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A Region-Growing Permutation Alignment Approach
in Frequency-Domain Blind Source Separation

of Speech Mixtures
Lin Wang, Heping Ding, Senior Member, IEEE, and Fuliang Yin

Abstract—The convolutive blind source separation (BSS)
problem can be solved efficiently in the frequency domain, where
instantaneous BSS is performed separately in each frequency bin.
However, the permutation ambiguity in each frequency bin should
be resolved so that the separated frequency components from
the same source are grouped together. To solve the permutation
problem, this paper presents a new alignment method based on
an inter-frequency dependence measure: the powers of separated
signals. Bin-wise permutation alignment is applied first across all
frequency bins, using the correlation of separated signal powers;
then the full frequency band is partitioned into small regions based
on the bin-wise permutation alignment result. Finally, region-wise
permutation alignment is performed in a region-growing manner.
The region-wise permutation correction scheme minimizes the
spreading of the misalignment at isolated frequency bins to others,
hence to improve permutation alignment. Experiment results
in simulated and real environments verify the effectiveness of
the proposed method. Analysis demonstrates that the proposed
frequency-domain BSS method is computationally efficient.

Index Terms—Blind source separation (BSS), convolutive mix-
ture, frequency domain, permutation problem, power ratio, region
growing.

I. INTRODUCTION

B
LIND source separation (BSS) is a technique for recov-
ering the original source signals from observed signals

with the mixing process unknown [1]. BSS has a lot of po-
tential applications including noise robust speech recognition,
crosstalk separation in telecommunications, biomedical signal
analysis, and so on. It has attracted considerable attention in re-
search communities.
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One well recognized BSS application is the separation of
audio sources that have been mixed and recorded by multiple
microphones in a real room, known as a cocktail party environ-
ment. The challenge of the problem is that the mixing process
is convolutive, where the observations are combinations of the
unknown filtered versions of the sources. Approaches to solve
the convolutive blind source separation problem [2] can be
classified into two categories: time-domain and frequency-do-
main. In time-domain BSS, the separation network is derived
by optimizing a time-domain cost function [3]–[5]. These
approaches may not be effective due to slow convergence
and large computation load. In frequency-domain BSS, the
observed time-domain signals are converted into the time–fre-
quency domain by short-time Fourier transform (STFT), then
an instantaneous BSS algorithm is applied to each frequency
bin, after which the separated signals of all frequency bins
are combined and inverse-transformed to the time domain
[6]–[8]. Although satisfactory instantaneous separation may
be achieved in all frequency bins, combining them to recover
the original sources is a challenge because there are unknown
permutations associated with individual frequency bins. This
permutation ambiguity should be looked after properly so that
the separated frequency components from the same source are
grouped together. Besides the conventional frequency-domain
BSS, methods based on sparsity representation have emerged
in recent years and are also promising for convolutive blind
source separation [9].

There are three common strategies used to solve the permu-
tation problem. The first is to make the separation filters smooth
in the frequency domain [4], [10], [11]. This may be achieved
by limiting their lengths. It has been proved in [11] that the per-
mutation ambiguity can be avoided if the separation filters are
short enough relative to the FFT block size. Besides, the spec-
tral continuity of separation filters can also be exploited to align
the permutation [12]. The second strategy is to exploit the de-
pendence of separated signals across frequencies. The inter-fre-
quency dependence of signal envelope was exploited in [13] to
align the permutation. The inter-frequency dependence of signal
power was exploited in [14], which shows a clearer dependence
than the envelope measure does. The permutation alignment
using inter-frequency dependence may be precise, but a mis-
alignment at a frequency bin may lead to a big misalignment be-
yond that frequency. This is referred to as misalignment spread.
References [15] and [16] incorporated the inter-frequency de-
pendences into instantaneous BSS, so that bin-wise separation
and permutation alignment can be obtained simultaneously. The
third strategy is to exploit the position information of sources

1558-7916/$26.00 © 2010 IEEE
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such as direction-of-arrival (DOA) [17], [18]. It is believed that
contributions from the same source are likely to come from the
same direction. By estimating the arriving delay of sources or
analyzing the directivity pattern formed by a separation ma-
trix, source direction can be estimated and permutations aligned.
Compared to the second strategy, the third one is more robust
because the source direction estimation at one frequency bin
does not depend on other frequencies. However, the source di-
rection estimation is often not precise, especially in reverberant
environments. Moreover, the geometry of the microphone array
must be known in order for the source direction to be estimated.
To distinguish it from a fully blind method which only needs
observed signals, we regard the third strategy as semi-blind.

