricing techniques for wireless cellu-

lar networks [24], which verifies that congestion pricing

can reduce congestion and generate higher revenues for

network operators. Niu et al. present a congestion pric-

ing model to charge media streaming operators based on

the bandwidth-delay product on each overlay link [25].

Khabazian et al. study a mechanism by which the femto

and macro capacity resources are jointly priced accord-

ing to a dynamic pricing-based call admission mechanism

[26]. Cheung et al. consider the network selection and data

offloading problem in an integrated cellular WiFi system

by incorporating the practical considerations [27]. Inter-

actions of the users’ congestion-aware network selection

decisions across multiple time slots as a non-cooperative

network selection game is formulated. When the players

repeatedly perform better response updates, the system is

guaranteed to converge to a pure Nash equilibrium.Wang

et al. solve the optimization problem under the stochastic

decision framework and propose a distributed heuris-

tic algorithm to independently and dynamically associate

each user with the best BS [28]. By posing a price factor to

the BS evaluation update, users dynamically associate the

best BS based on the congestion state.

As a matter of fact, the high fluctuation of traffic load

and rate requirement can lead to a waste of provided

capacity in some circumstances. For instance, the number

of users decreases or users merely need voice service with

low-rate requirement in idle hours. Excessively establish-

ing and maintaining small cells will result in the expensive

backhaul cost, which can hardly conform to the case of

fluctuant traffic. Rather than providing the excessively

abundant backhaul capacity to guarantee the peak data

rates, WSP should be able to dynamically leverage excess

capacity on existing backhaul provided by FHs. The prob-

lem is to offload traffic opportunistically when FHs have

excess backhaul capacity with the appropriate compen-

sation. Since the capacity will only be purchased when

used, the opportunistic capacity can presumably be pur-

chased at a much lower cost than the guaranteed backhaul

capacity. Thus, the opportunistic user association can be

regarded as a promising method to reduce cost effec-

tively. Meanwhile, FHs will consider the cell load factor

to reduce congestion. This observation motivates us to

research the performance improvement through dynamic

pricing policy. In this paper, we propose an economic

compensation framework. Under this framework, FHs

provide femtocell and backhaul connections. Traffic can

be offloaded opportunistically from macrocells to femto-

cells. Once the association is implemented, WSP should

reimburse FHs for use of backhual resources. FHs adjust

the cell load by congestion pricing policy to guarantee

the QoS. The main contributions of the paper are listed

as follows:

1) We formulate an optimal opportunistic user associ-

ation problem, in which macro users associate with

macrocells or adjacent femtocells with limited back-

haul capacity, cell load, and access price. We present

a general net utility maximization problem, where the

utility is represented by logarithmic utility of through-

put minus cost. Cost is measured by price per unit

bit rate. Then, we show a dual decomposition method

that enables fast computation of global optimal solu-

tion in an efficient, distributed manner via augmented

Lagrangian techniques.

2) We adopt congestion pricing policy to control each

cell load. When macro users intend to associate with

femtocells, each user will get its own bandwidth to

maximize the aggregate utility. Here, the price is not

fixed but changes according to the number of users

associated with the same femtocell. The more macro

users associate with the same femtocell, the higher

price per unit bandwidth is. Then, users in congested

cells will be impelled to associate with uncrowded

femtocells.
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3) We conduct numerical simulations to evaluate this

framework and verify the influence of dynamic

price for user association. Results show that when

FHs adopt congestion pricing policy, the remark-

able throughput gain can be achieved under different

congestion levels. Due to dynamic cell load control,

the effect of load balancing can also be substantially

improved.

The remainder of this paper is organized as follows.

We describe the system model in Section 2. The opti-

mal user association problem and the dual decomposition

to solve a net utility maximization problem are proposed

in Section 3. In Section 4, extensive simulations are pre-

sented along with related discussions, and finally, our

work and the outlook are summarized in Section 5.

2 Systemmodel
In this section, we describe the system model including

the system architecture, interference model, and neces-

sary network constraints. Then, we propose a cell load-

based congestion pricing policy where price per bit rate

can be adjusted as the cell load changes.

