
“A Regression Testing Approach for Software Product Lines
Architectures”

By

Paulo Anselmo da Mota Silveira Neto

M.Sc. Dissertation

Universidade Federal de Pernambuco

posgraduacao@cin.ufpe.br

www.cin.ufpe.br/~posgraduacao

RECIFE, June/2010

www.cin.ufpe.br/~posgraduacao


Universidade Federal de Pernambuco

Centro de Informática
Pós-Graduação em Ciência da Computação

Paulo Anselmo da Mota Silveira Neto

“A Regression Testing Approach for Software Product
Lines Architectures”

Trabalho apresentado ao Programa de Pós-Graduação do

Centro de Informática da Universidade Federal de Per-

nambuco como requisito parcial para obtenção do grau

de Mestre em Ciência da Computação.

A M.Sc. Dissertation presented to the Federal University of

Pernambuco in partial fulfillment of the requirements for the

degree of M.Sc. in Computer Science.

Advisor: Silvio Romero de Lemos Meira

Co-Advisor: Eduardo Santana de Almeida

RECIFE, June/2010



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 

 
 

 

 

 
 

 

 
Silveira Neto, Paulo Anselmo da Mota        

       A regression testing approach for software product lines 

architectures / Paulo Anselmo da Mota Silveira Neto. - Recife: 

O Autor, 2010. 

       xvi, 164  folhas : il., fig., tab.,  

 
       Dissertação (mestrado) – Universidade Federal de 

Pernambuco.  CIn. Ciência da computação, 2010. 

  
       Inclui bibliografia e apêndices. 

 

      1. Engenharia de software.  2. Teste de software. 3.Teste de 

linha de produtos de software. I. Título. 
 

       005.1                  CDD (22. ed.)                       MEI2010 – 095 

 





I dedicate this dissertation to myself and all my family,

friends and professors who gave me all necessary support to

get here.



Acknowledgements

Initially, I would like to thank my great family and friends. Especially, my parents that
always stood by me with everything I needed during my life and my sister for hear
me in difficult moments. My uncles, in particular Angelo Silveira which gave me the
opportunity to create a horse (the unforgettable Xogum), which provided me a lot of magic
moments. A special thank you for my cousins Arthur Silveira, Andrezinho, Leonardo
Miranda, João Ricardo, Rodrigo Cavalcanti, Marcela Cavalcanti and João Neto. I would
like to thank my grandfather to serve as an example of determination and struggle.

The results of this dissertation could not be achieved without the support of the Reuse
in Software Engineering (RiSE) Labs. My gratitude in special to Eduardo Almeida and
Vinicius Cardoso for their advises and support in this long journey, and my advisor,
Silvio Meira, for accepting me as his student. I would like to thank all my friends from
RiSE (Ivan Machado, Thiago Burgos, Leandro Marques, Vanilson Buregio, Yguarata
Cavalcanti, Liana Barachisio, Flavio Medeiros, Heberth Braga, Ivonei Freitas, Hernan
Munoz, Marcela Balbino, Danuza Neiva, Iuri Santos, Jonatas Bastos), friends from
C.E.S.A.R. (Andre Muniz, Mitsuo Takaki, Diego Delgado, Pedro Cunha, Eudes Costa,
Ricardo Cheng, Rafael Lima, Rafael Villar, Tereza Novais).

Next, I would like to thank FACEPE for the financial support, which helped me during
my master degree. Without this support, I could not spend my time researching and trying
to do my best to complete this dissertation on time.

My gratitude to Dr. John D. McGregor his suggestions during our discussions
improved the quality of my work.

Finally, I would like to thank God for giving me the wisdom and force to perform this
work. In all the moments, You never abandoned me!

iv



Vou contar a minha história

Do meu cavalo alazão

Era meu melhor amigo

Eu dei-lhe o nome lampião

Por ser um destemido

Cavalo ligeiro, corajoso

Onde ele ia comigo

Gado valente era medroso

Era o cavalo mais cotado

De toda região

Pois em toda a vaquejada

Todo boi ia pro chão

Um vaqueiro respeitado

Era sempre campeão

Tudo isso só por causa

Do meu cavalo lampião

—RITA DE CASSIA (Meu Cavalo Lampião)



Resumo 
 
 
 
 
 
 
 
 

Com o objetivo de produzir produtos individualizados, muitas vezes, as 
empresas se deparam com a necessidade de altos investimentos, elevando assim 
os preços de produtos individualizados. A partir dessa necessidade, muitas 
empresas, começaram a introduzir o conceito de plataforma comum, com o 
objetivo de desenvolver uma grande variedade de produtos, reusando suas partes 
comuns. No contexto de linha de produto de software, essa plataforma em comum 
é chamada de arquitetura de referência, que prove uma estrutura comum de alto 
nível onde os produtos são construídos. 

A arquitetura de software, de acordo com alguns pesquisadores, está se 
tornando o ponto central no desenvolvimento de linha de produtos, sendo o 
primeiro modelo e base para guiar a implementação dos produtos. No entanto, 
essa arquitetura sofre modificações com o passar do tempo, com o objetivo de 
satisfazer as necessidades dos clientes, a mudanças no ambiente, além de 
melhorias e mudanças corretivas. Desta forma, visando assegurar que essas 
modificações estão em conformidade com as especificações da arquitetura, não 
introduziram novos erros e que as novas funcionalidades continuam funcionando 
como esperado, a realização de testes de regressão é importante. 

Neste contexto, este trabalho apresenta uma abordagem de regressão 
utilizada tanto para reduzir o número de testes que precisam ser reexecutados, da 
arquitetura de referência e da arquitetura dos produtos, quanto para tentar 
assegurar que novos erros não foram inseridos, depois que essas arquiteturas 
passaram por uma evolução ou mudança corretiva. Como regressão é vista como 
uma técnica que pode ser aplicada em mais de uma fase de teste, neste trabalho 
regressão é aplicado durante a fase de integração, uma vez que, ao final desta 
fase teremos as arquiteturas da linha de produto testadas. Desta forma, uma 
abordagem de integração também foi proposta. 

Esta dissertação também apresenta uma validação inicial da abordagem, 
através de um estudo experimental, mostrando indícios de que será viável a 
aplicação de testes de regressão nas arquiteturas de uma linha de produto de 
software. 
 

Palavras-chave: Engenharia de software; Teste de software; Teste de linha de 

produtos de software. 

 



Abstract 
 
 
 
 
 
 
 
 
 

To achieve the ability to produce individualized products, often, companies 
need high investments which lead sometimes high prices for a individualized  
roduct. Thus, many companies, started to introduce the common platform in order 
to assem- ble a greaer variety of products, by reusing the common parts. In the 
Software Product Lines (SPL) context, this common platform is called the 
reference ar- chitecture, which provides a common, high-level structure for all 
product line applications. 

Software architectures are becoming the central part during the 
development of quality systems, being the first model and base to guide the 
implementation and provide a promising way to deal with large systems. At times, it 
evolves over time in order to meet customer needs, environment changes, 
improvements or corrective modifications. Thus, in order to be confident that these 
modifications are conform with the architecture specification, did not introduce 
unexpected errors and that the new features work as expected, regression test is 
performed. 

In this context, this work describes a regression testing approach used to 
reduce the number of tests to be rerun, for both reference architecture and product 
specific architecture, and to be confident that no new errors were inserted after 
these architectures suffer a evolution or a corrective modification. Regression is a 
technique applied in testing different test levels, in this work we are interested in 
apply it during integration testing level, since the main objective of this level is 
verify the SPL architectures conformance. Thus, an integration testing approach 
was also proposed. 

This dissertation also presents a validation of the initial approach, through 
an experimental study, presenting indicators of its use viability in software product 
line architectures.  

 
Keywords: Software engineering; Software testing; Software product lines testing. 
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’If you think education is expensive, try ignorance’

Derek Bo

1
Introduction

It has been a challenge for software developers and testers to develop and maintain

software system for industry as a result of changes in market and customers requirements

(Edwin, 2007). Based on the systematic and planned reuse of previous development

efforts among a set of similar products, the Software Product Lines (SPL) approach

enables organizations not only to reduce development and maintenance costs, as well as

achieving impressive productivity, time-to-market gains and quality improvements.

Testing, still the most effective way for quality assurance, is more critical and complex

for product lines than for traditional single software systems (Kolb and Muthig, 2003).

According to McGregor et al. (2004a), in the context of SPL, software testing for a

product can cost from 50% to 200% more than the software development itself. Reducing

costs and increasing productivity in the test process is just as important as it is for product

creation. Thus, it is important to start testing activities as soon as possible even with

static analysis (with no executable code), since a simple fault discovered in a core asset

or common platform, may affect the software product line as a whole increasing the cost

to correct that problem and impacting the costumer satisfaction.

Thus, this dissertation explores the combination of the concepts and characteristics of

SPL and testing in a single software engineering approach. In particular, an approach

for regression testing product line architectures is defined. In this proposed solution,

SPL concepts, such as reference architecture, product specific architecture, commonality

and variabilities are considered to support reuse in the SPL testing phase. In additional,

regression testing concepts are used to test product line architectures taking advantage of

their similarities.

In this dissertation, the focus is on studying the state-of-the-art in software testing for

software product lines and providing a systematic approach for regression testing SPL

architectures, always searching for maximize the benefits of systematic reuse. In this

1



1.1. MOTIVATION

way, product line architectures are modified and evolved and can be regression tested

considering their commonalities. As the main focus is on SPL architecture testing, an

integration testing approach was also defined in order to check if the implementation

fulfills (conforms to) its specification. Therefore, the regression testing approach is

applied as a technique during integration testing level.

The remainder of this chapter describes the focus and structure of this dissertation.

Section 1.1 starts presenting its motivations, and a clear definition of the problem scope is

depicted in Section 1.2. An overview of the proposed solution is presented in Section 1.3.

Some related aspects that are not directly addressed by this work are shown in Section

1.4. In the Section 1.5, the main contributions of this work are discussed, and finally,

Section 1.6 describes how this dissertation is organized.

1.1 Motivation

In the SPL context, a common platform called the reference architecture, provides

a common, high-level structure for all product line applications (Pohl et al., 2005a).

The architecture is one of the most important assets of a SPL, since all products are

derived from it. Considering its importance, this dissertation defined two approaches

in order to verify its quality. Firstly, the integration testing approach which aims to

verify if the architecture implementation fulfills with its respective specifications, through

conformance testing. At last, the regression testing approach, applied after the architecture

evolution or modification, in order to be confident that the new version still working

properly and did not introduced new faults.

In an important survey in the testing area, (Bertolino, 2007) proposes a roadmap

to address some testing challenges, discussing some achievements and pinpoint some

dreams. Regarding to SPL, she describes the challenge “Controlling evolution” as a way

to achieve the dream “Efficacy-maximized test engineering” highlighting the importance

of effective regression testing techniques to reduce the amount of retesting, to prioritize

regression testing test cases and reduce the cost of their execution. Briefly, it is important

to scale up regression testing in large composition system, defining an approach to

regression testing global system properties when some parts are modified and understand

how to test a piece of architecture when it evolves.

The regression testing approach can be used during maintenance and development.

During maintenance it is used to be confident that some modifications are conform

with the architecture specification, did not introduce unexpected errors and that the new
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features work as expected. During product development should be performed in the

application architecture or product architecture, in order to ensure that it conforms with

its specification (Jin-hua et al., 2008) and maintain the conformance with the reference

architecture defined during core asset development phase.

1.2 Problem Statement

Encouraged by the motivations depicted in the previous section, the goal of this disserta-

tion can be stated as follows:

This work defines two approaches for testing software product line architectures defin-

ing activities, steps, inputs, outputs and roles in order to be confident that modifications

(correction or evolution) are conform with the architecture specification, do not introduce

unexpected errors and that the new versions work as expected.

1.3 Overview of the Proposed Solution

In order to test software product line architectures, two testing approaches were developed.

The remainder of this section presents the context where it was developed and the outlines

the proposed solution.

1.3.1 Context

This dissertation is part of Reuse in Software Engineering Labs (RiSE) 1 (Almeida et al.,

2004), formerly called RiSE Project, whose goal is to develop a robust framework for

software reuse in order to enable the adoption of a reuse program for companies. RiSE

Labs is influenced by a series of areas, such as software measurement, architecture,

quality, environments and tools, and so on, in order to achieve its goal. The influence

areas are depicted in Figure 1.1. Based on these areas, the RiSE Labs embraces several

different projects related to software reuse, as shown in Figure 1.2. They are following

described.

• RiSE Framework: It involves reuse process (Almeida et al., 2005; Nascimento,

2008), component certification (Alvaro, 2009) and reuse adoption and adaptation

processes (Garcia et al., 2008; Garcia, 2010).

1labs.rise.com.br
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Figure 1.1 RiSE Labs Influences.

Figure 1.2 RiSE Labs Projects.

• RiSE Tools: Research focused on software reuse tools, such as the Admire Envi-

ronment (Mascena et al., 2006), the Basic Asset Retrieval Tool (B.A.R.T) (Eduardo

et al., 2006), which was enhanced with folksonomy mechanisms (Vanderlei et al.,

2007), semantic layer (Durao, 2008), facets (Mendes, 2008), and data mining

(Martins et al., 2008), the Legacy InFormation retrieval Tool (LIFT) (Brito, 2007),

the Reuse Repository System (CORE) (Buregio et al., 2007), a tool for Domain

Analysis (ToolDay) (Lisboa, 2008) and a Bug Report Analysis and Search Tool

(BAST) (Cavalcanti, 2009), (da Cunha, 2009).
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• RiPLE: Stands for RiSE Product Lines Engineering Process and aims at devel-

oping a methodology for Software Product Lines, composed of scoping (Balbino,

2009), requirements engineering (Neiva, 2009), design (Souza Filho et al., 2008),

implementation, test, and evolution management.

• SOPLE: Development of a methodology for Software Product Lines based on

services (Medeiros et al., 2009), following the same structure of RiPLE.

• MATRIX: Investigates the area of measurement in reuse and its impact on quality

and productivity, based on experimentation.

• BTT: Research focused on tools for detection of duplicate bug reports, such as in

Cavalcanti et al. (2008),(Cunha et al., 2010).

• Exploratory Research: Investigates new research directions in software engineer-

ing and its impact on reuse.

• CX-Ray: Focused on understanding the Recife Center For Advanced Studies and

Systems 2 (C.E.S.A.R.), and its processes and practices in software development.

This dissertation is part of the RiPLE project and its main goal is to support the

architecture regression test in a software product line.

1.3.2 Proposal Outline

The goal of this dissertation is to develop and manage an architecture regression testing

approach performed in the integration testing level, by defining a systematic approach

composed by four main activities: (i) testing planning and analysis, (ii) test selection

and design, (iii) test execution and (iv) test reporting, all of them incorporated in an

integration approach. These proposed approaches do not exclude existing integration and

regression testing techniques, methods and tools, but comes to complement the traditional

testing in the software product lines context.

1.4 Out of Scope

As the proposed process is part of a broader context (RiPLE), a set of related aspects will

be left out of its scope. Thus, the following issues are not directly addressed by this work:

2www.cesar.org.br
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• Testing Metrics: Measurement activities are essential in any engineering process.

Both measurement activities inside the process and metrics to be used outside the

process (to formally evaluate) could be incorporated to the process.

• Tool Support: In order to perform some steps in this approach, some tool support

may be required. It is out of scope to develop a tool that supports all of the steps.

However, other dissertation in our group is investigating this issue.

• SPL Unit testing: Considering that unit testing approaches can be perfectly used

in the SPL context, we start the architecture testing approach considering only

the integration level and regression approach during core asset development and

product development. For this reason, unit testing approach was not considered.

1.5 Statements of the Contribution

As a result of the work presented in this dissertation, the following contributions can be

highlighted:

• A mapping study of the state-of-the-art for SPL testing was performed in order to

better understand the main trends, gaps and challenges in this area.

• The definition of an integration and regression approach for software product lines.

• The definition, planning, operation and analysis of an experimental study in order

to evaluate the proposed approach.

1.6 Dissertation Structure

The remainder of this dissertation is organized as follows:

Chapter 2 discusses the software product lines basic concepts and activities, adoption

strategies, as well as successful industry experiences.

Chapter 3 presents software testing fundamental concepts, testing process activities,

testing levels, regression testing and testing strategies. The relation between software

product lines and software testing are also described.
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Chapter 4 presents a mapping study in order to investigate the state-of-the-art testing

practices, synthesize available evidence, and identify gaps between needed techniques

and existing approaches, available in the literature.

Chapter 5 describes the integration testing approach in the SPL context, presenting

the roles associated, activities, inputs and outputs and the key concepts of the approach.

Chapter 6 describes the SPL architecture regression testing approach, activities,

steps, inputs and outputs and the main concepts of the approach.

Chapter 7 presents the definition, planning, operation, analysis and interpretation

and packaging of the experimental study which evaluates the viability of the proposed

approach.

Chapter 8 concludes the dissertation by summarizing the findings and proposing

future enhancements to the solution, discussing possible future work and research areas.