Generally, source direction information and signal inter-fre-
quency dependence can be combined to get a better permuta-
tion alignment [17]. Since the direction-of-arrival information
is not available in many cases, we attempt to solve the problem
using only one piece of inter-frequency dependence informa-
tion: the powers of separated signals. This measure exhibits a
clear dependence across frequencies for separated signals, and
the permutation alignment based on it is correct in most fre-
quency bins. However, errors still occur in some frequency bins,
resulting in permutation misalignment spread which may de-
stroy signal reconstruction. To minimize the spread, this paper
proposes a novel scheme called “region-growing permutation
alignment approach.” Bin-wise permutation alignment is ap-
plied first across all frequency bins, using the correlation of sep-
arated signal powers; then the full frequency band is partitioned
into small regions based on the bin-wise permutation alignment
result; finally, region-wise permutation alignment is performed
in a region-growing manner. The region-wise permutation cor-
rection scheme minimizes the spreading of the misalignment at
isolated frequency bins to others, hence to improve permutation
alignment. Experimental results have verified the effectiveness
of the proposed method.

The rest of the paper is organized as follows. The principle
of frequency-domain blind source separation is discussed in
Section II. The proposed permutation alignment scheme based
on power measure is described in detail in Section III. Experi-
ment results are presented in Section IV. Computation cost anal-
ysis of the proposed algorithm is given in Section V. Finally,
Section VI concludes the paper.

II. FREQUENCY-DOMAIN BLIND SOURCE SEPARATION

Supposing sources and sensors in a

real-world acoustic scenario, the source vector

, and the observed vector

, the mixing channels can be mod-

eled by finite impulse response (FIR) filters of length , the

convolutive mixing process is formulated as

(1)

where is a sequence of matrices containing the

impulse responses of mixing channels. For separation, we use

FIR unmixing filters of length and obtain estimated source

signal vector by

(2)

where is a sequence of matrices containing the

unmixing filters.

The unmixing network can be obtained by a fre-

quency-domain BSS approach. After transforming the signals

to the time–frequency domain using blockwise -point

short-time Fourier transform (STFT), the convolution becomes

a multiplication

(3)

(4)

where is a decimated version of the time index ,

and are the STFTs of and , respectively,

and are Fourier transforms of and ,

respectively, and is the frequency.1

In the frequency domain, it is possible to separate each fre-

quency bin independently using complex-valued instantaneous

BSS algorithms such as FastICA [1], [19] and Infomax [20],

[21], which are considered quite mature. However, there are

scaling and permutation ambiguities in each bin. This is ex-

pressed as

(5)

where is a permutation matrix and a scaling matrix,

all at frequency . It is necessary to correct the scaling and per-

mutation ambiguities before transforming the signals back to the

time domain.

The permutation at each bin should be aligned so that the

separated components originating from the same source are

grouped together. The permutation correction is a challenging

problem, and will be addressed in Section III.

The scaling ambiguity can be resolved relatively easily, by

using the Minimal Distortion Principle [22]

(6)

where is after permutation correction and

is the one after scaling correction, denotes inversion

of a square matrix or pseudo inversion of a rectangular ma-

trix; retains only the main diagonal components of

the matrix.

Finally, the unmixing network is obtained by inverse

Fourier transforming , and the estimated source is

obtained by filtering through . The workflow of the

frequency-domain BSS is shown in Fig. 1.

1Only positive frequencies are addressed; the negative frequency range is
looked after by exploiting the conjugate symmetry property of FFT on real
signals.
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Fig. 1. Workflow of frequency-domain blind source separation.

III. PERMUTATION ALIGNMENT

A. Inter-Frequency Dependence Measure

The inter-frequency dependence of speech sources can be ex-

ploited to align the permutations across all frequency bins. The

correlation between separated signal envelopes is commonly

used as a measure of inter-frequency dependence. However,

this dependence is only clearly exhibited among a small set of

frequencies. Another inter-frequency dependence measure pro-

posed in [14] is the correlation between power ratios of sepa-

rated signals. It exhibits a clearer inter-frequency dependence

among all frequencies.

The mixing network at frequency can be estimated

from the separation network by

(7)

where is the th column vector of . The observed

signal can be decomposed by

(8)

where is the th component of , i.e.,

.

A power ratio measure is calculated to represent the domi-

nance of the th separated signal in the observations at frequency

. It is defined as

(9)

where the denominator is the total power of the observed sig-

nals , and the numerator is the power of the th sep-

arated signal. Being in the range [0, 1], (9) is close to 1 when

the th separated signal is dominant, and close to 0 when others

are dominant. The power ratio measure can clearly exhibit the

signal activity due to the sparseness of speech signals.