2.1 System architecture

Consider a traditional macrocellular OFDMA network

with overlays of several femtocells, as shown in Fig. 2.

All subcarriers are orthogonal. There are M BSs includ-

ing macro BSs (MBSs) and femto BSs (FBSs). We let BS

i denote the ith base station, i = 1, · · · ,M. N mobile

users (MUs) uniformly distribute in this area. We let MU

j denote the jth mobile user, j = 1, · · · ,N . �BS(i) is the

Fig. 2 Heterogeneous network architecture. The tower-like macro

base station is controlled by wireless service provider, and the

adjacent femto base stations are deployed by femto holders. Mobile

users attempt to access one cell based on available capacity and

access price

set of MUs associated with BS i. ŴBS represents the set

of all BSs. Here, we suppose that all the antennas trans-

mit with full power. Thus, the interference suffered by

an MU is approximately measured from all BSs except

the serving BS. The throughput of one MU is the band-

width times spectrum efficiency provided by the serving

BS wij log(1 + γij), where wij is the bandwidth MU j gets

from BS i and γij is the SINR of MU j on BS i. The SINR of

MU j on BS i is

γij =
PiHij

∑

s∈ŴBS ,s�=i PsHsj + σ 2
, (1)

where Pi is transmission power from BS i, ŴBS is the

set of BSs, Hij is the channel attenuation coefficient

between BS i and MU j, and σ 2 is the thermal noise

power.
∑

s∈ŴBS,s �=i PsHsj is the received aggregate interfer-

ence from all the BSs except the serving BS. In this model,

the intra-cell interference can be avoided since there are

no overlapped subcarriers for all users served by one cell.

Before the bandwidth allocation process, the amount of

the subcarriers allocated to one user is uncertain, thus the

inter-cell interference is approximately evaluated by the

worst case that all BSs generate aggregate interference

to the users. Here, we rewrite seij for short instead of

log(1 + γij). Assume that the attenuation model is slow

fading so the channel conditions are fixed through frames.

2.2 Congestion pricing model

We propose a congestion pricing policy in this subsec-

tion. The guideline for the definition of this policy is

that price changes slowly when the backhaul resource is

abundant enough and increases drastically when the back-

haul resource becomes scarce. With this pricing policy,

resource can be utilized efficiently to benefit load bal-

ancing. Three aspects of this pricing policy should be

considered:

1) The wasted backhaul resource is null regardless of

whether the cell is congested or not, whichmeans that

bandwidth resource should be fully utilized

2) When no congestion occurs, the change of price

should be as small as possible to ensure user’s fair

association

3) In case of congestion, the change rate of price should

increase faster than that during no congestion period.

This faster increasing rate of price can be used to

discourage users in associating with heavy-load cell.

In this policy, we let the price be measured by price

per bit rate. In Fig. 3, we define lshift as the turning point

for the network pricing. When the load is lower than the

lshift, the price increases slowly. When the load is higher

than the lshift, the price changes rapidly and even dramat-

ically when backhaul resource approaches maximum. We
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Fig. 3 Congestion pricing function. The congestion pricing is similar

to the form of an exponential function. When the cell load is lower

than the lshift , the price gradually increases while when the cell load

exceed the lshift , the price goes up dramatically

adopt this variation tendency to describe our pricing pol-

icy. When cell load is in a saturated state, the price can be

raised to make some users associate with lightly load cell

instead.

We show a load-based pricing function that price

changes with cell load, which refers to [29].

pi(k) = p0

(

1 − lshift

1 − li(k)

)n

, (2)

where the pi(k) is the price at time k in cell i, p0 is the

initial access price, and li(k) is cell load at time k for cell

i. Here, li(k) is the ratio of actual cell load to cell tolera-

ble maximal load Lmax. We use parameter n to control the

steepness of this function and n ≥ 1.

3 User association optimization
As mentioned above, an important issue is that how MUs

associate withmacrocells controlled byWSP or femtocells

deployed by FHs when they acquire services within the

cellular coverage. We generalize this issue into a net util-

ity maximization problem including network constraints,

interference condition, access price, and cell load.