7



“Any customer can have a car painted any color that he

wants so long as it is black”

Henry Ford 2
Software Product Lines: An Overview

2.1 Introduction

The concept of software reuse started to be used since 1949, where the first subroutine

library was proposed (Tracz, 1988). It gained importance in 1968, during the NATO

Software Engineering Conference, considered the birthplace of the field. Its focus was the

software crisis - the problem of building large, reliable software systems in a controlled,

cost-effective way. Firstly, software reuse was pointed as being the solution of software

crisis. McIlroy’s paper entitled “Mass Produced Software Components” (McIlroy, 1968),

ended up being the seminal paper in the software reuse area. In his words: “the software

industry is weakly founded and one aspect of this weakness is the absence of a software

component sub-industry”, it was the basis to consider and investigate mass-customization

in software (Almeida, 2007).

On the other hand, the mass-customization idea was born in 1908, in the automobiles

domain, when Henry Ford the father of assembly-line automation, built the Model T

based on interchangeable parts. It enables the production for mass market more cheaply

than individual product creation. However, the production line reduced the products

diversification.

Although some customers were satisfied with standardized mass products, not all

people want the same kind of car for any purpose. Hence, industry was facing with a

growth interest for individualized products. However, mass customization is a “coin”

with two distinct faces. In the customer face, mass customization means the ability to

have an individualized product, realizing specific needs. For the company, however, it

means technological investments, which leads to higher product’s prices and/or lower

profit margins for the company (Pohl et al., 2005a).

Considering the software context, two types of software can be observed: (i) individual
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software products which satisfies specific customers needs and (ii) standard software the

mass produced ones. While the first is more expensive to develop, the second suffers a

lack of diversification.

In order to avoid higher prices for individualized products and lower profit margins

for the companies, some companies introduced the common platform concept for their

different types of products, planning beforehand which parts will be further instantiated

in different product types. A systematic combination between mass-customization and

platform-based development allows us to reuse a common base of technology and, at the

same time, to develop products in close accordance with customer needs. Thus, it resulted

in “Software Product Line Engineering”, a software development paradigm (Pohl et al.,

2005a).

Although Product Lines are no new in manufacturing, Boeing, Ford, Dell and even

McDonald’s, the Software Product Lines (SPL) are a relatively new concept, enabling

companies exploit their software commonalities to achieve economies of production

(Northrop, 2002). It is defined by Clements and Northrop (2001) as being “ a set of

software-intensive systems sharing a common, managed set of features that satisfy the

specific needs of a particular market segment or mission and that are developed from a

common set of core assets in a prescribed way.” SPL has proven to be the methodology

for developing a diversity of software products and software-intensive systems in shorter

time, with high quality and at lower costs (Pohl et al., 2005a).

The identification of commonality (common features for the SPL members) and

variability (difference among members) is crucial for product diversification. The SPL

paradigm was founded in three main activities: (i) Core Asset Development (Domain

Engineering), (ii) Product Development (Application Engineering) and (iii) Management.

This activities are further exploited in the next section.

Different terms are adopted in the academy and industry to express the same meaning.

They might refer to product line as a product family, to core asset set as platform, or to

the products of the SPL as customizations or members instead of products. Besides, Core

asset development might be referred as domain engineering, and product development as

application engineering. In this work the terms adopted are core asset development and

product development.

This chapter is organized as follows. Section 2.2 introduces the software product

line essential activities. Section 2.3 describes the variability management ideas. Some

software product line adoption strategies are described in Section 2.4. Section 2.5 presents

software product line successful industrial cases and Section 2.6 summarizes the chapter.

9
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2.2 SPL Essential Activities

Software Product Lines combine three essential and highly iterative activities that blend

business practices and technology. Firstly, the Core Asset Development (CAD) activity

that does not directly aim at developing a product, but rather aims to develop assets to be

further reused in other activities. Secondly, Product Development (PD) activity which

takes advantage of existing, reusable assets. Finally, Management activity, which includes

technical and organizational management (Linden et al., 2007). Figure 2.1 illustrates this

triad of essential activities.

Figure 2.1 Essential product line activities (Northrop, 2002).

2.2.1 Core Asset Development

Core Asset Development is the life-cycle that results in the common assets that in

conjunction compose the product line’s platform (Linden et al., 2007). The key goals of

this activity are (Pohl et al., 2005a):

• Define variability and commonality of the software product line;

• Determine the set of product line planned members (scope); and

• Specify and develop reusable artifacts that accomplish the desired variability and

further instantiated to derive product line members.

10
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This activity (Figure 2.2) is iterative, and its inputs and outputs affect each other.

This context influences the way in which the core assets are produced. The set of inputs

needed to accomplish this activity are following described (Northrop, 2002). Product

constraints commonalities and variations among the members that will constitute the

product line, including their behavioral features; Production constraints commercial,

military, or company-specific standards and requirements that apply to the products in

the product line; Styles, patterns, and frameworks relevant architectural building blocks

that architects can apply during architecture definition toward meeting the product and

production constraints; Production strategy the whole approach for realizing the core

assets, it can be performed starting with a set of core assets and deriving products (top

down), starting from a set of products and generalizing their components in order to

produce product line assets (bottom up) or both ways; Inventory of preexisting assets

software and organizational assets (architecture pieces, components, libraries, frameworks

and so on) available at the outset of the product line effort that can be included in the

asset base.

Figure 2.2 Core Asset Development (Northrop, 2002).

Based on previous information (inputs), this activity is subdivided in five disciplines:

(i) domain requirements, (ii) domain design, (iii) domain realization (implementation),

(iv) domain testing and (v) evolution management, all of them administered by the

management activity (Pohl et al., 2005a). These disciplines are responsible for creating

the core assets, as well as, the following outputs (Figure 2.2) (Clements and Northrop,

2001): Product line scope the description of the products derived from the product line

11
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or that the product line is capable of including. The scope should be small enough to

accommodate future growth and big enough to accommodate the variability. Core assets

comprehend the basis for production of products in the product line, besides the reference

architecture, that will satisfy the needs of the product line by admitting a set of variation

points required to support the spectrum of products, theses assets can also be components

and their documentation. The Production plan describes how the products are produced

from core assets, it also describe how specific tools are to be applied in order to use, tailor

and evolve the core assets.

2.2.2 Product Development

The product development main goal is to create individual (customized) products by

reusing the core assets previously developed. The CAD outputs (product line scope, core

assets and production plan), in conjunction with the requirements for individual products

are the main inputs for PD activity (Figure 2.3).

Figure 2.3 Product Development (Northrop, 2002).

In possession of the production plan, which details how the core assets will be used

in order to build a product, the software engineer can assemble the product line members.

The product requirement is also important to realize a product. Product engineers have

also the responsibility to provide feedback on any problem or deficiency encountered in

the core assets. It is crucial to avoid the product line decay and keep the core asset base

healthy.

12
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2.2.3 Management

The management of both technical and organizational levels are extremely important

to the software product line effort. The former supervise the CAD and PD activities by

certifying that both groups that build core assets and products are engaged in the activities

and to follow the process, the latter must make sure that the organizational units receive

the right and enough resources. It is, many times, responsible for the production strategy

and the success or failure of the product line.

2.3 SPL Variability Management

During Core Asset Development, variability is introduced in all domain engineering

artifacts (requirements, architecture, components, test cases, etc.). It is exploited during

Product Development to derive applications tailored to the specific needs of different

customers.

According to Svahnberg et al. (2005), variability is defined as "the ability of a software

system or artifact to be efficiently extended, changed, customized or configured for use in

a particular context”. It is described through variation points and variants. While, the

variation point is the representation of a variability subject (variable item of the real world

or a variable property of such an item) within the core assets, enriched by contextual

information; the variant is the representation of the variability object (a particular instance

of a variability subject) within the core assets (Pohl et al., 2005a).

The variability management involve issues, such as: variability identification and

representation, variability binding and control (de Oliveira et al., 2005). Three questions

are helpful to variability identification, what vary the variability subject, why does it vary

the drivers of the variability need, such as stakeholder needs, technical reasons, market

pressures, etc. The later, how does it vary the possibilities of variation, also known as

variability objects.

The variability binding indicates the lifecycle milestone that the variants related

with a variation point will be realized. The different binding times (e.g.: link, execu-

tion, post-execution and compile time) involves different mechanisms (e.g.: inheritance,

parameterization, conditional compilation) and are appropriate for different variability

implementation schemes. The different mechanisms result in different types of defects,

test strategies, and test processes (McGregor et al., 2004a).

Finally, the purpose of variability control is to defining the relationship between

artifacts in order to control variabilities.
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2.4 SPL Adoption Strategies

With the growth of competitiveness among companies, there is a need for three goals:

a faster development, better quality and less time-to-market. It makes SPL paradigm

invited for these companies. Based on business goals, adoption strategies and their pros

and cons the organization should decide the best way to introduce SPL concepts in its

context. In Pohl et al. (2005a), four transition strategies are described, as follows:

• Incremental Introduction It starts small and expands incrementally, it may occur

in two ways, expanding organizational scope which starts with a single group

doing SPL engineering and other groups are added incrementally after the first

group succeed and expanding investment which starts with a small investment that

is incrementally increased, depending on the achieved success.

• Tactical Approach starts introducing partially SPL concepts in sub-process and

methods, starting form the most problematic sub-process. It is often used when

architects and engineers drive this introduction.

• Pilot Project Strategy this strategy may be start using one of the several alternative

ways, such as, starting as a potential first product, starting as a toy product, starting

as a product prototyping.

• Big Bang Strategy the SPL adoption is done by the organization at once. The

domains completely performed and the platform is built, after that, the PD starts

and the products are derived from the platform.

Another point of view is presented by Krueger (2002), which advocates three adoption

models: using the proactive approach, organization analyzes, designs and implements the

overall SPL to support the full scope of products needed on the foreseeable horizon. In

reactive approach, the organization incrementally grows their SPL as the demand arises

for new products or new requirements on existing products. Finally, using extractive

approach the organization capitalizes on existing custom software systems by extracting

the common and varying source code into a single production line.

2.5 Industrial Experiences with SPL

The reduction of cost and time to market, the improvement of product quality, and an

increased responsiveness to change the technology and customer requirements, are all

14
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critical issues that companies must face to be competitive in today’s market (Sellier et al.,

2007). Software product line engineering has showed to be an efficient way to achieve

these goals.

Because software product line engineering requires long-term planning, the companies

that have used it successfully are, often, large ones that can afford to take the long view

(Knauber et al., 2000). Table 2.1 shows some successful industrial cases of applying the

software product line engineering paradigm are summarized, by describing the previous

and current scenario, some challenges and some results and metrics.
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Table 2.1 Software Product Line Industrial Cases (Pohl et al., 2005a; Linden et al., 2007).

Company Case Study Previous Scenario Challenges Current Scenario Results and Metrics

CELSIUS TECH Ship System 2000
Systems comprise 1-1.5 million
SLOC of Ada code, are hard-real-
time, embedded, and safety-critical.

Support systems with more than
fifty variants; Create a family mem-
bers including systems for ships
from coastal corvettes to cruisers to
submarines; Complexity increase;
Late system testing; Not a trivial as-
sembling process.

Able to slash production time, build
more systems with fewer people,

and increase quality

Decrease time to market - 9 years to
3 years; Reduce costs; Schedule on
time and predictable met; Reduce
the number of developers - 210 to
30; Stable architecture from start of
new project.

Naval Undersea
Warfare Center

A-7E Operational
Flight Program

The NUWC develops and supports
different range facilities, including
those to test and evaluate systems
for the military forces of the USA;
In the past, these range facilities
were built for specific categories of
weapon systems and missions, but
these systems have become more
and more complex.

Manage the commonality and com-
plexity of the range facilities; Struc-
ture the software product line by
a reference architecture intended to
cover the complete set of range op-
erations; Use the reference archi-
tecture for building range systems,
some assets have to be tailored for
range-unique capabilities.

In the year 2004, the software prod-
uct line included seven systems al-
ready installed, with five to six new
projects per year.

Cost reduce about 50% using
RangeWare SPL; The development
time has been reduced from years to
months; Staff resources are cut by
up to 75%; Increase customer satis-
faction.

CUMMINS Inc. Diesel engine SPL

Modern engines can contain over
100KSLOC of software to micro-
control ignition to produce an opti-
mum mix of power, economy, and
emissions.

In 1993, faced with the need to pro-
duce almost 20 new systems but
with staff and resources available
only for six.

TheCummins SPL covers 9 basic
engine types ranging over 4- 18
cylinders and 4-164 liters of dis-
placement, with 12 kinds of elec-
tronic control modules, 5 kinds of
processors, and 10 kinds of fuel sys-
tems.

To date, 20 basic software builds
have been parlayed into well over
1000 separate products; Cycle time
has been reduced from around 250
person months to a few person
months; Productivity improvement
of 3.6, and an ROI of 10:1.

General Motors General Motors
Powertrain

Powertrains consist of an engine,
transmissions and the associated
control system; In the control sys-
tem, there are electrical compo-
nents, an electronic control mod-
ule, and the software that runs this
system (General Motors Powertrain
SPL).

GMPT began its transition to a
product line approach for its embed-
ded powertrain control software in
the late 1990’s.

Controller products built using
the GMPT software product line
cleanly interface with over 100 ve-
hicle platforms.

The GMPT software product line
is now the basis for nearly all
new control modules being devel-
oped within GMPT; GMPT expects
to take the number of software
sets supporting gasoline engine pro-
grams from 17 down to 3.

Nokia Mobile Phones
The initial software architecture for
this product line addressed varia-
tions in hardware, communication
standards, and user interfaces.

Language Challenge Abstract; The
Hardware Challenge; The Feature
Challenge.

32 different phones are manufac-
tured covering six different protocol
standards, a wide variety of func-
tional features and capabilities, dif-
ferent user interface designs, and
many platforms and environments.

Nokia Mobile Phones is the world’s
largest mobile phone manufacturer,
and they believe that software prod-
uct line engineering has helped it to
reach that position.
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2.6 Chapter Summary

Software Product Lines is an approach to software reuse that during the last years has

proven its applicability in a broad range of situations, producing impressive results (Weiss

and Krueger, 2006). To achieve all software product lines benefits, three essential activi-

ties must be followed: Core Asset Development, Product Development and Management.

The assets are created during core asset development phase and further instantiated during

product development to derive products.

In this chapter an overview of SPL was presented, discussing its essential activities,

the concept regarding to variability and how to manage it, as well as, some SPL adoption

strategies. It also presents some successful industrial cases of applying the software

product line engineering approach.

The next Chapter presents an overview on the software testing area discussing their

fundamental concepts, testing levels, testing strategies and some black-box and white-box

methods in order to define a base for the approach defined in this work.
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“Testing can never demonstrate the absence of errors in

software, only their presence.”

E.W.Dijkstra 3
Overview on Software Testing

3.1 Introduction

The growing development of complex and large software products requires many activities

that need to be suitably coordinated to meet the desired customer requirements. Two set

of activities are required to achieve this goal, activities responsible for the development

of software products, and activities which aims at checking the quality of both, the

development process and artifacts. The set of activities related to evaluate and verify the

quality of products, is often referred as testing or quality process.

Software testing is an iterative process that tends to be considered a part of devel-

opment, it is really its own discipline and should be tracked as its own project. While

working closely with development, it should be independent enough to be able to cancel

or delay product delivery if the quality requirements are not met.

This closely relation between software testing and development is not punctual but

it spans through the whole software life-cycle: it starts with non-executable artifacts

(e.g. requirements, architecture design, documents, etc.) using reviews, inspections and

walkthroughs, next in executable artifacts (code) and goes beyond product deployment

(maintenance) and post mortem analysis (Baresi and Pezzè, 2006).

The rest of the chapter discusses several important issues of testing and is organized

as follows. Section 3.2 introduces some software testing fundamental concepts. Section

3.3 discusses the testing process importance and its main activities. Section 3.4 presents

the V-model and describes its main levels. Section 3.5 approaches the regression testing

technique. Section 3.6 discusses about the two software testing strategies, the black-box

and white-box. Section 3.6.1 and 3.6.2 describe some black-box and white-box methods.

Section 3.7 summarizes the relation between SPL and software testing, and, finally,

Section 3.8 summarizes this chapter.
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3.2 Fundamental Concepts

Some concepts and terminology are important to understand and apply a software testing

process. In this section, they are described.

• Validation and Verification

Software testing is a broader topic that is often referred as validation and verifi-

cation. One of the most important distinction to make is, validation refers to the

process of evaluating at the end of software development to ensure compliance with

intended usage, “Are we building the right product?”. Verification is the process of

determining whether the products of a given phase of the software development

process fulfill the requirements established during the previous phase, “Are we

building the product right?” (Ammann and Offutt, 2008).

• Static and Dynamic Analysis

By the way, there are two ways to evaluate the software and their artifacts: through

static analysis which verifies against a static specification (structure of the artifact),

are not performed in executable code and can be executed manually or with a set of

tools; and, using dynamic analysis methods, where the software is executed using

a set of inputs and comparing their output behavior to what is expected and they

are performed in executable (Burnstein, 2003). The use of static analysis at the

beginning, is important as means to identify problems as early as possible, since a

later identification can impact the project as a whole, increasing its cost.