The correlation coefficient of signal power ratios can be used

for measuring inter-frequency dependence and solving the per-

mutation problem. The normalized bin-wise correlation coeffi-

cient between two power ratio sequences and is

defined as

(10)

where and are indices of two separated channels, and

are two frequencies, ,

, are, respectively, the

correlation, mean, and standard deviation at time (The time

index is omitted for clarity). Note that denotes expec-

tation. Being in the range of , (10) equals 1 when the

two sequences are identical. In general, (10) tends to be high if

output channels and originate from the same source and low

if they represent different sources. This property will be used

for aligning the permutation.

Reference [14] provided a two-step optimization scheme for

permutation alignment with the power ratio measure. First, the

power ratios are calculated for all frequency bins and all

separated signals, and then clustered into subgroups—cor-

responding to separated signals, respectively. This is a

global permutation alignment process. Second, the permutation

is aligned bin by bin. This is a local permutation alignment

process. The overall alignment performance depends crucially

on the accuracy of the clustering result of the first step. How-

ever, the clustering process is unsupervised and it is difficult

to control it. In some cases, large misalignment occurs during

the process, resulting in a failure in the overall permutation

alignment. Next, we will propose a new permutation alignment

scheme without a clustering process.

B. Proposed Permutation Alignment Scheme

As discussed above, (10) tends to be high when and belong

to the same source, but such a dependence is not always evident.

Generally, the misalignment at an isolated frequency bin may

spread to other frequencies easily, causing a big misalignment

beyond it. A region-growing permutation scheme is proposed

which can avoid this problem. The scheme is described in 6

steps as follows.

Step 1) Calculate the power ratio for all frequency

bins and all separated signals by (9), where is time

index, is frequency bin index,

is FFT size, and is signal channel

index.

Step 2) Correct permutation bin by bin from to ,

so that the power ratio time sequences at each fre-

quency bin has the highest correlation coefficient

with the previous bin. For current bin and pre-

vious bin (supposing the correct permutation

is known for bin ), select a permutation

which maximizes

the average value of correlation coefficients. This is

expressed as

(11)

Now the average correlation coefficient for per-

mutation is

(12)

Step 3) Divide the full frequency band into low and high

bands, and process them separately in step 4–5.
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Fig. 2. Workflow of the proposed permutation alignment method.

Step 4) Partition the high (low) frequency band into re-

gions, with the highly related frequency bins as-

signed to the same region. The criteria for obtaining

region are

1) The index should be consecutive in region

2) ,

where is a threshold. When the bin-wise correla-

tion coefficient is higher than the threshold , the

permutation alignment is regarded as correct. The

selection of will be discussed later.

Step 5) Select a region with the largest number of elements

as a seed; merge with its neighboring regions on

both sides in a region-growing style until the new

region covers the full high (low) frequency band.

The merging procedure for the seed region and

a neighboring region is as follows.

5.1) Calculate the centroids and for

regions and , respectively, by

(13)

where is the number of elements in region

.

5.2) Find a permutation (for region )

that maximizes the average value of correlation

coefficient between and , which is ex-

pressed by

(14)

5.3) After permutation correction for frequency

bins in region with , merge and

into a new seed region.

Step 6) After permutation corrections in high and low fre-

quency bands, calculate the centroids for both bands

and merge them together with a manner similar to

step 5.

Based on the description above, the workflow of the proposed

scheme is shown in Fig. 2. It aligns permutations based on the

power ratio measure, which represents the dominance of one

source signal in the total observed signals at every frequency

bin. The region-growing idea behind the proposed method is

somewhat similar to the one proposed by Murata [13]. The Mu-

rata method sorts frequency bins in increasing order of simi-

larity among independent components, and then aligns the per-

mutation of the sorted frequency bins one by one by maximizing

the correlation between the current bin and a set of bins in which

the permutation has already been decided. This method does

not limit the frequency range in which correlations are calcu-

lated, because it assumes high correlations of envelopes even be-

tween frequencies that are not close neighbors. This assumption

is not satisfied for all pairs of frequencies, especially when many

sources are mixed. As a result, permutations may be misaligned

at many frequencies. Alternatively, the proposed method in this

paper aligns permutation in neighboring regions before growing

the permutation aligned regions to the whole frequency band.

It exploits the dependence between neighboring frequency bins

more efficiently.

It is observed that speech signals generally have nonuniform

energy distribution across the frequency, with more energy in

low frequency regions. Consequently, inter-frequency depen-

dence in the low frequency band may not be as evident as in the

high band. If we process signal in one full band, misalignment

spread may still be observed at low frequencies in some cases.