3.1 Optimization formulation

To model the bandwidth constraints, we suppose that the

available bandwidth of each BS i is Wi. Let wij represent

the bandwidth BS i allocated to MU j. Thus, the aggregate

allocated bandwidth should satisfy the constraint:

0 ≤
∑

j∈�BS(i)

wij ≤ Wi. (3)

We let Ci denote the capacity of BS i. The capacity of

FBS is the remaining backhaul resource after each femto

user reserves its own capacity. Thus, the aggregate rate

should be less than the capacity upper limit in each cell:

0 ≤
∑

j∈�BS(i)

seijwij ≤ Ci. (4)

One MU is commonly served by one BS at a time. Thus,

a single association constraint should be supplemented.

wij �= 0 for only one i. (5)

We adopt logarithmic function as user utility function.

Different from linear utility function, logarithmic func-

tion can truly reflect the user’s satisfaction. Logarithm is

concave and has the diminishing growth tendency. This

property does not enable to allocate excessive resource to

users with excellent channel condition while poor users

starve. Therefore, logarithmic function is considered as

utility function in particular. In the remainder of this

paper, we adopt the natural logarithmic utility function.

The aggregate utility can be represented by

U (rMU) =

M
∑

i=1

N
∑

j=1

ln
(

seijwij

)

. (6)

To clarify the backhaul cost that WSP should pay to

the FHs, we assume the cost function is represented as

follows:

C (rBS) =

M
∑

i=1

C(ri) =

M
∑

i=1

N
∑

j=1

piseijwij, (7)

where C(ri) is the cost that WSP should pay. Once macro

users associate with the adjacent femtocells, a positive

cost is generated since backhaul resources in femtocell

are utilized. Suppose that if macro users associate with

macrocells, C(ri) = 0, while C(ri) = pi
∑

j∈�BS(i)
wijseij

when macro users associate with adjacent femtocells,

where pi represents price per unit backhaul capacity of

each femtocell and this price changes with cell load.

Our goal is to maximize the net utility, which incor-

porates the MUs’ utility and the cost that WSP should

pay, with constraints of bandwidth resource and backhaul

capacity. Now, we write the user association problem as

the optimization:

max
wij

U (rMU) − C (rBS) (8)

s.t. 0 ≤
∑

j∈�BS(i)
wij ≤ Wi, (9)

0 ≤
∑

j∈�BS(i)
seijwij ≤ Ci, (10)

wij �= 0 for only one i. (11)

Then, we will provide the analysis and algorithms for

solving optimization problem (8)–(11).We propose a low-

complexity distributed algorithm for a large-scale net-

work.
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3.2 Dual decomposition algorithm

The optimization (8)–(11) is not convex due to constraint

(11). It is unpractical to solve this problem by Karush-

Kuhn-Tucker condition. An alternative algorithm is nec-

essary, especially for a large scale network. Fortunately,

following [30], we can obtain an approximate solution

by dual decomposition method. Traditionally, centralized

solution for this convex optimization problem is usually

achieved on a central server in the core network. The

long computational time and coordination requirement

among different tiers result in excessive computational

complexity and low reliability. The computational com-

plexity exponentially increases when the network scale is

large. An distributed algorithm based on dual decomposi-

tion method can overcome this difficulty. First, we neglect

the constraint (11), thus the results are the allocated band-

width from all BSs. Then, among these candidates, the one

which offers the largest rate is retained. This truncation

method is well-known in network theory and results in

few errors [31].

3.2.1 Dual problem

The primal problem in (8)–(11) can be expressed in a

Lagrangian formula. Two dual variables are introduced,

which are λbw and λrate.

P
(

wij, λ
bw
i , λratei

)

= −

M
∑

i=1

N
∑

j=1

ln
(

wijseij
)

+

M
∑

i=1

N
∑

j=1

piwijseij

+

M
∑

i=1

λbwi

⎛

⎝

∑

j∈�BS(i)

wij − Wi

⎞

⎠

+

M
∑

i=1

λratei

⎛

⎝

∑

j∈�BS(i)

wijseij − Ci

⎞

⎠ .