• Error, Fault and Failure

Another important concept regarding to software testing are the distinction among

error, fault and failure (Figure 3.1). The first, refers to a mistake, misconception,

or misunderstanding by a developer, a manifestation of some fault. The second, it

is a software anomaly that may cause it to work incorrectly, and not according to

its specification, a static defect. It is introduced into the software as a result of an

error. The later, comprehends the inability of a system or component to perform its

required functions as established by the requirements (Burnstein, 2003).
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Figure 3.1 Difference among Error, Fault and Failure

3.3 The Testing Process

Testing concepts, strategies, techniques, and measures need to be integrated into a defined

and controlled process which is applied by people (Abran et al., 2004).

Some organizations postpone software activities to the end of the development. It

makes testing be compressed, not enough resources remains (time and budget), problems

from previous stages are solved by taking time and money and the managers do not have

enough time to plan for testing. The testers cannot find errors at the last minute and make

a bad product good, thus, high quality should be part of the process from the beginning

(Ammann and Offutt, 2008).

The testing process starts even if no code, through static analysis (walkthroughs and

revisions) and continues with dynamic analysis (with executable code) interacting with

the development phases. The integration between testing activities and the software de-

velopment lifecycle, can make dramatic improvements in the effectiveness and efficiency

of testing, and influence the software development process in such a way that high quality

software is more likely to be built (Ammann and Offutt, 2008).

The testing process involve four main activities (Figure 3.2), they are performed in

each testing level (Burnstein, 2003). The Planning, involve the coordination of personnel,

management of available test facilities and hardware. The Test Design is based on the

testing level to be performed and the particular testing techniques. Besides the test cases

(including input data, and expected outputs for each test case), test scripts and test suites
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Figure 3.2 Testing level activities.

are also developed during this activity. The Execution, comprehends all steps necessary

to run the test cases and scripts created previously. An automatic execution is invited

in order to reduce time and cost. During the Reporting all testing execution results

must be evaluated to determine whether or not the test has been software performed as

expected and did not have any major unexpected outcomes. This activity is important to

calibrate the testing level activity, identifying problems during test planning, design or

even execution.

3.4 Testing Levels

In order to represent the association between development and testing phases, the V-model

(Figure 3.3) is adopted. It was defined in the 1980s, in reaction to the waterfall model of

software development (Rook, 1986).

Figure (3.3), shows how a testing phases interact with its respective development

stage. Each of the testing phases will be detailed in the next subsections.
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Figure 3.3 The V-Model.

3.4.1 Unit Testing

It is the lowest level of testing (Ammann and Offutt, 2008), and its main goal is to detect

functional and structural defects in the unit, insuring that each individual software unit is

functioning according to its specification. A unit is the smallest possible testable software

component, in procedural programming a unit is traditionally viewed as a function or

procedure, in object-oriented systems both classes and methods and a unit may also be

considered a component (COTS) (Burnstein, 2003).

The decision about which consider as a unit is extremely important and impacts the

whole test process. In case where the method is considered a unit, it may interact with

other methods within a class, in some cases additional code, called test harness (e.g.

stubs and drivers), must be developed to represent the absent methods within the class.

The lower the granularity, the higher the test harness, consequently higher the test cost.

This decision can also influence the type of defects found during the tests, for instance,

considering a class, the defects due to encapsulation, polymorphism and inheritance can

be detected.

Unit test is crucial since it exercises a small and simple portion of a software making

easier to locate and repair a defect. It is important that the unit tests should be performed

by an independent team (other than developers). In many cases, the unit tests are

performed informally by a developer, under this ad-hoc approach, defects are not recorded
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by developers and do not become part of the unit history. It can cause troubles during

safely critical tasks and reuse (Burnstein, 2003).

3.4.2 Integration Testing

The integration level is responsible for detecting defects that occur in the units interface,

this is also where object-oriented features (e.g.: inheritance, polymorphism and dynamic

binding) are tested (Ammann and Offutt, 2008). The integration tests should only be

performed in units that have been passed through unit tests.

The integration tests can be performed using two strategies, incremental (top-down

and bottom-up) and non-incremental (also called Big-Bang) (Muccini and van der Hoek,

2003). In both strategies, only one unit is added to the growing subsystem or cluster.

While in non-incremental strategy all units are integrated to be further tested, in incremen-

tal strategy, a unit is integrated into a set of previously integrated modules (set of units)

which were prior approved (Burnstein, 2003). The last strategy can be performed in two

ways, top-down or bottom-up strategies, they are used with traditional, hierarchically

structured software (Abran et al., 2004).

3.4.3 System Testing

The goal of this level is to ensure that the system performs according to its requirements.

Evaluating both functional behavior and quality requirements such as, security, perfor-

mance and reliability. This level is useful for detecting external hardware and software

interface defects, for example, those causing race conditions, deadlocks and exception

handling.

Several types of system tests are shown in Figure 3.4 and following described, some

inputs are also displayed.

• Functional Tests: They are responsible for ensure that the behavior of the system

adheres to its requirements specification, all functional requirements should be

achievable by the system.

• Stress and Load Tests: It aims to try to break the system, finding scenarios under

which it will crash. Race conditions are deadlocks often uncovered by performing

stress testing.

• Security Tests: Insure that the system is safe and secure is a big task, performed

by developers and test specialists. This type of testing aims to evaluate systems
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Figure 3.4 Types of System Tests (Burnstein, 2003).

characteristics related to availability, integrity and confidentially of system services

and data.

• Configuration Tests: It allows developers and testers evaluate the system perfor-

mance and availability when hardware exchanges and reconfigurations happens. In

additional, it shows the correct operation of configuration menus and commands.

• Performance Tests: It aims to test non-functional requirements (quality attributes)

which describes quality levels expected for the software, for example, memory

use, response time and delays. In a general way, it sees if the software meets the

performance requirements.

• Recovery Tests: Comprehends the tests responsible for determine if the system

could return to a well-known state, without compromise any previous transaction.

3.4.4 Acceptance Testing

After the software has passed through the system test level, acceptance tests allow users

to evaluate the software in terms of their expectations and goals. The acceptance tests are

based on requirements, user manual or even system tests. In this level, the software must

be executed under the real-world conditions on operational hardware and software.

When the software is developed for mass market (for example, COTS), testing it for

individual clients is not practical, in this case, two stages of acceptance tests are applied.

The first, called alpha tests, takes place on developer‘s site “in-house” (Abran et al.,

24



3.5. REGRESSION TESTING

2004). The last, beta tests, sends the software to users who install it and use it under

real-world conditions (Burnstein, 2003).

3.5 Regression Testing

Regression testing is not considered a testing level, but it is a technique used to retest

a software when changes are made to ensure that the new version of the software has

retained the capabilities of the old version and that no new defects have been introduced

due to the changes (Burnstein, 2003). It can be applied in any testing level (Abran et al.,

2004).

Changes to software are often classified as corrective, perfective, adaptive, and

preventive. All of these changes require regression testing (Ammann and Offutt, 2008).

It will be detailed in Chapter 6.

3.6 Testing Strategies

In order to maximize the use of time and resources, the test cases must be effective, having

a good possibility of revealing defects. The main benefits of achieve this efficiency, are:

(i) efficient use of organizational resources, (ii) higher probability for test reuse, (iii)

closer adherence to testing and project schedules and budgets and (iv) a higher-quality

software product delivery (Burnstein, 2003).

Two basic strategies are used to help the test case design, the black-box (or functional)

and white-box (clear or glass-box), as is shown in Figure 3.5. Both strategies should be

used to achieve a high-quality software, they complement each other.

Figure 3.5 Testing Strategies (Burnstein, 2003).
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• Black-Box: testing strategy that considers external descriptions of the software,

including specifications, requirements, and design to design test cases. The internal

program structure is not used. In additional, this strategy supports testing the

product against the end user external specifications. It is usually applied to smaller-

sized pieces of software such as module or function (Burnstein, 2003; Ammann

and Offutt, 2008).

• White-Box: strategy that requires knowledge of the internal structure, the source

code internals of the software, specifically including branches, individual condi-

tions, and statements in order to design test cases. The size of the software under

test using this approach can vary from a simple module, member function, or a

complete system (Burnstein, 2003; Ammann and Offutt, 2008).

3.6.1 Black-Box Testing Methods

Assuming that infinite time and resources are not available to test all possible inputs, it is

prohibitively expensive. For this reason, it is necessary to select a set of inputs (valid or

invalid) in order to design effective test cases that gives the maximum yield of defects for

time and effort spent. In order to help this test case design, a combination of methods are

used to detect different types of defects. A set of black-box methods are described next

(Burnstein, 2003).

• Random Testing: When a tester randomly selects inputs from the domain in order

to execute the test. Although random test inputs may save some time and effort that

more thoughtful input selection methods require, this selection has little chance of

producing an effective set of data.

• Equivalent Class Partitioning: Comprehends the partitioning of the input domain

of the software under-test. The finite number of equivalence classes allows the

tester to select a given member of an equivalence class as a representative of that

class.

• Boundary Value Analysis: Requires that the tester select elements close to the

edges, so that both the upper and lower edges of an equivalence class are covered

by test cases. These values are often valuable in revealing defects and it is used to

refine the results of equivalence class partitioning.

• Cause-and-effect Graphing: It is a technique used to combine conditions and derive

an effective set of test cases that may disclose inconsistencies in a specification.
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One advantage of this method come from exercising combinations of test data may

not be considered using other black-box testing techniques.

• State Transition Testing: Based on states and finite-state machines this method

allow the tester to view the developing software in term of its states, transitions

between states, and the inputs and events that trigger state changes.

• Error Guessing: Based on developer/tester past experience with similar code under-

test, and their intuition regarding to where the defects are in the code. A high

expertise is required.

3.6.2 White-Box Testing Methods

When the tester has knowledge of the internal logic structure of the software under test, a

white-box testing method is invited. The goal of the tester is determine if all the logical

and data elements in the software unit are working properly. It is most useful when testing

small components. Some white-box methods are following described (Burnstein, 2003).

• Statement Testing: It aims to test the statements of a module under test. If the

statement coverage criterion is set to 100%, the tester should develop a set of test

cases, that when executed, all of the statements in the module are executed at least

once.

• Branch Testing: A similar idea can be viewed here, instead of all statements, only

decision elements in the code (if-then, case, loop) are executed.

• Path Testing: The tester first identifies a set of independent paths, sequence of

control flow nodes usually beginning from the entry node of a graph through to the

exit node, following design test cases for each path.

• Loop Testing: The purpose of this method is to verify loop constructs which can be

classified in four categories, simple, nested, concatenated and unstructured.

3.7 SPL and Software Testing

Software product lines promise benefits such as improvements in time to market, cost

reduction, high productivity and quality (Clements and Northrop, 2001). These goals

will only be achieved if quality attributes (correctness and reliability) are continuing
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objectives from the earliest phases of development (Ammann and Offutt, 2008; McGregor,

2001b). Thus, a product line organization should define a set of activities that validate the

correctness of what has been built and that verify that the correct product has been built.

Software testing is one approach to validate and verify the artifacts produced in software

development.

Testing in a product line organization includes activities from the validation of the

requirements to verification activities carried out by customers to complete the acceptance

of a product. In the SPL context, it includes testing of core assets, responsible for verify

the common parts (commonality) among products, the product development testing which

aims to verify the product specific parts (variability) and the interaction between them.

The same opportunities for large-scale reuse exist for assets created to support the

testing process as for assets created for development. Since the cost of all of the test

assets for a project can approach that for the development assets, savings from the reuse

of test assets and savings from testing early in the development process can be just as

significant as savings from development assets (McGregor, 2001b).

3.8 Chapter Summary

Testing in the context of a product line includes testing the core assets software, the

product specific software, and their interactions. Testing is conducted within the context

of the other development activities. In this chapter, some fundamental concepts, testing

levels, strategies and methods were presented. The chapter also discussed about SPL and

testing.

In order to better understand the SPL and Testing state-of-the-art, a mapping study

was performed and presented in the next chapter.
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“Have a Healthy Disregard for the Impossible.”

Larry Page

4
A Mapping Study on Software Product

Line Testing

In software development, Testing is an important mechanism both to identify defects

and assure that completed products work as specified. This is a common practice in

single-system development, and continues to hold in Software Product Lines (SPL).

Even though extensive research has been done in the SPL Testing field, it is necessary

to assess the current state of research and practice, in order to provide practitioners

with evidence that enable fostering its further development. This chapter focuses on

Testing in SPL and has the following goals: investigate state-of-the-art testing practices,

synthesize available evidence, and identify gaps between required techniques and existing

approaches available in the literature. A systematic mapping study Petersen et al. (2008),

which is an evidence-based approach, applied in order to provide an overview of a

research area, and identify the quantity and type of research and results available within

it, was conducted with a set of nine research questions, in which 120 studies, dated from

1993 to 2009, were evaluated. Although several aspects regarding testing have been

covered by single-system development approaches, many can not be directly applied

in the SPL context due to specific issues. In addition, particular aspects regarding SPL

are not covered by the existing SPL approaches, and when the aspects are covered, the

literature just gives brief overviews. This scenario indicates that additional investigation,

empirical and practical, should be performed. The results can help to understand the

needs in SPL Testing, by identifying points that still require additional investigation,

since important aspects regarding particular points of software product lines have not

been addressed yet.

The remainder of this chapter is organized as follows: In Section 4.2, the method

used in this study is described. Section 4.3, presents the planning phase and the research
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questions addressed by this study. Section 4.4, describes its execution, presenting the

search strategy used and the resultant selected studies. Section 4.5, presents the classifica-

tion scheme adopted in this study and reports the findings. In section 4.6, the threats to

validity are described, Section 4.7, presents the related work. Section 4.8, draws some

conclusions and provides recommendations for further research on this topic. Section 4.9

presents the chapter summary.

4.1 Introduction

The increasing adoption of Software Product Lines practices in industry has yielded

decreased implementation costs, reduced time to market and improved quality of derived

products Denger and Kolb (2006); Northrop and Clements (2007). In this approach, as

in single-system development, testing is essential Kauppinen (2003) to uncover defects

Pohl and Metzger (2006); Reuys et al. (2006). A systematic testing approach can save

significant development effort, increase product quality and, customer satisfaction and

lower maintenance costs Juristo et al. (2006a).

As defined in McGregor (2001b), testing in SPL aims to examine core assets, shared

by many products derived from a product line, their individual parts and the interaction

among them. Thus, testing in this context encompasses activities from the validation of

the initial requirements to activities performed by customers to complete the acceptance of

a product, and confirms that testing is still the most effective method of quality assurance,

as observed in Kolb and Muthig (2003).

However, despite the obvious benefits aforementioned, the state of software testing

practice is not as advanced in general as software development techniques Juristo et al.

(2006a) and, the same holds true in the SPL context Kauppinen and Taina (2003);

Tevanlinna et al. (2004). From an industry point of view, with the growing SPL adoption

by companies Weiss (2008), more efficient and effective testing methods and techniques

for SPL are needed, since the currently available techniques, strategies and methods make

testing a very challenging process Kolb and Muthig (2003). Moreover, the SPL Testing

field has attracted the attention of many researchers in the last years, which result in a

large number of publications regarding general and specific issues. However, the literature

has provided lots of approaches, strategies and techniques, but rather surprisingly little in

the way of widely-known empirical assessment of their effectiveness.

This chapter presents a systematic mapping study Petersen et al. (2008), performed

in order to map out the SPL Testing field, through synthesizing evidence to suggest
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important implications for practice, as well as identifying research trends, open issues,

and areas for improvement. Mapping study Petersen et al. (2008) is an evidence-based

approach, applied in order to provide an overview of a research area, and identify the

quantity and type of research and results available within it. The results are gained from a

defined approach to locate, assess and aggregate the outcomes from relevant studies, thus

providing a balanced and objective summary of the relevant evidence. Hence, the goal of

this investigation is to identify, evaluate, and synthesize state-of-the-art testing practices

for product lines in order to present what has been achieved so far in this discipline. We

are also interested in identifying practices adopted in single systems development that

may be suitable for SPL.

The study also highlights the gaps and identifies trends for research and improvements.

Moreover, it is based on analysis of interesting issues, guided by a set of research

questions. This systematic mapping process was conducted from July to December in

2009.

4.2 Literature Review Method

The method used in this research is a Systematic Mapping Study (henceforth abbreviated

to as ’MS’) (Budgen et al., 2008; Petersen et al., 2008). A MS provides a systematic and

objective procedure for identifying the nature and extent of the empirical study data that

is available to answer a particular research question Budgen et al. (2008).