On the other hand, the fact that we process in low and high fre-

quency bands separately before merging them helps reduce the

misalignment spread and leads to better permutation alignment.

For speech signals, most energy is usually in frequencies below

500–700 Hz; thus, we choose the split frequency at 600 Hz. This

value works well in most speech cases. In a similar manner, the

full frequency band could also be divided into three or more

subbands before processing, but this multiple-band scheme is

not expected to improve the separation result further for speech

signals, which generally have energy concentrated in low fre-

quencies. For signals other than speech, a multiple-band scheme

may be considered. This can be a topic for further research. In

Step 4, the threshold is an important parameter since it di-

rectly affects the partitioning of the regions. is determined

empirically by

(15)

where function returns the minimal argument,

, and is the 80%th smallest value2 in the

correlation coefficients set calculated by (12) after bin-wise

permutation alignment in the high (low) band.3 In Step 5,

the proposed method attempts to start from a region with

strong inter-frequency dependence. Generally, a region with

largest number of seeds may have a high average correlation

value; thus, we start growing from it. In summary, since the

region-wise permutation alignment employs a region-growing

style, the misalignment at some frequency does not affect the

2��th smallest value is the � th ranked value from smallest to highest, where
� equals �� of the size of the data set.

3Some experiments will be given in Section IV-D on how to choose � .
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permutation result and therefore will not spread to other fre-

quencies. The validity of the proposed method will be verified

in the experiments.

IV. EXPERIMENT RESULTS AND ANALYSIS

We evaluate the performance of the proposed method using

both simulated and real data. The experiments are composed

of four parts. The first part exhibits the permutation alignment

result of the proposed method with simulated data. The second

verifies the separation performance in different conditions

with simulated data and compares it with other well-known

frequency-domain BSS algorithms. The third part investigates

the performance of the proposed algorithm in real environ-

ments. The last one examines how threshold (15) affects the

performance.

The separation performance is measured by signal-to-inter-

ference ratio (SIR), in dB. The input and output SIRs for the

th channel are defined respectively as

(16)

(17)

where is time index, , and is the index

of the output channel where the th source appears, is

an element of [see (1)], and is an element of the

overall impulse response matrix .

The implementation detail of the algorithm is as follows. The

Tukey window is used in short-time Fourier transform, with a

shift size of 1/4 window length. The instantaneous BSS is im-

plemented by means of the Scaled Infomax [23], which can

converge to the optimal solution within 100 iterations. In this

paper, we set the iteration number as 100. The scaling ambi-

guity is solved by using the Minimum Distortion Principle (6).

The smoothing method proposed in [24] is applied in order to

reduce spikes due to the circularity effect of the FFT. The pro-

cessing bandwidth is between 100 and 3750 Hz (sampling rate

being 8 kHz).

A. Permutation Alignment Experiment

In this experiment the proposed algorithm is applied to the

problem with three microphones and three sources in a simu-

lated environment. The environment is shown in Fig. 3, where

only microphones A, B, C and sources 1, 2, 5 are used. The

source signals are two male speeches and one female speech of 8

seconds long each. All sources and microphones are 1.5 m high.

The simulated room reverberation time is ms, time

required for the sound level to decrease by 60 dB. One typical

room impulse response is shown in Fig. 4. It has been obtained

using the image source method [26], and the reverberation time

was controlled by varying the absorption coefficient of the wall.

The STFT frame size is 1024 samples with a shift size of 256.

To demonstrate the permutation alignment performance, we

show in Fig. 5 the results at three stages: (a) before permutation

Fig. 3. Simulated room environment.

Fig. 4. Simulated room impulse response, �� � ��� ms.

alignment, (c) after bin-wise permutation alignment, and (d)

after region-wise permutation alignment. Fig. 5(b) gives the cor-

relation coefficients (12) across frequencies after bin-wise per-

mutation alignment. The permutation result is evaluated using

the method proposed in [25], supposing the mixing filters are

known. The detailed process is as follows.

Given the mixing matrix and the unmixing matrix

at each frequency bin, we consider .