(12)

The dual problem of (8)–(11) is in regard to a function

of variables λbw and λrate:

D
(

λbwi , λratei

)

=

M
∑

i=1

⎛

⎝

∑

j∈�BS(i)

wij − Wi

⎞

⎠ λbwi

+

M
∑

i=1

⎛

⎝

∑

j∈�BS(i)

wijseij − Ci

⎞

⎠ λratei

−

M
∑

i=1

N
∑

j=1

ln
(

wijseij
)

+

M
∑

i=1

N
∑

j=1

piwijseij

s.t. λbwi > 0, λratei > 0.

(13)

In a primal problem, both the objective function and

all constraints are convex, this satisfies Slater’s condition

[32]. The well-known weak duality property states that an

upper bound to the maximum of the utility is given by

max
wij

P
(

wij, λ
bw
i , λratei

)

≤ min
λbwi ,λratei

D
(

λbwi , λratei

)

. (14)

This bound applies even when the objective function is

non-convex. Moreover, D(λbwi , λratei ) is always convex in

λbwi , λratei . Strong duality holds that the maximum value of

primal problem equals to the minimum value of its dual

problem. Therefore, the primal problem can be solved by

its dual problem. By solving the dual optimal λbw∗
i and

λrate∗i , the optimal solution w∗
ij of the primal problem can

be achieved.

3.2.2 Distributed algorithm implementation

The dual problem is solved by the gradient descent

method, where lagrange multiplier λ is updated along the

opposite direction of the gradient ∇D(λ). The primal and

dual problems can be solved in a distributed manner. The

iterative process is illustrated in Fig. 4. The kth iteration of

gradient descent method is given as follows:

1) MU’s side: MUs receive pilot signals from all BSs. Each

signal includes the values of λbw and λrate which

are broadcasted by each BS. The optimal bandwidth

which one MU can get from one BS is derived from

the first-order partial derivative of wij at the kth

iteration.

∂P
(

wij(k), λ
bw
i (k), λratei (k)

)

∂wij(k)
= −

1

wij(k)
+ pi(k)seij

+ λbwi (k) + λratei (k)seij = 0,

(15)

wij(k) =
1

λbwi (k) + λratei (k)seij + pi(k)seij
. (16)

Each MU chooses the optimal serving BS at the

kth iteration which satisfies the follows:

i∗(k) = argmax
i

seij

λbwi (k) + λratei (k)seij + pi(k)seij
,

(17)

w∗
ij(k) =

1

λbwi (k) + λratei (k)seij + pi(k)seij
,when i(k)=i*(k),

(18)

where pi(k) is the congestion price which is deter-

mined by the cell load of BS i at the kth iteration as

shown below:

pi(k) = p0

(

1 − lshift

1 − |�BS(i)|(k)

)n

, (19)

where |�BS(i)|(k) is the number of MUs associated

with BS i at the kth iteration. In each iteration, a MU

may select the different optimal BS which provides

maximal rate so cell load may change as the increase

of iteration times.
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Fig. 4 Iterative procedure of distributed algorithm

2) BS’s side: After each BS receives the demand informa-

tion from MU’s side, the values of λbwi and λratei are

updated then these twomultipliers are announced to

MUs in return.

λbwi (k + 1) = λbwi (k) − α
∂D

(

λbwi (k), λratei (k)
)

∂λbwi (k)

= λbwi (k) − α

⎛

⎝

∑

j∈�BS(i)

wij(k) − Wi

⎞

⎠ ,

(20)

λratei (k + 1) = λratei (k) − α
∂D

(

λbwi (k), λratei (k)
)

∂λratei (k)

= λratei (k) − α

⎛

⎝

∑

j∈�BS(i)

seijwij(k) − Ci

⎞

⎠ ,

(21)

where α > 0 is a step size and we assume that α

remains constant in the process of iterations. After

iterations following the above steps, the algorithm

can be converged to a sub-optimal solution. In fact,

λbwi and λratei can be interpreted as the shadow

price in economics. If the demand
∑

j∈�BS(i)
wij(k)

and
∑

j∈�BS(i)
seijwij(k) for BS i exceeds the maxi-

mum value, the shadow price will go up. Otherwise,

the shadow price will decrease. Thus, when BS i

is the congested state, its price will increase and

fewer MUs will associate with it, while other lightly

load BSs attract more MUs to associate with due

to the lower price. In addition, the complexity is

reduced to O(M + N). In comparison to the com-

plexity O(M ∗ N) of the centralized method, the

distributed method guarantees the convergence fast

and effective, especially for a large-scale network.