While a Systematic Review (SR) is a mean of identifying, evaluating and interpreting

all available research relevant to a particular question Kitchenham and Charters (2007), a

MS intends to ’map out’ the research undertaken rather than to answer detailed research

questions (Budgen et al., 2008; Petersen et al., 2008). A well-organized set of good

practices and procedures for undertaking MS in the software engineering context is

defined in (Budgen et al., 2008; Petersen et al., 2008), which establishes the base for the

study presented in this paper. It is worthwhile to highlight that the importance and use of

MS in the software engineering area is increasing (Afzal et al., 2008; Bailey et al., 2007;

Budgen et al., 2008; Condori-Fernandez et al., 2009; Juristo et al., 2006b; Kitchenham,

2010; Petersen et al., 2008; Pretorius and Budgen, 2008), showing the relevance and

potential of the method. Nevertheless, of the same way as systematic reviews (Bezerra

et al., 2009; Chen et al., 2009; Lisboa et al., 2010; Moraes et al., 2009), we need more

MS related to software product lines, in order to evolve the field with more evidence

Kitchenham et al. (2004).
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A MS comprises the analysis of primary studies that investigate aspects related to

predefined research questions, aiming at integrating and synthesizing evidence to support

or refute particular research hypotheses. The main reasons to perform a MS can be stated

as follows, as defined by Budgen et al. (2008):

• To make an unbiased assessment of as many studies as possible, identifying existing

gaps in current research and contributing to the research community with the

reliable synthesis of the data;

• To provide a systematic procedure for identifying the nature and extent of the

empirical study data that is available to answer research questions;

• To map out the research that has been undertaken;

• To help to plan new research, avoiding unnecessary duplication of effort and error;

• To identify gaps and clusters in a set of primary studies, in order to identify topics

and areas to perform more complete systematic reviews.

The experimental software engineering community is working towards the definition

of standard processes for conducting mapping studies. This effort can be checked out

in Petersen et al. (2008), a study describing how to conduct systematic mapping studies

in software engineering. The paper provides a well defined process which serves as a

starting point for our work. We merged ideas from Petersen et al. (2008) with good

practices defined in the SR guidelines published by Kitchenham and Charters (2007). This

way, we could apply a process for mapping study including good practices of conducting

systematic reviews, making better use of the both techniques.

Figure 4.1 The Systematic Mapping Process (adapted from Petersen et al. (2008)).
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This blending process enabled us to include topics not covered by Petersen et al.

(2008) in their study, such as:

• Protocol. This artifact was adopted from systematic review guidelines. Our initial

activity in this study was to develop a protocol, i.e. a plan defining the basic

mapping study procedures. Searching in the literature, we noticed that some

studies created a protocol (e.g. (Afzal et al., 2009)), but others do not (e.g. Condori-

Fernandez et al. (2009); Petersen et al. (2008)). Even though this is not a mandatory

artifact, as mentioned by Petersen et al. (2008), authors who created a protocol in

their studies encourage the use of this artifact as being important to evaluate and

calibrate the mapping study process.

• Collection Form. This artifact was also adopted from systematic review guidelines

and its main purpose is to help the researchers in order to collect all the information

needed to address the review questions, study quality criteria and classification

scheme.

• Quality Criteria. The purpose of quality criteria is to evaluate the studies, as a

means of weighting their relevance against others. Quality criteria are commonly

used when performing systematic literature reviews. The quality criteria were

evaluated independently by two researchers, hopefully reducing the likelihood of

erroneous results.

Some elements, as proposed by Petersen et al. (2008) were also changed and/or

rearranged in this study, such as:

• Phasing mapping study. As can be seen in Figure 4.1, the process was explicitly

split into three main phases: 1 - Research Directives, 2 - Data Collection and 3 -

Results. It is in line with systematic reviews practices Kitchenham and Charters

(2007), which defines planning, conducting and reporting phases. Phases are

named differently from what is defined for systematic reviews, but the general idea

and objective for each phase was followed. In the first, the protocol and the research

questions are established. This is the most important phase, since the research

goal is satisfied with answers to these questions. The second phase comprises the

execution of the MS, in which the search for primary studies is performed. This

consider a set of inclusion and exclusion criteria, used in order to select studies

that may contain relevant results according to the goals of the research. In third

phase, the classification scheme is developed. The results of a meticulous analysis
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performed with every selected primary study is reported, in a form of a mapping

study. All phases are detailed in next sections.

4.3 Research Directives

This section presents the first phase of the mapping study process, in which the protocol

and research questions are defined.

4.3.1 Protocol Definition

The protocol forms the research plan for an empirical study, and is an important resource

for anyone who is planning to undertake a study or considering performing any form of

replication study.

In this study, the purpose of the protocol is to guide the research objectives and clearly

define how it should be performed, through defining research questions and planning how

the sources and studies selected will be used to answer those questions. Moreover, the

classification scheme to be adopted in this study was prior defined and documented in the

protocol.

Incremental reviews to the protocol were performed in accordance with the MS

method. The protocol was revisited in order to update it based on new information

collected as the study progressed.

To avoid duplication, we detail the content of the protocol in the Section 4.4, as we

describe how the study was conducted.

4.3.2 Question Structure

The research questions were framed by three criteria:

• Population. Published scientific literature reporting software testing and SPL

testing.

• Intervention. Empirical studies involving SPL Testing practices, techniques, meth-

ods and processes.

• Outcomes. Type and quantity of evidence relating to various SPL testing ap-

proaches, in order to identify practices, activities and research issues concerning to

this area.
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4.3.3 Research Questions

As previously stated, the objective of this study is to understand, characterize and sum-

marize evidence, identifying activities, practical and research issues regarding research

directions in SPL Testing. We focused on identifying how the existing approaches deal

with testing in SPL. In order to define the research questions, our efforts were based on

topics addressed by previous research on SPL testing (Odia, 2007; Kolb and Muthig,

2003; Tevanlinna et al., 2004). In addition, the research questions definition task was

aided by discussions with expert researchers and practitioners, in order to encompass

relevant and still open issues.

Nine research questions were derived from the objective of the study. Answering these

questions led a detailed investigation of practices arising from the identified approaches,

which support both industrial and academic activities. The research questions, and the

rationale for their inclusion, are detailed below.

• Q1. Which testing strategies are adopted by the SPL Testing approaches?

This question is intended to identify the testing strategies adopted by a software

product line approach Tevanlinna et al. (2004). By strategy, we mean the way in

which the assets are tested, considering the differentiation between the two SPL

development processes: core asset and product development.

• Q2. What are the existing static and dynamic analysis techniques applied on

the SPL context? This question is intended to identify the analysis type (static

and dynamic testing McGregor (2001b)) applied along the software development

life cycle.

• Q3. Which testing levels commonly applicable in single-systems development

are also used in the SPL approaches? Ammann and Offutt (2008) and Jaring et al.

(2008) advocate different levels of testing (unit, integration, system and acceptance

tests) where each level is associated with a development phase, emphasizing

development and testing equally.

• Q4. How do the product line approaches handle regression testing along soft-

ware product line life cycle? Regression testing is done when changes are made

to already tested artifacts (Kauppinen, 2003; Rothermel and Harrold, 1996), to

be confident that no new faults were inserted and the new software version still

working properly. Thus, this question investigates the regression techniques applied

to SPL.
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• Q5. How do the SPL approaches deal with tests of non-functional require-

ments? This question seeks clarification on how tests of non-functional require-

ments should be handled.

• Q6. How do the testing approaches in an SPL organization handle common-

ality and variability? An undiscovered defect in the common core assets of a SPL

will affect all applications and thus will have a severe effect on the overall quality of

the SPL Pohl and Metzger (2006). In this sense, answering this question requires an

investigation into how the testing approaches handle commonality issues through

the software life cycle, as well as gathering information on how variability affects

testability.

• Q7. How do variant binding times affect SPL testability? According to Jaring

et al. (2008), variant binding time determines whether a test can be performed at a

given development or deployment phase. Thus, the identification and analysis of

the suitable moment to bind a variant determines the appropriate testing technique

to handle the specific variant.

• Q8. How do the SPL approaches deal with test effort reduction? The objective

is to analyze within selected approaches the most suitable ways to achieve effort

reduction, as well as to understand how they can be accomplished within the testing

levels.

• Q9. Do the approaches define any measures to evaluate the testing activities?

This question requires an investigation into the data collected by the various SPL

approaches with respect to testing activities.

4.4 Data Collection

In order to answer the research questions, data was collected from the research literature.

These activities involved developing a search strategy, identifying data sources, selecting

studies to analyze, and data analysis and synthesis.

4.4.1 Search Strategy

The search strategy was developed by reviewing the data needed to answer each of the

research questions.
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The initial set of keywords was refined after a preliminary search returned too many

results with few relevance. We used several combinations of search items until achieve

a suitable set of keywords. These are: Verification, Validation; Product Line, Product

Family; Static Analysis, Dynamic Analysis; Variability, Commonality, Binding; Test Level;

Test Effort, Test Measure; Non-functional Testing; Regression Testing, Test Automation,

Testing Framework, Performance, Security, Evaluation, Validation, as well as their similar

nouns and syntactic variations (e.g. plural form). All terms were combined with the term

”Product Line” and ”Product Family” by using Boolean ”AND” operator. They all were

joined each other by using ”OR” operator so that it could improve the completeness of

the results. The complete list of search strings is available in Table 4.1 and also in a

website developed to show detailed information on this MS1.

Table 4.1 List of Search Strings
Research Strings

1 verification AND validation AND ("product line" OR "product family" OR "SPL")
2 "static analysis" AND ("product line" OR "product family" OR "SPL")
3 "dynamic testing" AND ("product line" OR "product family" OR "SPL")
4 "dynamic analysis" AND ("product line" OR "product family" OR "SPL")
5 test AND level AND ("product line" OR "product family” OR SPL)
6 variability OR commonality AND testing
7 variability AND commonality AND testing AND ("product line" OR "product family" OR "SPL")
8 binding AND test AND ("product line" OR "product family" OR "SPL")
9 test AND "effort reduction" AND ("product line" OR "product family" OR "SPL")
10 "test effort" AND ("product line" OR "product family" OR "SPL")
11 "test effort reduction" AND ("product line" OR "product family" OR "SPL")
12 "test automation" AND ("product line" OR "product family" OR "SPL")
13 "regression test" AND ("product line" OR "product family" OR "SPL")
14 "non-functional test" AND ("product line" OR "product family" OR "SPL")
15 measure AND test AND ("product line" OR "product family" OR "SPL")
16 “testing framework” AND ("product line" OR "product family" OR "SPL")
17 performance OR security AND ("product line" OR "product family" OR "SPL")
18 evaluation OR validation AND ("product line" OR "product family" OR "SPL")

4.4.2 Data Sources

The search included important journals and conferences regarding the research topic such

as Software Engineering, SPL, Software Verification, Validation and Testing and Software

Quality. The search was also performed using the ’snow-balling’ process, following up

the references in papers and it was extended to include grey literature sources, seeking

relevant white papers, industrial (and technical) reports, thesis, work-in-progress, and

books.

We restricted the search to studies published up to December 2009. We indeed did

not establish an inferior year-limit, since our intention was to have a broader coverage

1http://www.cin.ufpe.br/∼sople/testing/ms/
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of this research field. This was decided due to many important issues that emerged ten

or more years ago are still considered open issues, as pointed out in Bertolino (2007);

Juristo et al. (2004).

The initial step was to perform a search using the terms described in 4.4.1, at the digital

libraries web search engines. We considered publications retrieved from ScienceDirect,

SCOPUS, IEEE Xplore, ACM Digital Library and Springer Link tools.

The second step was to search within top international, peer-reviewed journals pub-

lished by Elsevier, IEEE, ACM and Springer, since they are considered the world leading

publishers for high quality publications Brereton et al. (2007).

Next, conference proceedings were also searched. In cases which the conference keep

the proceedings in a website, making them available, we accessed the website. When

proceedings were not available by the conference website, the search was done through

DBLP Computer Science Bibliography 2.

When searching conference proceedings and journals, many were the results that had

already been found in the search through digital libraries. In this case, we discarded the

last results, considering only the first, that had already been included in our results list.

The lists of Conferences and Journals used in the search for primary studies are

available in Appendices B and B.2.

After performing the search for publications in conferences, journals, using digital

libraries and proceedings, we noticed that known publications, commonly referenced by

other studies in this field, such as important technical reports and thesis, had not been

included in our results list. We thus decided to include these grey literature entries. Grey

literature is used to describe materials not published commercially or indexed by major

databases.

4.4.3 Studies Selection

The set of search strings was thus applied within the search engines, specifically in those

mentioned in the previous section. The studies selection involved a screening process

composed of three filters, in order to select the most suitable results, since the likelihood

of retrieving not adequate studies might be high. Figure 4.2 briefly describes what was

considered in each filter. Moreover, the Figure depicts the amount of studies remaining

after applying each filter.

The inclusion criteria were used to select all studies during the search step. After that,

the same exclusion criteria was firstly applied in the studies title and after in the abstracts

2http://www.informatik.uni-trier.de/∼ley/db/
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Figure 4.2 Stages of the selection process.

and conclusions. All excluded studies can be seen by differentiating the results among

filters. Regarding the inclusion criteria, the studies were included if they involved:

• SPL approaches which address testing concerns. Approaches that include infor-

mation on methods and techniques and how they are handled and, how variabilities

and commonalities influence software testability.

• SPL testing approaches which address static and dynamic analysis. Approaches

that explicitly describe how static and dynamic testing applies to different testing

phases.

• SPL testing approaches which address software testing effort concerns. Ap-

proaches that describe the existence of automated tools as well as other strategies

used in order to reduce test effort, and metrics applied in this context.

Studies were excluded if they involved:

• SPL approaches with insufficient information on testing. Studies that do not

have detailed information on how they handle SPL testing concepts and activities.

• Duplicated studies. When the same study was published in different papers, the

most recent was included.

• Or if the study had already been included from another source.
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Figure 4.3 depicts a Bar Chart with the results categorized by source and filter, as

described in section 4.4.2. Figure 4.4 shows the distribution of the primary studies,

considering the publication year. This Figure briefly gives us the impression that the SPL

Testing area is becoming more interesting, whereas the growing number of publications

claims the trend that many solutions have become recently available (disregarding 2009,

since many studies might not be made available by search engines until the time the

search was performed, and thus we did not consider in this study).

Figure 4.3 Primary studies filtering categorized by source.

An important point to highlight is that, between 2004 and 2008 an important interna-

tional workshop devoted specifically to SPL testing, the SPLiT workshop3, demonstrated

the interest of the research community on expanding this field. Figure 4.5 shows the

amount of publications considering their sources. In fact, it can be seen that peaks in

Figure 4.4 match with the years when this workshop occurred. All the studies are listed

in Appendix C.

3c.f. http://www.biglever.com/split2008/
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Figure 4.4 Distribution of primary studies by their publication years.

4.4.3.1 Reliability of Inclusion Decisions

The reliability of decisions to include a study is ensured by having multiple researchers

to evaluate each study. The study was conducted by two research assistants who were

responsible for performing the searches and summarizing the results of the mapping study,

with other members of the team acting as reviewers. A high-level agreement was needed

before the study was included. In case the researchers did not agree after discussion, an

expert in the area was contacted to discuss and give appropriate guidance.

4.4.4 Quality Evaluation

In addition to general inclusion/exclusion criteria, the quality evaluation mechanism,

usually applied in systematic reviews Dybå and Dingsøyr (2008a,b); Kitchenham et al.

(2007), was applied in this study in order to assess the trustworthiness of the primary

studies. This assessment is necessary to limit any bias in conducting this empirical study,

to gain insight into potential comparisons, and to guide interpretation of findings.

The quality criteria we used served as a means of weighting the importance of

individual studies, enhancing our understanding, and developing more confidence in the
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Figure 4.5 Amount of Studies vs. sources.

analysis.

Table 4.2 Quality Criteria
Group ID Quality Criteria

A

1 Are there any roles described?
2 Are there any guideline described?
3 Are there inputs and outputs described?
4 Does it detail the test artifacts?

B

5 Does it detail the validation phase?
6 Does it detail the verification phase?
7 Does it deal with Testing in Requirements phase?
8 Does it deal with Testing in Architectural phase?
9 Does it deal with Testing in Implementation phase?

10 Does it deal with Testing in Deployment phase?

C

11 Does it deal with binding time?
12 Does it deal with variability testing?
13 Does it deal with commonality testing?
14 Does it deal with effort reduction?
15 Does it deal with non-functional tests?
16 Does it deal with any test measure?

As mapping study guidelines Petersen et al. (2008) does not establish a formal

evaluation in the sense of quality criteria, we chose to assess each of the primary studies

by principles of good practice for conducting empirical research in software engineering

Kitchenham and Charters (2007), tailoring the idea of assessing studies by a set of criteria

to our specific context.
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Thus, the quality criteria for this evaluation is presented in Table 4.2. Criteria

grouped as A covered a set of issues pertaining to quality that need to be considered when

appraising the studies identified in the review, according to Kitchenham et al. (2002). This

criteria group studies which handle process steps, roles, activities and artifacts. Groups

B and C assess the quality considering SPL Testing concerns. The former was focused

on identifying how well the studies address testing issues along the SPL development

life cycle (e.g.: testing levels). The latter evaluated how well our research questions were

addressed by individual studies. This way a better quality score matched studies which

covered the larger amount of questions.