The correct permutation at channel corresponds to the max-

imal value in the th row, which is expressed as

(18)

It can be seen from Fig. 5 that the permutation ambiguity is

very severe before permutation alignment; the ambiguity is mit-

igated after bin-wise permutation alignment but large misalign-

ments still occur. Comparing Fig. 5(b) to (c), it can be observed

that the correlation coefficient is high in most frequency bins. At

bins with a high correlation coefficient, the permutation tends

to be correct, whereas the permutation may or may not be cor-

rect at bins with a low correlation. At bins with incorrect per-

mutation, the errors may leak to nearby regions, causing mis-

alignment spread. The proposed method can solve the problem

well. As seen in Fig. 5(d), the ambiguity is almost eliminated

after region-wise permutation alignment except some isolated



554 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 19, NO. 3, MARCH 2011

Fig. 5. Permutation result of the proposed method. (a) Before permutation
alignment. (b) Average correlation coefficient. (c) After bin-wise permutation
alignment. (d) After region-wise permutation alignment.

frequency bins. These misalignments do not spread to nearby

frequencies. Another phenomenon observed in Fig. 5(d) is that

a misalignment can occur alone—without being paired with one

in another channel. For example, the one at 1703 Hz occurs only

in channel 2. That is believed to be due to the bad instantaneous

separation at this bin, not the permutation alignment error. Fi-

nally, the average output SIR is 13.4 dB, a 16.2-dB improvement

over the average input SIR of 2.8 dB.

B. BSS Experiments in Different Simulation Conditions

In this experiment, the proposed method is applied to sepa-

ration scenarios in different simulated conditions. The environ-

ment is still shown in Fig. 3. The room reverberation time is

ms. The STFT frame size is 2048 with a shift size

of 512. Various 2 2 (2 sources and 2 microphones) and 4 4

(4 sources and 4 microphones) simulation cases are carried out.

For the 2 2 case, microphones B, C, and seven different com-

binations of source locations are used. The sources are one male

speech and one female speech of 8 seconds each. For the 4 4

case, all microphones, and five different combinations of source

locations are used. The sources are two male speeches and two

female speeches of 8 seconds each.

The proposed algorithm is compared with six frequency-do-

main BSS algorithms. The first one was proposed by Sawada

which corrects the permutation ambiguity using both signal

inter-frequency correlation and source direction information

[17]. The second is the independent vector analysis (IVA)

method which incorporates inter-frequency dependence eval-

uation into the instantaneous BSS criterion to obtain bin-wise

separation and permutation alignment simultaneously [15].

The third is the Murata method which aligns permutation

based on the correlation of signal envelopes [13]. We call it

“Murata(Env) method.” The fourth is the same as the third,

except that the inter-frequency dependence measure of signal

envelope is replaced by the power ratio measure—we call it

“Murata(Pow) method.” The fifth is the method proposed in

[14] which originally resolves permutation problem based on

power ratio measure. We call it “PowerRatio method.” The last

one is blind separation with permutation corrected by supposing

the mixing filters are known, which we call “Benchmark” [25].

To evaluate the performance of the proposed permutation align-

ment scheme efficiently, we use the same frequency-domain

BSS processing for the proposed method and methods 3–6

(Murata(Env), Murata(Pow), PowerRatio, and Benchmark):

with all processing stages and parameters fixed but different

permutation correction schemes.

Table I shows the average output SIRs for all cases,4 where

“n/a” means the algorithm fails in the experiment condition.

Note that the average input SIR is about 0 dB for the 2 2 case

and 5 dB for the 4 4 case. As shown in Table I, the pro-

posed algorithm outperforms the Sawada method and the IVA

method in most cases. The Sawada method does not show con-

sistent separation performance for all cases, as do the proposed

and IVA methods. The Murata(Env) method performs as well as

the Murata(Pow) method for 2 2 cases, while the latter one

performs better for 4 4 cases by using the power ratio measure

instead of the signal envelope measure. The performance for

4 4 cases is further improved by the proposed method, which

employs a region-growing permutation alignment scheme. The

PowerRatio method shows similar performance as the proposed

method does for 2 2 cases, while performs much worse for

4 4 cases. As discussed earlier, the performance of the Pow-

erRatio method depends greatly on the clustering result of its

global permutation step. For 4-source cases, large misalignment

4Parts of the experiment results were obtained from [16], and used directly
for comparison.
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TABLE I
BSS SEPARATION RESULTS (OUTPUT SIR IN dB) FOR DIFFERENT CONDITIONS

occurs during the clustering process, resulting in the poor sepa-

ration performance. Comparing to the benchmark, all methods

show excellent performance for 2 2 cases, and degraded per-

formance for 4 4 cases. However, the proposed method is

closer to the ideal separation results than other methods espe-

cially for 4 4 cases. In a word, with both power ratio measure

and region-growing permutation scheme, the proposed method

shows superiority to other methods.

The separation performance depends mainly on two factors:

instantaneous BSS and permutation alignment. It is easier to

separate two sources at each frequency bin when they are far

apart, because the transfer functions to sensors are different.