Since the derivative of D(λ) is bounded and this prop-

erty satisfies the condition of Proposition 6.3.6 in [32],

we can confirm that the dual decomposition algorithm

converges to a sub-optimal solution.

4 Performance analysis
As the adoption of congestion pricing policy, each cell will

change its price according to the load at each iteration,

thus MUs select the best serving BSs to associate with.

WhenmostMUs associate with the same cell, price will go

up even more dramatically when cells are in highly con-

gested state. Due to the lower price, MUs who originally

reside in highly load cells are attracted to associate with

other lightly load cells. Here, we show some benefits due

to the introduction of dynamic pricing policy and related

mathematical proofs.

Proposition 1 The scheme under congestion pricing pol-

icy achieves throughput gain in comparison to that under

usage-based pricing policy, especially when actual cell load

is less than the load threshold.

Proof Here, we discuss two kinds of cases to prove the

throughput gain due to the introduction of congestion

pricing policy and then figure out approximate gain value.

Case 1: We consider the single cell case, where all MUs

select the same BS to associate with. wij, seij, Wi, Ci, and
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pi can be rewritten as wj, sej, W, C, and p for short,

respectively. Our goal is to explore the relation between

bandwidth allocation for each MU and the price that MU

is charged.

When the bandwidth and capacity limit are very large,

the two constraint conditions in previous optimization

problem can be neglected. Then, the optimal bandwidth

allocation w∗
j is obtained through the derivation of wj.

∂P(wj)

∂wj
=

1

wj
− psej = 0 =⇒ rj = wjsej =

1

p
. (22)

From (22), we see that the allocated bandwidth of MU

j is inversely proportional to the price. In other words,

when cell load becomes lower, this will make MUs get

more bandwidth because of the lower price. However,

bandwidth and backhaul resource are not infinite, and

therefore, the optimal wj is about the derivation of wj, λ
bw

and λrate.

∂P
(

wj, λ
bw, λrate

)

∂wj
=

1

wj + λbw + λratesej
= 0, (23)

∂P
(

wj, λ
bw, λrate

)

∂λbw
=

N
∑

j=1

wj − W = 0, (24)

∂P
(

wj, λ
bw, λrate

)

∂λrate
=

N
∑

j=1

wjsej − C = 0. (25)

From (23)–(25) the optimal resource allocation w∗
j

can be obtained. However, the equations are difficult to

solve because a large number of MUs result in higher

order equations, even if the solution exists. In view

of this difficulty, we try to find out the approximate

solution to describe the performance improvement. The

approximate solution w∗
j is given as iterative recurrence

formulas:

wj(k) =
1

sejp + λbw(k) + λrate(k)sej
, (26)

where λbw(k) = λbw(k − 1) − α(
∑N

j=1 wj(k − 1) − W )

and λrate(k) = λrate(k − 1) − α(
∑N

j=1 wj(k − 1)sej − C)

and k is the number of iterations. Initial value λbw(0)

and λrate(0) are predefined before the iteration begins.

From (26), we can see when actual cell load becomes

lower than the cell load threshold, namely the actual

cell price decreasing due to lower cell load, the λbw and

λrate decrease consequently at the (k − 1)th iteration

and then wj will go up at the kth iteration. Here, we

let an increment of throughput △thr(k) be a difference

value at the kth iteration between two pricing policies

as below:

△thr(k)

= throughputcon(k) − throughputuse(k)

=

N
∑

j=1

sej
(

wjcon(k) − wjuse(k)
)

=

N
∑

j=1

sej

(

1

λ

bw

con
(k) + λratecon (k)sej + pconsej −

1

λbwuse(k) + λrateuse (k)sej + pusesej

)

=

N
∑

j=1

sej

(

pusesej − pconsej

(λbwcon(k) + λratecon (k)sej + pconsej)(λbwuse(k) + λrateuse (k)sej + pusesej)