The main purpose of this grouping is justified by the difficulty faced in establishing

a reliable relationship between final quality score and the real quality of each study.

Some primary studies (e.g. one which addresses some issue in a very detailed way) are

referenced in several other primary studies, but if we apply the complete quality criteria

items, the final score is lower than others which do not have the same relevance. This

way, we intended to have a more valid and reliable quality assessment instrument.

Each of the 45 studies was assessed independently by the researchers according to

the 16 criteria shown in Table 4.2. Taken together, these criteria provided a measure of

the extent to which we could be confident that a particular study could give a valuable

contribution to the mapping study. Each of the studies was graded on a trichotomous

(yes, partly or no) scale and tagged 1, 0.5 and 0. We did not use the grade to serve as a

threshold for the inclusion decision, but rather to identify the primary studies that would

form a valid foundation for our study. We note that, overall, the quality of the studies

was good. It is possible to check every grade in Appendix C, where the most relevant are

highlighted.

4.4.5 Data Extraction

The data extraction forms must be designed to collect all the information needed to

address the research questions and the quality criteria. The following information was

extracted from each study: title and authors; source: conference/journal; publication

year; the answers for research questions addressed by the study; summary: a brief

overview on its strengths and weak points; quality criteria score according to the Table

4.2; reviewer name; and the date of the review.

At the beginning of the study, we decided that when several studies were reported in

the same paper, each relevant study was treated separately. Although, this situation did

not occur.
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4.5 Outcomes

In this section, we describe the classification scheme and the results of data extraction.

When having the classification scheme in place, the relevant studies are sorted into the

scheme, which is the real data extraction process. The results of this process is the

mapping of studies, as presented at the end of this section, together with concluding

remarks.

4.5.1 Classification Scheme

We decided to use the idea of categorizing studies in facets, as described by Petersen

et al. (2008), since we considered this as a structured way of doing such a task. Our

classification scheme assembled two facets. One facet structured the topic in terms of the

research questions we defined. The other considered the type of research.

In the second, our study used the classification of research approaches described

by Wieringa et al. (2006). According to Petersen et al. (2008), which also used this

approach, the research facet which reflects the research approach used in the papers is

general and independent from a specific focus area. The classes that form the research

facet are described in Table 4.3.

The classification was performed after applying the filtering process, i.e. only the

final set of studies was classified and are considered. The results of the classification is

presented at the end of this section (Figure 4.8).

Table 4.3 Research Type Facet
Classes Description

Validation Research
Techniques investigated are novel and have not yet been implemented in practice. Tech-
niques used are for example experiments, i.e., work done in the lab.

Evaluation Research

Techniques are implemented in practice and an evaluation of the technique is conducted.
That means, it is shown how the technique is implemented in practice (solution imple-
mentation) and what are the consequences of the implementation in terms of benefits
and drawbacks (implementation evaluation). This also includes to identify problems in
industry.

Solution Proposal

A solution for a problem is proposed, the solution can be either novel or a significant
extension of an existing technique. The potential benefits and the applicability of the
solution is shown by a small example or a good line of argumentation.

Philosophical Papers
These papers sketch a new way of looking at existing things by structuring the field in
form of a taxonomy or conceptual framework.

Opinion Papers
These papers express the personal opinion of somebody whether a certain technique is
good or bad, or how things should been done. They do not rely on related work and
research methodologies.

Experience Papers
Experience papers explain what and how something has been done in practice. It has to
be the personal experience of the author.
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4.5.2 Results

In this sub-section, each topic presents the findings of a sub-research question, high-

lighting evidences gathered from the data extraction process. These results populate the

classification scheme, which evolves while doing the data extraction.

4.5.2.1 Testing Strategy

By analyzing the primary studies, we have found a wide variety of testing strategies.

Reuys et al. (2006) and Tevanlinna et al. (2004) present a similar set of strategies to SPL

testing development, that are applicable to any development effort since the descriptions

of the strategies are generic. We herein use the titles of the topics they outlined, after

making some adjustments, as a structure for aggregating other studies which use a similar

approach, as follows:

• Testing product by product: This approach ignores the possibility of reuse ben-

efits. This approach offers the best guarantee of product quality but is extremely

costly. In Jin-hua et al. (2008), a similar approach is presented, named as pure

application strategy, in which testing is performed only for a concrete product

in the product development. No test is performed in the core asset development.

Moreover, in this strategy, tests for each derived application are developed indepen-

dently from each other, which results in an extremely high test effort, as pointed out

by Reuys et al. (2006). This testing strategy is similar to the test in single-product

engineering, because without reuse the same test effort is required for each new

application.

• Incremental testing of product lines: The first product is tested individually and

the following products are tested using regression testing techniques Graves et al.

(2001); Rothermel and Harrold (1996). Regression testing focuses on ensuring that

everything used to work still works, i.e. the product features previously tested are

re-tested through a regression technique.

• Opportunistic reuse of test assets: This strategy is applied to reuse application

test assets. Assets for one application are developed. Then, the application derived

from the product line use the assets developed for the first application. This form

of reuse is not performed systematically, which means that there is no method that

supports the activity of selecting the test assets Reuys et al. (2006).
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• Design test assets for reuse: Test assets are created as early as possible in domain

engineering. Domain test aims at testing common parts and preparing for testing

variable parts Jin-hua et al. (2008). In application engineering, these test assets

are reused, extended and refined to test specific applications Jin-hua et al. (2008);

Reuys et al. (2006). General approaches to achieve core assets reuse are: repository,

core assets certification, and partial integration Zeng et al. (2004). Kishi and

Noda Kishi and Noda (2006) state that a verification model can be shared among

applications that have similarities. The SPL principle design for reuse is fully

addressed by this strategy, which can enable the overall goals of reducing cost,

shortening time-to-market, and increasing quality Reuys et al. (2006).

• Division of responsibilities: This strategy relates to select testing levels to be

applied in both domain and application engineering, depending upon the objective

of each phase, i.e. whether thinking about developing for or with reuse Tevanlinna

et al. (2004). This division can be clearly seen when the assets are unit tested in

domain engineering and, when instantiated in application engineering, integration,

system and acceptance testing are performed.

As SPL Testing is a reuse-based test derivation for testing products within a product

line, as pointed out by Zeng et al. (2004), the Testing product by product and Opportunistic

reuse of test assets strategies cannot be considered “affordable” for the SPL context, since

the first does not consider the reuse benefits which results in costs of testing resembling

single-systems development. In the second, no method is applied, hence, the activity may

not be repeatable, and may not avoid the redundant re-execution of test cases, which can

thus increase costs.

These strategies can be considered a feasible grouping of what studies on SPL testing

approaches have been addressing, which can show us a more generic view on the topic.

4.5.2.2 Static and Dynamic Analysis

An effective quality strategy for a software product line requires both static and dynamic

analysis techniques. Techniques for static analysis are often dismissed as more expensive

(cost for performing it in different products), but in a software product line, the cost of

static analysis can be amortized over multiple products.

A number of studies advocate the use of inspections and walkthroughs Jaring et al.

(2008); McGregor (2001b); Tevanlinna et al. (2004) and formal verification techniques, as

static analysis techniques/methods for SPL, to be conducted prior to dynamic analysis, i.e.
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with the presence of executable code. McGregor (2001b) presents an approach for Guided

Inspection, aimed at applying the discipline of testing to the review of non-software assets.

In Kishi and Noda (2006), a model checker is defined that focuses on design verification

instead of code verification. This strategy is effective because many defects are injected

during the design phase Kishi and Noda (2006).

Regarding dynamic analysis, some studies Jaring et al. (2008); Kolb and Muthig

(2006) recommend the V-model phases, commonly used in single-systems, to structure a

series of dynamic analysis. The V-model gives equal weight to development and testing

rather than treating testing as an afterthought Goldsmith and Graham (2002). However,

despite the well-defined test process presented by V-model, its use in SPL context requires

some adaptation, as applied in Jaring et al. (2008).

The relative amount of dynamic and static analysis depends on both technical and

managerial strategies. Technically, series of factors such as test-first development or

model-based development determine the focus. Model-based development emphasizes

static analysis of models while test-first development emphasizes dynamic analysis.

Managerial strategies such as reduced time to market, lower cost and improved product

quality determine the depth to which analysis should be carried.

4.5.2.3 Testing Levels

Some of the analyzed studies (e.g. Jaring et al. (2008); Kolb and Muthig (2006)) divide

SPL testing according to the two primary software product line activities: core asset and

product development.

Core asset development: Some testing activities are related to the development

of test assets and test execution to be performed to evaluate the quality of the assets,

which will be further instantiated in the application engineering phase. The two basic

activities include developing test artifacts that can be reused efficiently during application

engineering and applying tests to the other assets created during domain engineering

Kamsties et al. (2003); Pohl et al. (2005b). Regarding types of testing, the following are

performed in domain engineering:

• Unit Testing: Verification of the smallest unit of software implementation. This

unit can be basically a class, or even a module, a function, or a software component.

The granularity level depends on the strategy adopted. The purpose of unit testing

is to determine whether this basic element performs as required through verification

of the code produced during the coding phase.
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• Integration Testing: This testing is applied as the modules are integrated with

each other or within the reference in domain-level V&V when the architecture calls

for specific domain components to be integrated in multiple systems. This type of

testing is also performed during application engineering McGregor (2002). Li et.

al. Li et al. (2007a) present an approach for generating integration tests from unit

tests.

Product development: Activities here are related to the selection and instantiation

of assets to build specific product test assets, design additional product specific tests, and

execute tests. The following types of testing can be performed in application engineering:

• System Testing: System testing ensures that the final product matches the required

features Nebut et al. (2006). According to Geppert et al. (2004), system testing

evaluates the features and functions of an entire product and validates that the

system works the way the user expects. A form of system testing can be carried

out on the software architecture using a static analysis approach.

• Acceptance Testing: Acceptance testing is conducted by the customer but often

the developing organization will create and execute a preliminary set of acceptance

tests. In a software product line organization, commonality among the tests needed

for the various products is leveraged to reduce costs.

A similar division is stated by McGregor (2002), in which the author defines two

separated test processes used in product line organization, Core Asset Testing and Product

Testing.

Some authors Olimpiew and Gomaa (2005a); Reuys et al. (2006); Wübbeke (2008)

also include system testing in core asset development. The rationale for including such

a level is to produce abstract test assets to be further reused and adapted when deriving

products in the product development phase.

4.5.2.4 Regression Testing

Even though regression testing techniques have been researched for many years, as

stated in Engström et al. (2008); Graves et al. (2001); Rothermel and Harrold (1996), no

study gives evidence on regression testing practices applied to SPL. Some information is

presented by a few studies Kolb and Muthig (2003); Muccini and van der Hoek (2003),

where just a brief overview on the importance of regression testing is given, but they do

not take into account the issues specific to SPLs.
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McGregor (2001b) reports that when a core asset is modified due to evolution or

correction, they are tested using a blend of regression testing and development testing.

According to him, the modified portion of the asset should be exercised using:

• Existing functional tests if the specification of the asset has not changed;

• If the specifications has changed, new functional tests are created and executed;

and

• Structural tests created to cover the new code created during the modification.

He also highlights the importance of regression test selection techniques and the

automation of the regression execution.

Kauppinen and Taina (2003) advocate that the testing process should be iterative, and

based on test execution results, new test cases should be generated and tests scripts may

be updated during a modification. These test cases are repeated during regression testing

each time a modification is made.

Kolb (2003) highlights that the major problems in a SPL context are the large number

of variations and their combinations, redundant work, the interplay between generic

components and product-specific components, and regression testing.

Jin-hua et al. (2008) emphasize the importance of regression testing when a compo-

nent or a related component cluster are changed, saying that regression testing is crucial

to perform on the application architecture, which aims to evaluate the application archi-

tecture with its specification. Some researchers also developed approaches to evaluate

architecture-based software by using regression testing Harrold (1998); Muccini et al.

(2005, 2006).

4.5.2.5 Non-functional Testing

Non-functional issues have a great impact on the architecture design, where predictability

of the non-functional characteristics of any application derived from the SPL is crucial for

any resource-constrained product. These characteristics are well-known quality attributes,

such as response time, performance, availability, scalability, etc., that might differ in

instances of a product line. According to Ganesan et al. (2005), testing non-functional

quality attributes is equally important as functional testing.

By analyzing the studies, it was noticed that some of them propose the creation

or execution of non-functional tests. Reis (2006) presents a technique to support the

development of reusable performance test scenarios to be further reused in application
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engineering. Feng et al. (2007) highlight the importance of non-functional concerns

(performance, reliability, dependability, etc.). Ganesan et al. (2005) describe a work

intended to develop an environment for testing the response time and load of a product

line, however due to the constrained experimental environment there was no visible

performance degradation observed.

In single-system development, different non-functional testing techniques are applica-

ble for different types of testing, the same might hold for SPL, but no experience reports

were found to support this statement.

4.5.2.6 Commonality and Variability Testing

Commonality, as an inherent concept in the SPL theory, is naturally addressed by many

studies, such as stated by Pohl et al. (2005b), in which the major task of domain testing is

the development of common test artifacts to be further reused in application testing.

The increasing size and complexity of applications can result in a higher number of

variation points and variants, which makes testing all combinations of the functionality

almost impossible in practice. Managing variability and testability is a trade-off. The

large amount of variability in a product line increases the number of possible testing

combinations. Thus, testing techniques that consider variability issues and thus reduce

effort are required.

Cohen et al. (2006) introduce cumulative variability coverage, which accumulates

coverage information through a series of development activities, to be further exploited

in a target testing activities for product line instances.

Another solution, proposed by Kolb and Muthig (2006), is the imposition of con-

straints in the architecture. Instead of having components with large amount of variability

it is better for testability to separate commonalities and variabilities and encapsulate

variabilities as subcomponents. Aiming to reduce the retest of components and products

when modifications are performed, independence of feature and components, as well as

the reduction of side effects, reduce the effort required for adequate testing.

Tevanlinna et al. (2004) highlight the importance of asset traceability from require-

ments to implementation. There are some ways to achieve this traceability between test

assets and implementation, as reported by McGregor et al. (2004b), in which the design

of each product line test asset matches the variation implementation mechanism for a

component.

The selected approaches handle variability in a range of different manners, usually

expliciting variability as early as possible in UML use cases Hartmann et al. (2004); Kang
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et al. (2007); Rumbaugh et al. (2004) that will further be used to design test cases, as

described in the requirement-based approaches Bertolino and Gnesi (2003a); Nebut et al.

(2003). Moreover, model-based approaches introduce variability into test models, created

through use cases and their scenarios Reuys et al. (2005, 2006), and specifying variablity

into feature models and activity diagrams Olimpiew and Gomaa (2005a, 2009). They

are usually concerned about reusing test case in a systematic manner through variability

handling as Al-Dallal and Sorenson (2008); Wübbeke (2008) report.

4.5.2.7 Variant Binding Time

According to McGregor et al. (2004b), the binding of different variants requires different

binding time (Compile Time, Link Time, Execution Time and Post-Execution Time),

which requires different mechanisms (e.g. inheritance, parameterization, overloading

and conditional compilation). They are suitable for different variability implementation

schemes. The different mechanisms result in different types of defects, test strategies,

and test processes.

This issue is also addressed by Jaring et al. (2008), in their Variability and Testability

Interaction Model, which is responsible for modeling the interaction between variability

binding and testability in the context of the V-model. The decision regarding the best

moment to test a variant is clearly important. The earliest point at which a decision is

bound is the point at which the binding should be tested.

In our findings, the approach presented in Reuys et al. (2006) deals with testing

variant binding time as a form of ensuring that the application comprises the correct set

of features, as the customer looks forward. After performing the traditional test phases in

application engineering, the approach suggests tests to be performed towards verifying if

the application contains the set of functionalities required, and nothing else.

4.5.2.8 Effort Reduction

Some authors consider testing the bottleneck in SPL, since the cost of testing product

lines is becoming more costly than testing single systems Kolb (2003); Kolb and Muthig

(2006). Although applications in a SPL share common components, they must be tested

individually in system testing level. This high cost makes testing an attractive target for

improvements Northrop and Clements (2007). Test effort reduction strategies can have

significant impact on productivity and profitability McGregor (2001a). We found some

strategies regarding this issue. They are described as follows:
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• Reuse of test assets: Test assets - mainly test cases, test scenarios and test results

- McGregor (2001a) are created to be reusable, which consequently impacts the

effort reduction. According to Kauppinen and Taina (2003) and Zeng et al. (2004),

an approach to achieve the reuse of core assets comes from the existence of an

asset repository. It usually requires an initial testing effort for its construction, but

throughout the process, these assets do not need to be rebuilt, they can be rather

used as is. Another strategy considers the creation of test assets as extensively

as possible in domain engineering, anticipating also the variabilities by creating

documents templates and abstract test cases. Test cases and other concrete assets are

used as is and the abstract ones are extended or refined to test the product-specific

aspects in application engineering. In Li et al. (2007b), a method for monitoring

the interfaces of every component during test execution is proposed, observing

commonality issues in order to avoid repetitive execution. As mentioned before

in section 4.5.2.6, the systematic reuse of test assets, especially test cases, are the

focus of many studies, each offering novel and/or extended approaches. The reason

for dealing with assets reuse in a systematic manner is that it can enable effort

reduction, since redundant work may be avoided when deriving many products

from the product line. In this context, the search for an effective approach has been

noticed throughout the past recent years, as can be seen in McGregor (2001a, 2002);

Nebut et al. (2006); Olimpiew and Gomaa (2009); Reuys et al. (2006). Hence, it

is feasible to infer that there is not a general solution for dealing with systematic

reuse in SPL testing yet.