On the other hand, it becomes difficult for instantaneous BSS

to do the job when the two sources are close and have similar

transfer functions to sensors. The degraded separation further

affects the permutation alignment. Thus, as shown in Table I,

huge improvement is obtained by the proposed method when

the sources are spaced far apart.

C. BSS Experiment in Real Room Conditions

To evaluate the performance of the proposed method in real

environments, we use real recorded data downloaded from the

internet.5 The recording was made in a room of size m

m m, the room reverberation time was

ms, the source signals were two male speeches and two fe-

male speeches of 7 seconds long each, the sampling rate was

8 kHz. Various experiment conditions were tested. In the

dataset, individual contributions from the sources to the micro-

phones are also available. These can be used for calculating the

SIR. The data was provided by Sawada, who also gave the sepa-

ration results with his own algorithm [17]. In the experiment, the

STFT frame length is 2048 with a shift size of 512. As shown in

Table II, the separation performance of the two methods is com-

parable. However, the Sawada method needs the geometrical in-

formation of microphone array while the proposed method does

not rely on that.

D. BSS Experiments With Different Threshold Parameters

The threshold in (15) is critical for region partition: the

bin-wise permutation is deemed correct when the corresponding

correlation coefficient exceeds it. can be either constant or

5See <http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.
html>.

TABLE II
BSS SEPARATION RESULTS (OUTPUT SIR) FOR REAL-RECORDED DATA

adaptive. When adaptive, the threshold is determined according

to the bin-wise permutation result, for example, the 80%th

smallest value in the correlation coefficient set calculated from

(12) after bin-wise permutation alignment. To make a more re-

liable decision, we combine the constant and adaptive schemes

to come up with (15).

Experiments were conducted to determine . The environ-

ment is as shown in Fig. 3 with a reverberation time of 100 ms.

Various 2 2 and 4 4 simulation cases were carried out. The

combinations of source locations are given in Table I. Two STFT

frame sizes, 1024 and 2048, were tested, respectively. The ex-

periments were repeated three times—with different speakers

each time. Finally, the average performance was calculated from

the results.

We first determine the constant threshold .

is set at 0.1 to 0.9 with increments of 0.1. The separation results

in different conditions are shown in Fig. 6. It can be seen from

Fig. 6 that, in 2 2 cases, which are easier, the performance

does not vary much when . In the more challenging

cases, the 4 4 mixture, the performance varies significantly

with the threshold value and peaks at . Thus, it is

determined as the optimal value for .

Next, the adaptive parameter is chosen as the th

smallest value in the correlation coefficient set after bin-wise

permutation alignment, where is selected from 10% to 90%

with 10% increments. The final threshold is calculated as

. The separation results in different conditions

are depicted in Fig. 7. It can be seen that, in both 2 2 and 4

4 cases, the performance improves with , and flattens when

. In other words, can be any value between 40%

to 90%. We set at 80%.

In summary, the parameters in (15) are set experimentally,

where , and equals the 80%th smallest value in

the correlation coefficient set. Although these values are deter-

mined heuristically and experimentally, they work well in most

cases. It may be a future research topic to find a smarter scheme

for determining the threshold.
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Fig. 6. BSS separation results versus constant threshold � .

Fig. 7. BSS separation results versus adaptive threshold parameter ���.

V. COMPUTATION COST ANALYSIS

In this section, we analyze the computation cost of the pro-

posed BSS algorithm. Suppose there are sources and mi-

crophones, the length of input signals is , and the STFT frame

length is with a window shift . After STFT, the number

of data points available for each frequency bin is approximately

shift. From Figs. 1 and 2, the computation of the fre-

quency-domain BSS is mainly composed of three algorithm

blocks: STFT, instantaneous BSS and permutation, while the

computation of the proposed permutation algorithm is mainly

composed of three algorithm blocks: power ratio calculation,

bin-wise permutation, and region-wise permutation. Given the

above, the computation cost of the proposed BSS algorithm is

summarized in Table III. For convenience, only complex-valued

multiplication operations are considered; besides, the computa-

tion for (2), the unmixing filtering, is not taken into account.

TABLE III
COMPUTATION COST OF THE PROPOSED BSS ALGORITHM

In Table III, the term is the number of iterations for

Scaled Infomax algorithm, and stands for computations per

iteration, which is approximately

(19)

The term is the number of regions involved in region-wise

permutation, and .

To summarize, the total computation cost of the proposed

BSS algorithm for a speech mixture of length is

(20)

Generally, and ; thus,

. For the total input data points, the average com-

putation for each data point is

(21)

Equation (21) shows that the computation cost for each input

data sample is . We think the result is quite acceptable.

For example, the computation cost for the 4 4 case in the

experiment with involves less than 1700 complex-

valued multiplications.