)

+

∑k−1
m=1

(

∑

j wjcon(m) −
∑

j wjuse(m)
)

(

λbwcon(k) + λratecon (k)sej + pconsej
) (

λbwuse(k) + λrateuse (k)sej + pusesej
)

+
sej

∑k−1
m=1

(

∑

j wijcon(m) −
∑

j wjuse(m)
)

(

λbwcon(k) + λratecon (k)sej + pconsej
) (

λbwuse(k) + λrateuse (k)sej + pusesej
)

⎞

⎠ ,

(27)

where pcon = p0(
1−lshift

1−|�BS|(k)
)n and puse = p0. All the

formulas on the nominator are greater than zero when

pcon < puse, namely |�BS| < lshiftLmax, the throughput

under congestion pricing policy is more than that under

usage-based pricing policy. The lower the cell load is, the

more the gain is achieved. However, when the optimal

solution is reached, the summation of bandwidth or rate

allocation approaches the bandwidth or backhaul limit.

OneMUwill reassociate with other lightly load cells if suf-

ficient bandwidth resources are provided for the sake of

this throughput increment, which leads to multiple cells

case analysis.

Case 2: We consider the multiple cells case, where

each MU selects a certain BS to associate with among

all MBSs and FBSs. Unlike the single cell case, one MU

has many choices because of different positions and spec-

trum efficiency which makes this case more complicated.

According to [31], the multiple cell solution tends to con-

centrate on dominant single cell.We only need to compare

the bandwidth allocation in a certain BS. Then, the total

throughput of all MUs is approximately equal to our sin-

gle cell association problem. The throughput increment is

given as below:

△thr(k) = thoughputcon(k) − thoughputuse(k)

=

N
∑

j=1

seij
(

wijcon(k) − wijuse(k)
)

=

N
∑

j=1

seij

(

1

λbwicon(k) + λrateicon(k)seij + pconseij
−

1

λbwiuse(k) + λrateiuse(k)seij + puseseij

)

=

N
∑

j=1

seij

(

puseseij − pconseij
(

λbwicon(k) + λrateicon(k)seij + pconseij
) (

λbwiuse(k) + λrateiuse(k)seij + puseseij
)

)

+

∑k−1
m=1

(

∑

j wijcon(m) −
∑

j wijuse(m)

)

(

λbwicon(k) + λrateicon(k)seij + pconseij
) (

λbwiuse(k) + λrateiuse(k)seij + puseseij
)

+
seij

∑k−1
m=1

(

∑

j wijcon(m) −
∑

j wijuse(m)

)

(

λbwicon(k) + λrateicon(k)seij + pconseij
) (

λbwiuse(k) + λrateiuse(k)seij + puseseij
)

⎞

⎠ ,

(28)
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where pcon = p0(
1−lshift

1−|�BS(i)|(k)
)n and puse = p0. All formu-

las on the nominator are greater than zero when pcon <

puse, namely max(|�BS(1)|, |�BS(2)|, . . . , |�BS(M)|) <

lshiftLmax. Therefore, the total throughput under conges-

tion pricing policy is more than that under usage-based

pricing policy.

Proposition 2 The throughput increases monotonously

as the parameter n increases (n≥1).

Proof As the same analysis method in the proof of

Proposition 1, the throughput increment can be given

in the form of difference under two different prices. As

parameter n increases, the price decreases consequently

under the same cell load. Following the proof of Propo-

sition 1, lower price results in higher throughput, and

thus the throughput under the congestion pricing policy is

more than that under the usage-based pricing policy.

Proposition 3 Under the congestion pricing policy, the

cell load tends to be more balancing in comparison to that

under the usage-based pricing policy.