• Test automation tools: Automatic testing tools to support testing activities Con-

dron (2004) is a way to achieve effort reduction. Methods have been proposed to

automatically generate test cases from single system models expecting to reduce

testing effort Hartmann et al. (2004); Li et al. (2007a); Nebut et al. (2003), such as

mapping the models of an SPL to functional test cases in order to automatically

generate and select functional test cases for an application derived Olimpiew and

Gomaa (2005b). Automatic test execution is an activity that should be carefully

managed to avoid false failures since unanticipated or unreported changes can occur

in the component under test. These changes should be rejected in the corresponding

automated tests Condron (2004).
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4.5.2.9 Test Measurement

Test measurement is an important activity applied in order to calibrate and adjust ap-

proaches. Adequacy of testing can be measured based on the concept of a coverage

criterion. Metrics related to test coverage are applied to extract information, and are

useful for the whole project. We investigated how test coverage has been applied by

existing approaches regarding SPL issues.

According to Tevanlinna et al. (2004), there is only one way to completely guarantee

that a program is fault-free, to execute it on all possible inputs, which is usually impossible

or at least impractical. It is even more difficult if the variations and all their constraints

are considered. Test coverage criteria are a way to measure how completely a test suite

exercises the capabilities of a piece of software. These measures can be used to define the

space of inputs to a program. It is possible to systematically sample this space and test

only a portion of the feasible system behavior Cohen et al. (2006). The use of covering

arrays as a test coverage strategy is addressed in Cohen et al. (2006). Kauppinen and

Tevanlinna Kauppinen et al. (2004) define coverage criteria for estimating the adequacy

of testing in a SPL context. They propose two coverage criteria for framework-based

product lines: hook and template coverage, that is, variation points open for customization

in a framework are implemented as hook classes and stable parts as template classes.

They are used to measure the coverage of frameworks or other collections of classes in

an application by counting the structures or hook method references from them instead of

single methods or classes.

4.5.3 Analysis of the Results and Mapping of Studies

The analysis of the results enables us to present the amount of studies that match each cat-

egory addressed in this study. It makes it possible to identify what have been emphasized

in past research and thus to identify gaps and possibilities for future research Petersen

et al. (2008).

Initially, let us analyze the distribution of studies regarding our analysis point of view.

Figures 4.6 and 4.7, that present respectively the frequencies of publications according to

the classes of the research facet and according to the research questions addressed by them

(represented by Q1 to Q9). Table 4.4 details Figure 4.7 showing which papers answer

each research question. It is valid to mention that, in both categories, it was possible to

have a study matching more than one topic. Hence, the total amount verified in Figures

4.6 and 4.7 exceeds the final set of primary studies selected for detailed analysis.
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Figure 4.6 Distribution of papers according to classification scheme.

Figure 4.7 Distribution of papers according to intervention.
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When merging these two categories, we have a quick overview of the evidence

gathered from the analysis of the SPL testing field. We used a bubble plot to represent the

interconnected frequencies, as shown in Figure 4.8. This is basically a x-y scatterplot with

bubbles in category intersections. The size of a bubble is proportional to the number of

articles that are in the pair of categories corresponding to the bubble coordinates Petersen

et al. (2008).

The classification scheme applied in this paper enabled us to infer that researchers are

mostly in the business of proposing new techniques and investigating their properties more

than evaluating and/or experiencing them in practice, through proposing new solutions, as

seen in Figure 4.8. Solution Proposal and Validation Research are together, the topics

with more entries, if we consider categories considered in this study. Topics such as

Q1 (testing strategies), Q3 (testing levels), Q6 (commonality and variability analysis)

and Q8 (effort reduction), join the amount of papers devoted to propose solution for the

problems they cover. They have really been the overall focus of researchers. On the other

hand we have pointed out topics in which new solutions are required, it is the case of Q2

(static and dynamic analysis interconnection in SPL Testing), Q4 (regression testing), Q5

(non-functional testing), Q7 (variant binding time) and Q9 (measures).

Although some topics present a relevant amount of entries in this analysis, such as Q1,

Q3, Q6 and Q8, as aforementioned, these still lack field research, since the techniques

Figure 4.8 Visualization of a Systematic Map in the Form of a Bubble Plot.
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Table 4.4 Research Questions (RQ) and primary studies.
RQ Primary Studies

Q1

Al-Dallal and Sorenson (2008); Bertolino and Gnesi (2003a,b); Odia (2007); Jaring et al. (2008); Jin-hua
et al. (2008); Kang et al. (2007); Kauppinen et al. (2004); Kishi and Noda (2006); Kolb (2003); Kolb and
Muthig (2003, 2006); McGregor (2001b, 2002); Olimpiew and Gomaa (2005a, 2009); Reis (2006); Reis
et al. (2007a); Reuys et al. (2005, 2006); Wübbeke (2008); Zeng et al. (2004)

Q2 Al-Dallal and Sorenson (2008); Denger and Kolb (2006); Odia (2007); Kishi and Noda (2006); McGregor
(2001b)

Q3

Al-Dallal and Sorenson (2008); Odia (2007); Geppert et al. (2004); Jaring et al. (2008); Kauppinen (2003);
Kamsties et al. (2003); Jin-hua et al. (2008); Kolb and Muthig (2003, 2006); Li et al. (2007a,b); McGregor
(2001b, 2002); Muccini and van der Hoek (2003); Olimpiew and Gomaa (2005a); Nebut et al. (2006); Pohl
and Sikora (2005); Reis et al. (2007a); Reuys et al. (2006); Wübbeke (2008); Zeng et al. (2004)

Q4 Harrold (1998); Jin-hua et al. (2008); Kauppinen and Taina (2003); Kolb and Muthig (2003); McGregor
(2001b); Muccini and van der Hoek (2003)

Q5 Feng et al. (2007); McGregor (2001b, 2002); Nebut et al. (2003); Reis (2006)

Q6

Al-Dallal and Sorenson (2008); Beatriz Pérez Lamancha (2009); Bertolino and Gnesi (2003a,b); Cohen
et al. (2006); Condron (2004); Odia (2007); Feng et al. (2007); Geppert et al. (2004); Jaring et al. (2008);
Kamsties et al. (2003); Kang et al. (2007); Kishi and Noda (2006); Kolb and Muthig (2006); Li et al.

(2007a,b); McGregor et al. (2004b); Nebut et al. (2006); Olimpiew and Gomaa (2009); Pohl and Metzger
(2006); Pohl and Sikora (2005); Reis (2006); Reis et al. (2007a); Reuys et al. (2005, 2006); Wübbeke
(2008); Zeng et al. (2004)

Q7 Cohen et al. (2006); Jaring et al. (2008); Jin-hua et al. (2008); McGregor et al. (2004b); Pohl and Metzger
(2006)

Q8

Al-Dallal and Sorenson (2008); Bertolino and Gnesi (2003a); Condron (2004); Odia (2007); Feng et al.

(2007); Ganesan et al. (2005); Geppert et al. (2004); Jaring et al. (2008); Kang et al. (2007); Kauppinen
(2003); Kauppinen and Taina (2003); Kishi and Noda (2006); Kolb and Muthig (2006); Li et al. (2007a,b);
McGregor (2001b); Nebut et al. (2003, 2006); Olimpiew and Gomaa (2009); Pohl and Metzger (2006); Reis
et al. (2007a); Reuys et al. (2005, 2006); Zeng et al. (2004)

Q9 Al-Dallal and Sorenson (2008); Ganesan et al. (2005); Jin-hua et al. (2008); Kauppinen (2003); Olimpiew
and Gomaa (2009); Reuys et al. (2006)

investigated and proposed are mostly novel and have usually not yet been implemented in

practice. We realize that currently, Evaluation Research is weak in SPL Testing papers.

Regarding the maturity of the field in terms of evaluation research and solution papers,

other studies report results in line with our findins, e.g. Šmite et al. (2010). Hence, we

realize that this is not a problem solely to SPL testing, but rather it involves, in a certain

way, other software engineering practices.

We also realize that researchers are not concerned about Experience Reports on their

personal experience using particular approaches. Practitioners in the field should report

results on the adoption, in the real world of the techniques proposed and reported in the

literature. Moreover, authors should Express Opinions about the desirable direction of

SPL Testing research, expressing their experts viewpoint.

In fact, the volume of literature devoted to testing software product lines attests to the

importance assigned to it by the product line community. In the following subsection we

detail what we considered most relevant in our analysis.

56



4.5. OUTCOMES

4.5.3.1 Main findings of the study

We identified a number of test strategies that have been applied to software product

lines. Many of these strategies address different aspects of the testing process and can

be applied simultaneously. However, we have no evidence about the effectiveness of

combining strategies, and in which context it could be suitable. The analyzed studies do

not cover this potential. There is only a brief indication that the decision about which kind

of strategy to adopt depends on a set of factors such as software development process

model, languages used, company and team size, delivery time, budget, etc. Moreover,

it is a decision made in the planning stage of the product line organization since the

strategy affects activities that begin during requirements definition. But it still remains as

hypotheses, that need to be supported or refuted through formal experiments and/or case

studies.

A complete testing process should define both static and dynamic analyses. We

found that even though some studies emphasize the importance of static analysis, few

detail how this is performed in a SPL context Kishi and Noda (2006); McGregor (2001b);

Tevanlinna et al. (2004), despite its relevance in single-system development. Static

analysis is particularly important in a product line process since many of the most useful

assets are non-code assets and particularly the quality of the software architecture is

critical to success.

Specific testing activities are divided across the two types of activities: domain

engineering and application engineering. Alternatively, the testing activities can be

grouped into core asset and product development. From the set of studies, around

four Jaring et al. (2008); Jin-hua et al. (2008); Kauppinen (2003); Odia (2007) adopt

(or advocate the use of) the V-model as an approach to represent testing throughout

the software development life cycle. As a widely adopted strategy in single-system

development, tailoring V-model to SPL could result in improved quality. However, there

is no consensus on the correct set of testing levels for each SPL phase.

We did not find evidence regarding the impact for the SPL of not performing a

specific testing level in domain or application engineering, is there any consequence if,

for example unit/integration/system testing was not performed in domain engineering? We

need investigations to verify such an aspect. Moreover, what are the needed adaptations

for the V-model to be effective in the SPL context? This is a point which experimentation

is welcome, in order to understand the behavior of testing levels in SPL.

A number of the studies addressed, or assumed, that testing activities are automated

(e.g. Condron (2004); Li et al. (2007a)). In a software product line automation is more
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feasible because the resources required to automate are amortized over the larger number

of products. The resources are also more narrowly focused due to the overlap of the

products. Some of the studies illustrated that the use of domain specific languages,

and the tooling for those languages, is more feasible in a software product line context.

Nevertheless, we need to understand if the techniques are indeed effective when applying

them in an industrial context. We lack studies reporting results of this nature.

According to Kolb (2003), one of the major problems in testing product lines is the

large number of variations. The study reinforces the importance of handling variability

testing during all software life cycle.

In particular, the effect of variant binding time concerns was considered in this study.

A well-defined approach was found in Jaring et al. (2008), with information provided

by case studies conducted in an important electronic manufacturer. However, there are

still many issues to be considered regarding variation and testing, such as what is the

impact of designing variations in test assets regarding effort reduction? What are the most

suitable strategy to handle variability within test assets: use cases and test cases or maybe

sequence or class diagrams? How to handle traceability and what is the impact of not

handling such an issue, in respect to test assets. We also did not find information about

the impact of different binding times for testing in SPL, e.g. compile-time, scoping-time,

etc. We also lack evidences on this direction.

Regression testing does not belong to any point in the software development life

cycle and as a result there is a lack of clarity in how regression testing should be handled.

Despite this, it is clear that regression testing is important in the SPL context. Regression

testing techniques include approaches to selecting the smallest test suite that will still find

the most likely defects and techniques that make automation of test execution efficient.

From the amount of studies analyzed, a few addressed testing non-functional re-

quirements Feng et al. (2007); McGregor (2001b, 2002); Nebut et al. (2003); Reis

(2006). They point out that during architecture design static analysis can be used to give

an early indication of problems with non-functional requirements. One important point

that should be considered when testing quality attributes is the presence of trade-offs

among them, for example, the trade-off between modularity and testability. This leads to

natural pairings of quality attributes and their associated tests. When a variation point

represents a variation in a quality attribute, the static analysis should be sufficiently

complete to investigate different outcomes. Investigations towards making explicit which

techniques currently applied for single-system development can be adopted in SPL are

needed, since studies do not address such an issue.
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Our mapping study has illustrated a number of areas in which additional investigation

would be useful, specially regarding evaluation and validation research. In general,

SPL testing lack evidence, in many aspects. Regression test selection techniques, test

automation and architecture-based regression testing are points for future research as well

as techniques that address the relationships between variability and testing and techniques

to handle traceability among test and development artifacts.

4.6 Threats to Validity

There are some threats to the validity of our study. They are described and detailed as

follows:

• Research Questions: The set of questions we defined might not have covered

the whole SPL testing area, which implies that one may not find answers to the

questions that concern them. As we considered this as a feasible threat, we had

several discussion meetings with project members and experts in the area in order

to calibrate the questions. This way, even if we had not selected the most optimum

set of questions, we attempted to deeply address the most asked and considered

open issues in the field.

• Publication Bias: We cannot guarantee that all relevant primary studies were

selected. It is possible that some relevant studies were not chosen throughout the

searching process. We mitigated this threat to the extent possible by following

references in the primary studies.

• Quality Evaluation: The quality attributes as well as the weight used to quantify

each of them might not properly represent the attributes importance. In order to

mitigate this threat, the quality attributes were grouped in subsets to facilitate their

further classification. It happens when a study receive a good pontuation regarding

to some specific criteria, but when comparing it with papers which handle a broad

context it could be wrongly treated as irrelevant.

• Unfamiliarity with other fields: The terms used in the search strings can have

many synonyms, it is possible that we overlooked some work.
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4.7 Related Work

As mentioned before, the literature on SPL Testing provides a large number of studies,

regarding both general and specific issues, as will be discussed later on in this study.

Amongst them, we have identified some studies developed in order to gather and evaluate

the available evidence in the area. They are thus considered as having similar ideas to our

mapping study and are next described.

A survey on SPL Testing was performed by Tevanlinna et al. (2004). They studied

approaches to product line testing methodology and processes that have been developed

for or that can be applied to SPL, laying emphasis on regression testing. The study

also evaluates the state-of-the-art in SPL testing, up to the date of the paper, 2004, and

highlighted problems to be addressed.

A thesis on SPL Testing published in 2007 by Odia (2007), investigated testing in

SPL and possible improvements in testing steps, tools selections and application applied

in SPL testing. It was conducted using the systematic review approach.

A systematic review was performed by Lamancha et al. (2009) and published in 2009.

Its main goal was to identify experience reports and initiatives carried out in Software

Engineering related to testing in software product lines. In order to accomplish that,

the authors classified the primary studies in seven categories, including: Unit testing,

Integration testing, functional testing, SPL Architecture, Embedded system, testing

process and testing effort in SPL. After that a summary of each area was presented.

These studies can be considered good sources of information on this subject. In order

to develop our work, we considered every mentioned study, since they bring relevant

information. However, we have noticed that important aspects were not covered by them

in an extent that should be possible to map out the current status of research and practice

of the area. Thus, we categorized a set of important research areas under SPL testing,

focusing on aspects addressed by the studies mentioned before as well as the areas they

did not addressed, but are directly related to SPL practices, in order to perform critical

analysis and appraisal. In order to accomplish our goals in this work, we followed the

guidelines for mapping studies development presented in Budgen et al. (2008). We also

included threats mitigation strategies in order to have the most reliable results.

We believe our study states current and relevant information on research topics

that can complement others previously published. By current, we mean that, as the

number of studies published has increased rapidly, as shown in Figure 4.4, it justifies the

need of more up to date empirical research in this area to contribute to the community
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investigations.

4.8 Concluding Remarks

The main motivation for this work was to investigate the state-of-the-art in SPL testing,

through systematically mapping the literature in order to determine what issues have been

studied, as well as by what means, and provide a guide to aid researchers in planning

future research. This research was conducted through a Mapping Study, a useful technique

for identifying the areas where there is sufficient information for a SR to be effective, as

well as those areas where more research is needed Budgen et al. (2008).

The number of approaches that handle specific points in a testing process make the

analysis and the comparison a hard task. Nevertheless, through this study we are able to

identify which activities are handled by the existing approaches as well as understanding

how the researchers are developing work in SPL testing. Some research points were

identified throughout this research and these can be considered an important input into

planning further research.