It can be seen from (20) that instantaneous BSS spends most

computation effort in frequency-domain BSS. To be precise, we

calculate the ratio between the computation required by the per-

mutation algorithm and by instantaneous BSS as

(22)

That is, the computation for the permutation algorithm is quite

negligible compared with that for instantaneous BSS. In other

words, the permutation correction algorithm only increases the

number of calculations slightly.

The execution time of an algorithm depends on a lot of fac-

tors such as computational complexity, program structure, hard-

ware pipeline, etc. In terms of computational complexity, the

proposed frequency-domain BSS is promising for real-time ap-

plication. After code optimization, the execution of it should be

fast.

VI. CONCLUSION

Studying frequency-domain convolutive blind source separa-

tion, this paper proposes a new permutation alignment method
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based on an inter-frequency dependence of separated signal

powers. With a region-growing permutation alignment style,

the proposed method minimizes the spreading of misalignment

at isolated frequency bins to others. Good separation results are

observed in simulations with synthetic and real data. Last but

not least, the proposed method is computationally efficient so

it is promising for real-time applications.

ACKNOWLEDGMENT

The authors would like to thank Dr. T. Mei for his invaluable

discussions. The authors would also like to thank Dr. H. Sawada

for fruitful discussions and providing information on the orig-

inal work.

REFERENCES

[1] A. Hyvarien, J. Karhunen, and E. Oja, Independent Component Anal-
ysis. New York: Wiley, 2001.

[2] M. S. Pedersen, J. Larsen, U. Kjems, and L. C. Parra, “A survey of con-
volutive blind source separation methods,” in Springer Handbook on
Speech Processing and Speech Communication. New York: Springer,
2007, pp. 1–34.

[3] S. C. Douglas and X. Sun, “Convolutive blind separation of speech
mixtures using the natural gradient,” Speech Commun., vol. 39, pp.
65–78, 2003.

[4] R. Aichner, H. Buchner, F. Yan, and W. Kellermann, “A real-time blind
source separation scheme and its application to reverberant and noisy
acoustic environments,” Signal Process., vol. 86, no. 6, pp. 1260–1277,
2006.

[5] S. C. Douglas, M. Gupta, H. Sawada, and S. Makino, “Spatio-tem-
poral FastICA algorithms for the blind separation of convolutive mix-
tures,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 5, pp.
1511–1520, Jul. 2007.

[6] P. Smaragdis, “Blind separation of convolved mixtures in the frequency
domain,” Neurocomputing, vol. 22, pp. 21–34, 1998.

[7] H. Sawada, S. Araki, and S. Makino, “Frequency-domain blind source
separation,” in Blind Speech Separation. New York: Springer, 2007,
pp. 47–78.

[8] S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari, “The
fundamental limitation of frequency domain blind source separation for
convolutive mixtures of speech,” IEEE Trans. Speech Audio Process.,
vol. 22, no. 2, pp. 109–116, Feb. 2003.

[9] T. Melia and S. Rickard, “Underdetermined blind source separation
in echoic environments using DESPRIT,” EURASIP J. Adv. Signal
Process., vol. 2007, no. 1, pp. 90–109, 2007.

[10] L. Parra and C. Spence, “Convolutive blind separation of non-sta-
tionary sources,” IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp.
320–327, May 2000.

[11] T. Mei, A. Mertins, F. Yin, J. Xi, and J. F. Chicharo, “Blind source
separation for convolutive mixtures based on the joint diagonalization
of power spectral density matrices,” Signal Process., vol. 88, no. 8, pp.
1990–2007, 2008.

[12] C. Serviere and D. T. Pham, “Permutation correction in the frequency
domain in blind separation of speech mixtures,” EURASIP J. Appl.
Signal Process., vol. 2006, no. 1, pp. 177–193, 2006.

[13] N. Murata, S. Ikeda, and A. Ziehe, “An approach to blind source sepa-
ration based on temporal structure of speech signals,” Neurocomputing,
vol. 41, no. 1–4, pp. 1–24, 2001.

[14] H. Sawada, S. Araki, and S. Makino, “Measuring dependence of bin-
wise separated signals for permutation alignment in frequency-domain
BSS,” in Proc. IEEE Int. Symp. Circuits Syst., New Orleans, LA, 2007,
pp. 3247–3250.

[15] T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind source sepa-
ration exploiting higher-order frequency dependencies,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 15, no. 1, pp. 70–79, Jan. 2007.

[16] I. Lee, T. Kim, and T.-W. Lee, “Fast fixed-point independent vector
analysis algorithms for convolutive blind source separation,” Signal
Process., vol. 87, no. 8, pp. 1859–1871, 2007.