Proof Load balancing is another important criterion in

heterogeneous network. Jain fairness index can be used

to measure the balance degree of the system [33]. The

formula of Jain fairness index is described as follows:

JFI =

(

∑M
m=1 li

)2

M
∑M

m=1 l
2
i

, (29)

where M is the number of cells and li is the load of cell

i. The balance index is 1 when each cell has the same

load and tends to reach 1/M when the cell load is severely

unbalanced. As shown in the proof of Proposition 1, lower

cell load makes bandwidth allocation rise. However, due

to bandwidth and backhaul limit, the bandwidth alloca-

tion can not increase any more. If sufficient bandwidth

resources are provided, a MU will reassociate with other

lightly load cells for a larger rate. This switch occurs when

seijwij(k) < sekjwkj(k), which means that the rate of MU

j from BS k is greater than that from BS i. This flexible

control property outperforms that of usage-based pric-

ing policy. From Jain fairness index formula, we show the

increasing tendency of load balancing as below: if oneMU

transfers from BS i to BS k, here assuming that cell load in

BS k is greater than that in BS i due to lower price, the new

cell loads for these two BSs are:

l
′

i = li − 1, l
′

k = lk + 1. (30)

The new fairness index value is

JFI
′

=

(

∑M
m=1 lm

)2

M
(

(li − 1)2 + (lk + 1)2 +
∑

m �=i,k l
2
m

))

=

(

∑M
m=1 lm

)2

M
∑M

m=1 +2M (1 − (li − lk))
.

(31)

JFI and JFI
′
differ only in denominators, if and only if li −

lk > 1, JFI
′

> JFI. Since cell load li exceeds lk , the Jain

fairness increases which means cell load tends to be more

balancing due to dynamic pricing control.

5 Simulation results
We consider a two-tier heterogeneous network with wrap

around [34]. Let transmit power of MBS and FBS be

46 and 20 dBm, respectively. Suppose the locations of

MBS to be fixed with FBSs uniformly independently dis-

tributed around. The density of FBS is 8 per macrocell.

MUs locate in space uniformly with the density 10, 30,

and 50 per macrocell. In the propagation environment, we

use the path loss model 15.3 + 37.6 log10(d) and 35.3 +

37.6 log10(d) for macrocell and femtocell, respectively. We

set the lognormal shadowing with a standard deviation to

8 dB. The thermal noise power is −104 dBm. The band-

width in each cell is 10 MHz, and the backhaul capacity

is 50 Mbps. We assume that the throughput is Shannon

capacity rate of each MU. All the parameters are shown in

Table 1.

Table 1 Simulation parameters

Parameter Value

Topology Uniform with wrap around

Total area 1000 m × 1000 m

Antenna pattern Omni antenna

MU distribution Uniform, 10, 30, and 50 per macrocell

FBS ditribution 8 per macrocell

MBS Tx power 46 dBm

FBS Tx power 20 dBm

Macrocell pathloss 15.3 + 37.6 log10(d)

Femtocell pathloss 35.3 + 37.6 log10(d)

Bandwidth 10 MHz

Backhaul capacity 50 Mbps

Shadowing 8-dB standard deviation

Thermal noise power −104 dBm

Carrier frequency 2.1 GHz

Mobile model Static

Fading None

Access price 8

lshift 0.8
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Fig. 5 Distribution of throughput under different scenarios when MU

density = 10/macrocell

Figures 5, 6, and 7 compare the throughput CDF

under different scenarios with the different number of

MUs. Without compensation (labeled without refunding)

means there is no relationship between WSP-controlled

macrocell and FH-deployed femtocell. FHs are not will-

ing to share even though there are remaining backhaul

resource. Therefore, MUs only reside in macrocells with-

out any option. In comparison to the above strategy,

usage-based pricing compensation (labeled usage-based

pricing) implements the connection between macrocells

and adjacent femtocells. FHs receive certain refunding

from WSP to open its own backhaul resource for macro

users. However, usage-based pricing cannot achieve high

throughput due to the possible congestion problem. Our

proposed strategy (labeled congestion pricing) can reduce

the congestion and achieve high throughput. Table 2

Fig. 6 Distribution of throughput under different scenarios when MU

density = 30/macrocell

Fig. 7 Distribution of throughput under different scenarios when MU

density = 50/macrocell

shows the throughput under different number of MUs.