Searching the literature, some important aspects are not reported, and when they

are found just a brief overview is given. Regarding industrial experiences, it is noticed

they are rare in literature. The existent case studies report small projects, containing

results obtained from in company-specific application, which makes impracticable their

reproduction in other context, due to the lack of details. This scenario depicts the need

of experimenting SPL Testing approaches not in academia but rather in industry. This

study identified the growing interest in a well-defined SPL Testing process, including

tool support. Our findings in this sense are in line with a previous study conducted

by Lamancha et al. (2009), which reports on a systematic review on SPL testing, as

mentioned in Section 4.7.

This mapping study also points out some topics that need additional investigation, such

as quality attribute testing considering variations in quality levels among products, how

to maintain the traceability between development and test artifacts, and the management

of variability through the whole development life cycle.

4.9 Chapter Summary

Testing is an important mechanism both to identify defects and assure that completed

products work as specified. This chapter had the following goals: investigate state-of-
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the-art testing practices, synthesize available evidence, and identify gaps between needed

techniques and existing approaches, available in the literature. Section 4.5.3.1 presented

the main findings of this mapping study that served as base to define the dissertation

proposal.

The next Chapter presents the Integration Testing approach proposed by this work.
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“Innovation distinguishes between a leader and a follower.”

Steve Jobs

5
A SPL Integration Testing Approach

The Software Product Lines approach involves two development processes, core asset

and product development. The prior intends to develop assets to be further instantiated in

the latter. From a testing perspective, such a division demands for testing issues to be

considered in both processes. Although existing literature presents some information on

integration testing for SPL, they usually discuss concerns about test assets generation,

despite other several important issues that a process should assemble, such as guidelines,

activities, steps, inputs and outputs, roles, and division of responsibilities regarding the

both SPL processes. In summary, the existing approaches do not present systematic

solutions, which can represent an extra effort to apply a process in the real context. In

this chapter, we present a first step in this scenario. In the context of the RiPLE process,

a major effort to establish an integrated framework for developing SPLs, an approach is

proposed for dealing with integration testing in both core asset and product development.

In order to analyze and refine it, an example is discussed in the conference management

domain, in which we explain every step of the approach.

The chapter is organized as follows. The next Section outlines some related work.

Section 5.3 provides an overview on unit and integration testing, i.e., levels related to

this chapter. Section 5.4 describes the main roles and its attributions, as well as the

concepts of the Eclipse Process Framework (EPF). In Section 5.5, the main strategies on

integration testing are discussed, serving as basis for Section 5.6 in which our approach

is detailed. Section 5.7 shows an example of applying the proposed approach. Finally,

Section 5.8 presents the chapter summary.
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5.1 Introduction

SPL is an efficient approach that aids organizations to develop quality products from

reusable core assets rather than from scratch (Kim et al., 2006). This approach is

supported by two major processes: core asset development (CAD), consisting of analyzing

the domain of a product line, develop the architecture and producing the reusable assets;

and product development (PD), in which products are derivated based on the assets prior

developed. In this latter, assets are reused rather than producing everything from scratch

(Clements and Northrop, 2001; Linden et al., 2007).

The both processes require related but distinct treatments. Such treatment does not

stop at development but should extend also to testing activities (Kang et al., 2007). Thus,

it is necessary to establish the relationship among testing levels and the SPL processes,

thus, it could be feasible for an organization to establish a strategy regarding applying a

suitable approach for testing in this context.

As discussed in the literature (Beizer, 1990; Rothermel and Harrold, 1996; McGregor,

2001b; Tevanlinna et al., 2004), there are three main levels of testing: unit testing,

integration testing, and system testing. In unit testing, each developer tests a unit

before integrating it to the rest of the code. This is usually performed using white-box

techniques (i.e. with access to the code), however, black-box techniques can also be

applied. In integration testing, aims to test the interaction among the components and

make sure that they follow the interface specifications and work properly. Integration

testing can involve a combination of white-box, exercising the code and black-box testing,

usually performed in the interface components, selecting valid and invalid inputs in order

to determine the correct output. System testing tests the features and functions of an

entire product and validates that the system works in the way the user expects. Black-box

techniques are usually adopted. While for unit and integration testing we need the source

code, system testing can be done independently from source code (Geppert et al., 2004).

Once the units were tested during the unit test level, they need to be integrated to

compose the SPL reference architecture (CAD) and product specific architectures (PD).

This union is tested during integration testing level, which aims to detect defects that

occur on the interfaces of units and assemble the individual units into working modules,

subsystems and, finally, complete the architecture. In order to address this issue, a

systematic approach for testing in SPL was designed, considering both processes core

asset and product development.

Hence, this is the main focus of this chapter, to present an approach to provide a

64



5.2. INTEGRATION TESTING IN SPL

systematic way to use an SPL architecture for code integration testing, considering the

both SPL processes. The Data flow, activities, roles and guidelines are prescribed in order

to give users useful directions towards the use the approach. The use of the approach

is illustrated with an example applied with excerpts of a SPL project. It was developed

in the RiPLE - RiSE process for Product Line Engineering - context, a larger effort

in defining a complete process for SPL, encompassing issues ranging from scoping to

evolution management.

5.2 Integration Testing in SPL

Beizer (1990) lists three major divisions regarding dynamic testing: unit, integration

and system testing. This division is also adopted by McGregor in (McGregor, 2001b),

where he defines each test level. Regarding integration testing, he advocates that the focus

should be on testing the interactions that occur among tested units. It is a cumulative effort

and also a shared responsibility between CAD and PD builders. The integration testing

continues iteratively until the integrated units compose the desired product. Due to the

number of variants for each variation point, it makes impossible to test all combinations of

all variants. McGregor proposes two techniques to mitigate this problem: combinatorial

test design and incremental integration tests.

In (Knauber and Hetrick, 2005), Knauber et.al. advocate a similar division: testing

at component level, feature level and product level. In this approach, the features are

considered integration units, as each product has a set of features it implies that the tests

at this level are customized according to the decision model. Any defect discovered in

this level should be fed back into component tests level in order to identify whether the

problem is in the generated test case or in the component.

Reuys et al. (2006) define a method for system and integration testing for SPL. In

this work, interactions among components are considered in addition to the interactions

between users and system. The interactions are described in domain architecture scenarios

that contain component interactions derived. It will lead to build domain integration test

cases. However, they rather do not address the effect of different forms of integration

strategies nor the additional variability that is contained in domain architecture models.

Li et al. (2007a) propose a method for generating integration test cases of product lines

members from module unit tests. Each product line member has a set of integration tests,

each of which describes interactions among modules and functions that need to be tested.

The number of product line members configurations are decided by all combination
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of the variability parameters. Moreover, the constraints among variabilities should be

considered. To help the identification of valid products the decision model is used in this

approach.

Reis et al. (2007b) define an automated integration test technique that can be applied

during domain engineering. It generates integration test case scenarios that cover all

interactions between the integrated components, which are described in the test model.

In summary, besides none of the analyzed approaches deal with both SPL integration

testing levels, during Core Asset Development and Product Development, they do not

define in a systematic and structured way, a process view, where a set of roles, activities

and steps, are defined to perform integration tests. Moreover, the proposed approach can

be applied for testing the reference architecture conformance (specification vs. code)

and product specific architectures, as well as, testing the integration of product specific

components to the corresponding product architecture.

5.3 Unit and Integration Testing

This section aims to describe the context in which the integration testing approach was

inserted, as well as, its relation with the unit testing level. The approaches (integration

and regression described in the next chapter) proposed by this dissertation, is part of a

more general process called RiSE Product Line Engineering (RiPLE), which concerns

with the full software life-cycle for software product lines. A more detailed view of these

approaches can be viewed in RiPLE WebSite 1. In this site, the artifacts, activities and

steps are described.

The first step when dynamically testing a software is to define which software portion

will represent a unit (e.g. methods or procedures (McGregor, 2001b), classes, components

(Markus Gälli and Nierstrasz, 2005), etc). Such a decision will serve as a background

for applying a specific unit testing strategy. For example, if a component is defined as a

unit, the strategy should define that methods and classes are tested individually and then

their interaction thus, this modular and cohesive element has been tested according to the

purpose of unit testing. Figure 5.1 describes the RiPLE unit test level main flow.

In Unit Testing, the main goal is to ensure that this portion is working properly. A

product comprises several units, which, at this point, it should be tested individually.

This activity enables to find, and then correct, errors at a fine grained level, which can

reduce the error propagation. After verifying individually the units, they need to be

1http://www.cin.ufpe.br/ sople/testing/epf/
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Figure 5.1 RiPLE Unit Testing level main flow.

integrated to compose modules, sub-systems, the SPL reference architecture and further

instantiate it to assemble specific product architectures. The test in which units are joined

is known as Integration Test. In summary, this level aims to evaluate the connection

among components and modules by stressing their interfaces.

The use of both testing phases is advocated since they are responsible for detecting

different types of faults. Whereas unit testing independently tests methods, classes, and

the interaction among these pieces which comprises a component, integration testing is

responsible for testing the interaction among components interfaces and the integration

between modules.

If a fault is detected inside a component, during integration testing, it should be

analyzed and then forward back to the unit test level, to be re-evaluated. All information

is recorded in the associated component test report and the test plan is updated, thus, next

turn, the test suite will provide a test in this direction. The same is applicable to module
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and subsystems.

Information from unit tests are further used during integration and system test levels,

e.g., coverage criteria and pass/fail rate. Whereas in integration test level, this rate can be

used to define/build the module and subsystem test planning. In system test level, it can

be used to define the test planning regarding the derived application.

5.4 Roles and Attributions

The approaches (unit and integration testing) define a set of roles. It is worthwhile to

mention these do not represent the function an engineer should assume in an organization,

but rather the role she/he is likely to have in the context of a specific project.

• Test Manager - Responsible for preparing the test plan, negotiating the test ob-

jectives and products, analyzing test effort, test resources management and test

the environment management, keeping track test activities, setting an acceptance

criteria based on the project budget and helping the project manager to keep the

software testability during the development.

• Test Architect - Responsible for identifying the test target, defining features,

components and modules to be tested, as well as the test execution management.

Usually, a product and a set of features are assigned to a test architect. This

assignment aims to designate a person to solve eventual problems regarding to a

feature or product under testing. They are responsible for creating and managing

and after scheduling their execution. After this execution, they should assemble

a test report to be attached with the SPL asset and serve as input to further test

manager planning.

• Test Designer - Responsible for functional test design (considering white-box and

black-box techniques), test maintenance and test case validation. Depending on the

features size and the amount of features, some companies designate an entire team

to perform these activities.

• Tester - Responsible for test design according to the required technique, test

execution, change request reporting, test harness development and test environment

setup. The tester should provide information to assembling test reports.
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5.4.1 Method Content and Processes

Both approaches (Chapters 5 and 6) proposed in this dissertation are modelled inside the

Eclipse Process Framework (EPF) 2, which aims at providing an extensible framework

and exemplary tools for software process engineering - method and process authoring,

library management, configuring and publishing a process.

EPF uses the Software Process Engineering Meta-Model (SPEM), that defines a

formal language for describing development processes. EPF is based on SPEM 2.0,

released on April, 2008 (SPEM, 2008).

Since, one of the main goals of EPF is to provide the reuse among sets of reusable

activities (called Method contents), the EPF structure is divided into two main categories.

• Method Content: A set of defined tasks flow, roles, artifacts and guides to accom-

plish some goal.

• Processes: Process flows which consumes the method contents, reusing the previ-

ously defined activities.

Both method contents, and processes are divided into some concepts, according to

the SPEM (SPEM, 2008).

The Method Content contains the following concepts:

• Role: Roles define a set of related skills, competencies and responsibilities. Roles

perform tasks.

• Work Product: Work Products (in most cases) represent the tangible things used,

modified or produced by a Task.

• Tasks: A Task defines an assignable unit of work (usually a few hours to a few

days in length).

• Guidance: Guidance may be associate with Roles, Tasks, and Work Products, and

may have the form of a checklist, an example, a template and etc.

The Processes contains the following concepts:

• Capability Pattern: Capability Patterns define the sequence of related Tasks,

performed to achieve a greater purpose.

2Eclipse Process Framework web site - http://www.eclipse.org/epf/
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• Delivery Process: Defined using Work Breakdown Structures and/or Activity

Diagrams. Defines end-end full-lifecycle process and may include iterations,

phases, milestones.

The main benefits from using EPF are:

• Reuse: The method contents can be reused throughout the processes.

• Web Site generation: EPF generates automatically a web site containing all

information of the modeled process, making the publication of the process a very

easy task.

5.5 Integration Testing Strategies

Once the units were reviewed and successfully passed through the unit tests, according to

the coverage criteria previously defined (during planning activity in unit testing level),

they need to be integrated and hence tested.

The integration of a system can be tested incrementally or using a big-bang approach

(Muccini and van der Hoek, 2003). In nonincremental (or “big-bang”) approach,

all units (methods, classes or components) are independently tested and they are then

combined (Burnstein, 2003; Myers, 2004). After that, the entire program is tested as

a whole. A disadvantage of this approach is the difficulty to find defects. Since all

components are integrated together at the same time, it is hard to find which integration

causes a fault. In incremental approach, a unit is integrated into a set of previously

integrated modules (set of units) which were prior approved (Burnstein, 2003), which

makes easy to identify the defective integration. The incremental approach can be

performed in two ways, using top-down or bottom-up strategies.

In top-down, the components and modules are integrated downwards through the

control hierarchy, beginning with the main control unit, e.g., component or module.

It is important to highlight the need of drivers and stubs when using this approach.

The components can be incorporated to the main control unit in either a depth-first or

breadth-first manner. Figure 5.2, in which structure charts, or even call graphs as they are

otherwise known, are presented to sample the integration strategies. These charts show

hierarchical calling relationships among units. Each node, or rectangle in a structure

chart, represents a unit, and the edges or lines between them represent calls between the

units (Burnstein, 2003).
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(a) A simple Structure Chart for
Depth-First approach.

(b) A simple Structure Chart for Breadth-
First approach.

Figure 5.2 Two top-down manners to integrate components and modules.

In the simple chart in Figure 5.2, the rectangles C1-C7 represent all the system units,

the dashed lines represent the components that are not linked yet, on the other hand, solid

lines represent the components that were linked. Edges, from an upper-level unit to one

below indicate that the upper level units calls the lower one.

Using the depth-first manner, the C2 component is integrated with the main component

C1, right after C5 and C7 integration to the structure (see Figure 5.2(a)). When integrating

C2 to C1, it is clear the need of stubs to represent components C3 and C4.

In the breadth-first manner, the C2 and after C3 are integrated to the C1 main

component. Every component directly subordinated to each level is incorporated, moving

across the structure horizontally (Burnstein, 2003) (see Figure 5.2(b)). Since not all

components are ready, stubs are thus needed. As the components are incorporated to the

main structure, the stubs are replaced by real components.

Top-down integration ensures that the upper-level modules are tested early in integra-

tion (Burnstein, 2003). Stubs development is indeed required, in order to drive significant

data upward. As a consequence, it can allow system to be demonstrated earlier, since

every behavior of software can be present. However, this strategy is relevant if major

flaws occur toward the top of the program (Myers, 2004). If they are complex and need

to be redesigned there will be more time to do so.

In bottom-up integration, the lowest level units are firstly combined. These do not

call other units. Drivers should be developed to coordinate test case input and output.

Next, units are integrated on the next upper level of the structure chart, whose subordinate

units have already been tested. After a unit has been tested, drivers are removed and the

actual components are combined moving upward in the structure (Myers, 2004).
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According to (Burnstein, 2003), the advantage of bottom-up integration is that the

lower-level units are usually well tested early in the integration process, an important

strategy if units are supposed to be reused. On the other hand, since the upperlevel units

are tested lated in the integration process, they may not be tested, due to time constraints

or any other reason. Moreover, with this strategy postpones, the system does not fully

exist until the last unit is integrated.

Each strategy has its set of advantages and disadvantages, which make difficult to

choose the best one.Thus, in many cases, a combination of approaches should be used.

5.6 Integration Testing approach for SPL

In this section, the proposed approach for integration testing in SPL is described. The

two processes, Core Asset Development (CAD) and Product Development (PD), are

considered in this approach, in a way which two different but also complementary

standpoints dealing with such a level are performed. In the former, where assets are

prepared to establish a common architecture, the focus is on test the integration among

the modules and components that will compose the architecture. In the latter, where

components are integrated in order to realize products, tests are focused on integration

between product specific parts and the reference architecture. This architecture is intended

to support the diverse products in a product line, considering the decisions and principles

for each SPL member (Kolb and Muthig, 2006).

To better isolate the objectives, this integration testing level will be separately per-

formed during the two processes, where each one will be following detailed. Figure

5.3 shows a resumed flow used for both integration in CAD and PD. Although they are

presented as sequentially initiated, this process represents an incremental and iterative de-

velopment step, since feedback connections enable refinements along the approach. This

flow illustrates the approach workflow comprising its activities, inputs, outputs, tasks and

involved roles. Regarding the latter, in this process, responsibilities are assigned for these

activities to four stakeholders/roles that we believe represent the key participants in the

SPL testing process: test managers, test architects, test designers and testers/developers.