[17] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and pre-
cise method for solving the permutation problem of frequency-domain
blind source separation,” IEEE Trans. Speech Audio Process., vol. 12,
no. 5, pp. 530–538, Sep. 2004.

[18] M. Z. Ikram and D. R. Morgan, “Permutation inconsistency in blind
speech separation: Investigation and solutions,” IEEE Trans. Speech
Audio Process., vol. 13, no. 1, pp. 1–13, Jan. 2005.

[19] E. Bingham and A. Hyvarien, “A fast fixed-point algorithm for inde-
pendent component analysis of complex valued signals,” Int. J. Neural
Syst., vol. 10, pp. 1–8, 2000.

[20] A. J. Bell and T. J. Sejonwski, “An information maximization approach
to blind separation and blind deconvolution,” Neural Comput., vol. 7,
no. 6, pp. 1129–1159, 1995.

[21] S. Amari, A. Cichocki, and H. H. Yang, “A new learning algorithm for
blind signal separation,” in Advances in Neural Information Processing
Systems. Cambridge, MA: MIT Press, 1996, vol. 8, pp. 757–763.

[22] K. Matsuoka and S. Nakashima, “Minimal distortion principle for blind
source separation,” in Proc. 2001 Int. Workshop Ind. Compon. Anal.
Blind Signal Separat., San Diego, CA, 2001, pp. 722–727.

[23] S. C. Douglas and M. Gupta, “Scaled natural gradient algorithms for
instantaneous and convolutive blind source separation,” in Proc. IEEE
Int. Conf. Acoust., Speech, Signal Process., Honolulu, HI, 2007, vol. 2,
pp. 637–640.

[24] H. Sawada, R. Mukai, S. Kethulle, S. Araki, and S. Makino, “Spec-
tral smoothing for frequency-domain blind source separation,” in Proc.
Int. Workshop Acoust. Echo Noise Control, Kyoto, Japan, 2003, pp.
311–314.

[25] M. Z. Ikram and D. R. Morgan, “Exploring permutation inconsistency
in blind separation of speechsignals in a reverberant environment,”
in Proc. IEEE Int. Conf. Acoust. , Speech, Signal Process., Istanbul,
Turkey, 2000, vol. 2, pp. 1041–1044.

[26] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small room acoustics,” J. Acoust. Soc. Amer., vol. 65, pp. 943–950,
1979.

Lin Wang was born in Anhui, China, in 1981. He re-
ceived the B.S. degree in electronic engineering from
Tianjin University, Tianjin, China, in 2003 and the
Ph.D. degree in signal processing from Dalian Uni-
versity of Technology, Dalian, China, in 2010.

He has been a Visiting Fellow with the Institute
for Microstructural Sciences, National Research
Council Canada, for 13 months, from 2008 to 2009.
His research interests include video and audio
compression, blind source separation, and 3-D audio
processing.

Heping Ding (SM’03) received the Ph.D. degree
in electrical engineering from Queen’s University,
Kingston, ON, Canada, in 1992 and the M.Sc. degree
in information physics from Nanjing University,
Nanjing, China, in 1984.

He is currently a Research Council Officer with
the Institute for Microstructural Sciences, National
Research Council, Ottawa, ON, Canada. Since 2003,
he has been an Adjunct Professor and a part-time
Professor with the School of Information Tech-
nology and Engineering (SITE) at the University of

Ottawa, Canada, and an Adjunct Professor at the School of Graduate Studies,
Ryerson University, Canada. He has also served in Bell Northern Research
and Nortel, Canada, as a Senior Audio Signal Processing Specialist. He holds
13 patents and has over 40 major publications in fields of subjective audio,
telephony, adaptive filtering, echo control, non-stationary signal processing,
noise reduction, audio coding, and electronic equipment.

Dr. Ding is a member of the Signal Processing Oriented Technologies
(SPOT) group, University of Ottawa. He has received 17 awards from industry,
academia, and science and technology communities.

Fuliang Yin was born in Fushun city, Liaoning
province, China, in 1962. He received the B.S.
degree in electronic engineering and the M.S. degree
in communications and electronic systems from
Dalian University of Technology (DUT), Dalian,
China, in 1984 and 1987, respectively.

He joined the Department of Electronic Engi-
neering, DUT, as a Lecturer in 1987 and became
an Associate Professor in 1991. He has been a
Professor at DUT since 1994, and the Dean of the
School of Electronic and Information Engineering

of DUT since 2000. His research interests include digital signal processing,
speech processing, image processing, broadband wireless communication, and
integrated circuit design.