We can see that there is a remarkable gain when the

number of MUs changes. Cell-edge throughput gets 58.9

and 35.4% gain, respectively, compared with other two

scenarios when MU density is 10 per macrocell. The

medium rate also gets 44.7 and 34.1% gain. Even when the

MU density increases up to 50 per macrocell, cell-edge

throughput still gets 125 and 28.6% gain. Medium rate

increases significantly as well. The reason is that conges-

tion pricing policy impels macro users to select the best

BS which offers abundant bandwidth resource and lower

Table 2 The comparison of throughput under different number

of MUs (n = 2)

Scenario Without
compensation

Usage-based
pricing
compensation

Congestion
pricing
compensation

Cell-edge rate
(Mbps) (MUdensity
= 10/macrocell)

0.17 0.20 0.27

Cell-edge rate
(Mbps) (MUdensity
= 30/macrocell)

0.06 0.11 0.13

Cell-edge rate
(Mbps) (MUdensity
= 50/macrocell)

0.04 0.07 0.09

Medium rate
(Mbps) (MUdensity
= 10/macrocell)

0.76 0.82 1.10

Medium rate
(Mbps) (MUdensity
= 30/macrocell)

0.26 0.39 0.51

Medium rate
(Mbps) (MUdensity
= 50/macrocell)

0.17 0.31 0.38

The results of the proposed algorithm are marked in italics to highlight the

improvement
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Table 3 The comparison of load balancing under different

scenarios (n = 2)

Scenario Without
compensation

Usage-based
pricing
compensation

Congestion
pricing
compensation

JFI (MU density =

10/macrocell)
0.088 0.103 0.268

JFI (MU density =

30/macrocell)
0.098 0.189 0.393

JFI (MU density =

50/macrocell)
0.107 0.254 0.379

The results of the proposed algorithm are marked in italics to highlight the

improvement

access price. Comparing to the other two scenarios, our

proposed strategy can achieve better dynamic adjustment.

Table 3 shows the comparison of load balancing under

different scenarios. Through congestion pricing policy,

macro users are attracted to associate with adjacent fem-

tocells, and thus, load balancing is improved reason-

ably. When the MU density is 10 per macrocell, the JFI

increases from 0.088 to 0.268. With the increasing num-

ber of MUs, congestion degree becomes serious. When

the MU density turns to 50 per macrocell, the JFI is up to

0.379 compared with 0.107 in no compensation scenario

and 0.254 in compensation with the usage-based pricing

policy.

As shown in Fig. 8, throughput distribution under dif-

ferent n is compared. n = 0 represents usage-based

pricing compensation scenario because the access price in

each cell keeps constant. There is a significant gain when

n = 1. Indeed, throughput gets even larger as n increases.

Table 4 shows the comparison of throughput under dif-

ferent parameters n. We can see a 68.4% gain in cell-edge

rate and 60.3% gain in the medium rate when n = 0 and

n = 3, respectively. That larger n leads to much lower

Fig. 8 The comparison of throughput under different parameters n

(n = 0, 1, 2, 3)

Table 4 The comparison of throughput under different

parameters n (MU density = 10/macrocell)

Number 0 1 2 3

Cell-edge rate (Mbps) 0.19 0.22 0.28 0.32

Medium rate (Mbps) 0.78 0.94 1.14 1.25

access price which results in higher throughput than what

the smaller one does.

6 Conclusions
In this paper, we present an economic compensation

framework between WSP and FHs. Under this frame-

work, WSP pays certain refunding to FHs to implement

traffic offloading. Macro users can opportunistically asso-

ciate with FBS for transmission when there are remaining

backhaul resources. We generalize this user association

as an utility maximization problem. In the considera-

tion of congestion that occurred in femtocells, each FH

adopts the congestion pricing policy to control cell load.

To reduce the computation complexity in large-scale net-

works, a dual decomposition algorithm is presented which

incorporates bandwidth, backhaul capacity, and access

price. Simulation results show that as the number of MUs

increases, our optimization achieves remarkable through-

put gains. Load balancing measured by Jain fairness index

is also improved drastically. Actually, there are further

problems to be investigated. Our work focuses on the

interrelation between only one WSP and one type of

FH. As a matter of fact, the types of WSP and FH vary

widely. Therefore, the interrelation between WSP and

each FH becomes more complicated. Our future work

is to research multi-WSP-multi-FH problem and design

corresponding solutions.
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