5.6.1 Integration Testing in Core Asset Development (CAD)

Integration Testing in Core Asset Development aims to test the interaction on the SPL

common components and the reference architecture as well. The integration testing main
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Figure 5.3 An overview on the RiPLE-TE Integration approach work flow.

flow to CAD, can be viewed in Figure 5.4. As input of this testing level, we should

consider:

• unit tested components;

• feature dependency diagram;

• feature model;

• architectural views (behavioral and structural);

• use cases; and

• requirements.

The unit tests in the components should be previously performed in order to find errors

and correct them at a more fine-grained level, which can aid in avoiding error propagation.

The feature dependency diagram (see example in Figure 5.7) provides information about

the operational dependencies among features - e.g., Usage, Modification, Exclusive-

Activation, Subordinate-Activation, Concurrent-Activation and Sequential-Activation

dependency (Lee and Kang, 2004). This information will be useful when designing test
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Figure 5.4 RiPLE Integration Testing level (CAD) main flow.

cases, since from the relationship among features, the test cases are designed reflecting

this interactions. For example, in a scenario where one feature excludes the presence of

another one, the test cases should be prepared to handle this dependency.

The test cases are designed by using the information available on feature dependency

diagram. To achieve it, the test designer make use of the use cases provided by the

Riple-RE Neiva (2008) which considers these dependencies among features. This way,

the same information used to build use cases are also applied to design test cases.

In the feature model some dependencies and links can be extracted in order to support

the test design activity, for example, some features have strong dependency relation, where
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both of them should be used at the same time, using this information the test designers

are capable to identify and create test cases which exercises the integration between this

two features. These information are also important during test suite composition, i.e., in

a scenario where each feature has its respective test suite, the dependency information is

important in order to help the test selection process. All these information are provided

by RiPLE-SC (Scoping) and RiPLE-RE (Requirement).

Regarding architectural views, we suggest, based on Muccini et al.’s proposal (Muc-

cini et al., 2006), the adoption of the behavioral view represented by sequence diagrams

and the structural view, which comprises class and module diagrams.Whereas behav-

ioral view provides information about the architecture functionalities, the structural view

provides information about its topological structure. The information provided by the

architectural views is useful in order to test the conformance of a software architecture

against its specification.

In cases which we do not have detailed information on the architecture or even if

it does not represent the actual system architecture, due to lacks in update or any other

reason, we should access the component code and search for pieces of code where the

relationship among the components occur, such as interfaces, in case of object-oriented

development, and benefit from this information to generate test cases.

This phase has as output the tested reference architecture, the test plan and report

artifacts (Described in 3) regarding to each intermediary module, as well as, the tested

modules.

When performing Integration Testing in CAD, besides suitably handling inputs and

outputs, variability concerns should be also considered, since it directly influences the

way components interact with each other. Just to illustrate this point, these interactions

can occur in different ways, such as: (i) the variability may occur inside the component;

(ii) in a way where the components interact; or (iii) the component is realized a variant

(Jin-hua et al., 2008).

In Figure 5.5, all interactions can be viewed. Where VP is variation point and V1, V2

and V3 are variants from a variation point.

Variability causes a combinatorial explosion implying that it is no possible to thor-

oughly test the integration among all the components. However, as Li et. al. pointed

out (Jin-hua et al., 2008), not all components interactions are realized in CAD. Such a

decision may be postponed to the PD process, as we will see in next subsection.

3www.cin.ufpe.br/s̃ople/testing/epf/
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Figure 5.5 Variability influence in components interactions.

In order to reduce this testing effort, a prioritization and test criteria should be

established. The idea is to prioritize the components from the reference architecture and

the ones which implement the most common or complex variation points. According

to (Jin-hua et al., 2008), the integration testing perform those tests which test common

interactions and those that contain few variable interactions. The test criteria can be useful

when the test architect, is analyzing the structural view and the dependency diagram, and

he can capture some critical components and interactions. By looking the behavioral view,

he can capture software functionalities that he is interested to test. In (McGregor, 2001b),

he highlights two distinct techniques: (i) a combinatorial test design and (ii) perform

the integration testing using a incremental strategy, to mitigate the variant combinatorial

problem. The use of both techniques are recommended in this approach.

The product line architecture have numerous points at which it can varied in order to

produce different products. It begins as requirements until architectual poinst of variation.

This variation are propagated down to the method level where the number and types

of parameters are varied. It is virtually impossible to test all combinations of theses

variants. At these various points, choices must be made in order to select which values

to use during a specific test. The combinatorial test design support the design of test

cases by identifying various levels of combinations of input values for the asset under

test. The number of variation points and the number of different variants at each point

make an exhaustive test set much too large to be practical. Combinatorial design allows

the selection of a less-than exhaustive test set. By selecting all pair-wise combinations, as

opposed to all possible combinations, the number of test cases is dramatically reduced

McGregor (2001b).

The incremental strategy is implemented as the products are tested. Firstly, as the

product specific components are integrated to the reference architecture, the integration

tests are performed incrementally after each integration McGregor (2001b). Another
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strategy used to reduce this effort is the use of incremental strategy over products. In

this approach the first product is tested individually and the following products are tested

using regression testing techniques Tevanlinna et al. (2004).

Following, the steps needed to produce assets for integration testing in CAD are

described, based on the explanation aforementioned.

• Architecture Specification Analysis: The test architect analyzes the structural

view (class diagram, component and module diagrams) to capture structural issues

in the components, modules and architecture. Based on this view, he can observe if

the implementation of a module or architecture is in conformance with its specifica-

tion, by looking the way in which the components and modules interacts. The same

is applied for the behavioral view (sequence and communication diagrams), where

he attempts to capture issues regarding functionalities. By analyzing this view, the

test architect is able to understand how the components and modules work, looking

the sequence diagram he has a more accurate view of the methods and classes, as

well as, how they interact.

• Test Criteria: Due to the amount of classes and components, as well as, the

amount of links among them, which could likely be excessive, the architect can

face visualization problems; in order to mitigate it, he should select critical points

to test. Each criteria highlights a specific perspective of interest for a test session.

• Test Design: In this step, the architectural test cases are created, based on previous

information. By looking the sequence diagrams, the test cases are extracted. They

are composed by two portions, an input which works as a stimulus and a sequence

of events which represents a path through the architecture. By observing the

sequence diagram, the test case steps and constraints (if exists) are identified, to

compose the test case as a whole. White-box techniques can be used in this step.

After selecting the more suitable elements, considering the constraints involved since

planning phase, and thus producing the useful assets (i.e., test suites), the next step is to

execute them. In this step, the test cases execute the paths previously designed. After

executing the tests and, supported by an automatic coverage tool (e.g. (Ecl, 2009; Clo,

2009; EMM, 2009; Cov, 2009)), the test engineer can observe the test case effectiveness

and decide if it pass/fail according to the architecture specifications. He can also confirm

if the test covers the desired portion of code.
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5.6.2 Integration Testing in Product Development (PD)

The inputs for Integration Testing in CAD can also be used in PD, with the addition of

product map and/or decision model, since these assets hold information on the features

(specific functionalities) of each product that will be realized in the product line. The

general view of this level is showed in Figure 5.6.

Figure 5.6 RiPLE Integration Testing level (PD) main flow.

As the products are implemented, the reference architecture is instantiated and adapted

in order to meet the product specific needs. The term adaptation refers to the binding

of optional and alternative variants, modification of components dependencies, and the

addition of new components, which result in multiple product architectures within the
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same line. The products, thus, differ in availability or comprehensiveness of their features

(Knauber and Hetrick, 2005), which implies that each component should be tested in

every possible configurations. Clearly, the effort to test every configuration is almost

unfeasible (Muccini and van der Hoek, 2003).

The same set of steps proposed in the previous subsection is used to produce integra-

tion test cases during PD. As output of this phase, we have the accomplished product

architecture, and its respective reports and test plans.

5.7 Example using the Approach

We illustrate our integration testing approach with a simple example to understand it in a

better way. Its main goal is to use and understand the proposed approach in the sense of

activities, roles, artifacts, strategies. This initial use was intended to find elements to be

further refined and hence calibrate the proposed approach.

It was used within a graduate course at the UFPE4 (Federal University of Pernambuco,

Brazil), in which a software factory composed by 9 M.Sc and 4 Ph.D. students, 1

customer and 3 domain experts was defined, in order to work in a SPL project. The

conference management domain was chosen to be applied in this project, aiming at

developing a core asset base, and next derived a set of three products. This system is

responsible for manage manuscrips, conferences and workshops. In this study, we are

using the manuscript management domain. Firstly, the author can submit a manuscript,

the conference committee evaluate it and starts the review process designating reviewers

to start the manuscript evaluation. After that, the author receives a notification which

contains the reviewers decision.

This project was conducted following the RiPLE (the RiSE Process for Product

Line Engineering), including the whole set of disciplines it encompasses: RiPLE-SC

(Scoping), RiPLE-RE (Requirements), RiPLE-DE (Design), RiDE (Implementation),

RiPLE-EM (Evolution Management), and thus RiPLE-TE (Testing). In this context,

the RiPLE-TE-Integration (henceforth named RiPLE-TE-IT) approach for architectures

verification and validation was also applied.

The first step towards the use of the RiPLE-TE-IT was to devise a test plan. This

document encompassed the list of the components to be integrated and which paths of

this integration would be verified (coverage criteria) at this time. The defined strategy to

test the commonality during CAD and the variability in PD should be described in this

4www.cin.ufpe.br
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document. The use of another testing strategy should be also described in the test plan,

since it will guide the overall testing activities. A summary regarding to each SPL testing

strategy was previously mentioned in Chapter 4, Section 4.5.2.1.

To better understand how the integration tests are designed, excerpts from the feature

model and feature diagram used in the project were adopted in order to represent feasible

feature interactions. By analyzing both diagrams, the Test Architect can figure out how

the features interaction occur. As an illustrative example, it is possible to see in Figure

5.7 that the review management feature interacts with others by a decomposition (i.e.

when a feature is decomposed in others) and usage (i.e. when a feature require another)

relationship. A sequential relationship can be viewed between AcceptReject Review and

Document Acceptance/Rejection features. The decomposition relationship is naturally

expressed in the feature model.

Figure 5.7 Feature Dependency Diagram.

Figure 5.8 ProductMap.

In the next step, architectural views (e.g: sequence diagrams, class diagrams, etc.)

together with use cases and requirements are analyzed in order to build the sequence

diagrams, based on the coverage criteria defined in the test plan. The test cases and scripts

are designed based on these set of information. Figure 5.9 shows a high level sequence
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diagram, where the user can submit a paper to the system, which assign it to a reviewer.

The variation point (VP1) represented by “deadline” feature (Figure 5.7), it is optional

and may be bound or not. The same happens to VP2, indicating that the user can receive

event news.

Figure 5.9 Sequence Diagram.

As the requirements, use cases and feature interaction diagram serve as inputs to

compose the sequence diagrams. Class diagrams can also be used in order to aid the

design of integration tests. Such diagrams enable Test Architects to better understand

how the components and modules interacts.

The sequence diagram represents the integration between two architecture modules,

the “core business” module, composed by submission and review management compo-

nents, and “notification” module. Figure 5.10 shows the reference architecture modules.

During CAD integration, the components and modules which composes the reference

architecture are bound, considering the previous scenario. The variation points are

instantiated but the decision regarding the correct moment to test should be aligned with

the test strategy previously adopted.

Considering the strategy adopted in the first step (Test Plan), these variation points,

features and components will be bound and integration tested according to the product

derived from the product line during PD integration. This information can be extracted

from the product map, Figure 5.8, where three products (RiSE Chair Conference, RiSE

Chair Journal and RiSE Chair Plus) are described in terms of Notification features.

The test cases were developed using the Junit Framework (JUn, 2009), which provides

an efficient way to generate and automatically execute test cases. A coverage tool (Ecl,
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Figure 5.10 Architecture modules.

2009) was also used in order to show the test case coverage. A set of coverage criterias

can be used: structural or functional, in our study a structural coverage was used.

After the test execution, a test report is generated gathering information about the

issues found, pass/fail rate and coverage criteria adopted.

5.8 Chapter Summary

This chapter provided a systematic approach for dealing with integration testing in the

context of software product lines. The way the approach is designed, including roles and

attributions, activities, steps, data flow, i.e., a structured process view, can enable testers

to adopt such a process in any SPL project.

The idea to design such an approach emerged by searching the literature looking

for the state-of-the-art and practices in this topic. We realized that existent processes or

methods did not define a systematic or structured way, so that tailoring them to a SPL

project could be a very laborous work.

The proposed approach covers the both, core asset development and product de-

velopment processes, thus, once applying this process, someone can test architecture

conformance and product specific architectures, as well as the integration of product

specific components to the corresponding product architecture.

Next chapter will present an overview on regression testing and define a regression

testing approach for software product line architectures. It also presents some scenarios

where this approach can be applied.
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“Knowledge is limited; but imagination encircles the

world.”

Albert Einstein 6
A Regression Testing Approach for

Software Product Lines Architectures

In the Software Product Lines context, where products are derived from a common

platform, the reference architecture is considered the main asset. In order to maintain

its correctness and reliability after modifications, a regression was developed. It aims

to reduce the testing effort, by reusing test cases, execution results, as well as, selecting

and prioritizing an effective set of test cases. In addition, regression testing can find

errors that were not detected during unit and integration phases. Taking advantage of SPL

architectures similarities, this approach can be applied among product architectures and

between the reference and product architecture.

The remaining of this chapter is organized as follows: in the next Section, it is

presented a background with some regression testing concepts (maintenance categories,

regression testing types and test classes) jointly with some general information inherent

to typical selective retest technique and its associated problems. In Section 6.4, a brief

overview about integration testing is described. Section 6.5 shows three scenarios where

the defined approach can be applied. In Section 6.6 the architecture regression testing

approach is described. Section 6.2, presents a succinct discussion and the related work.

Finally, Section 6.7 presents the chapter summary.

6.1 Introduction

In order to achieve the ability to produce individualized products, companies need high

investments which lead sometimes to high prices for a individualized product. Thus,

many companies, started to introduce the common platform in order to assemble a greater

variety of products, by reusing the common parts. In the Software Product Lines (SPL)
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context, this common platform is called the reference architecture, which provides a

common, high-level structure for all product line applications (Pohl et al., 2005a).

In addition, software architectures are becoming the central part during the devel-

opment of quality systems (Shaw and Clements, 2006), being the first model and base

to guide the implementation (Muccini et al., 2006) and provide a promising way to

deal with large systems (Harrold, 2000). Nevertheless, it evolves over time in order to

meet customer needs, environment changes, improvements or corrective modifications.

Thus, in order to be confident that these modifications are conform with the architecture

specification, did not introduce unexpected errors and that the new features work as

expected, regression test is performed (Orso et al., 2004).

Considering testability in architecture design, testing activities can be made more

efficient and effective (Kolb and Muthig, 2006), since when a modification occur few paths

will be affected. Thus, few test needs to be rerun, few obsolete test cases will be removed

and few new test cases need to be designed (created). Moreover, when the changes are so

common (Svahnberg and Bosch, 1999), maintainability is one important criteria when

developing software (Staff, 1992); if the regression testability is not considered since

early phases, more hard and expensive are the modifications and test and retest activities.

The main problem when considering a retest-all strategy, useful in safety-critical

domains, is that it can consume excessive time and resources (Rothermel and Harrold,

1996). Thus, the adoption of a regression test selection technique is inviting in some

scenarios and domains. For example, in avionics context, where the reduction of one test

case may save thousands in testing resources (Harrold et al., 2001). Basically, it selects a

set of test case from existing test suites to test the original version, avoiding the execution

of all test cases. However, the test selection technique is only justifiable when the cost to

select test cases is less than to run the entire test suite.

Moreover, Harrold Harrold (2000) advocates that regression testing can be used

during maintenance to test new or modified portions or during development phase, to

test similar products, safety-critical software and software under constant evolution.

In additional, it can be useful to make confidence in the correctness of the software,

increasing its reliability Wahl (1999), as well as, identifying errors that were missed,

after applying traditional code-level testing Muccini et al. (2006). However, applying

regression testing to SPL is not trivial and requires some extra efforts Kolb (2003).

According to Kolb (2003), the major problems in testing product lines are the large

number of variations, redundant work, the interplay between generic components and

product-specific components, and regression testing.
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SPL testing is a multi-faceted problem that has connections to regression testing,

testing of incomplete programs, and efficient use of reusable test assets. The SPL

members can be seen as variants of each other, which makes regression testing inviting.

In this sense, an architecture regression testing approach was defined taking advantage of

regression test benefits and SPL architectures similarities, by selecting and prioritizing

a set of effective and efficient test cases, based on information previously collected.

There are some scenarios, considering SPL context (Core Asset Development (CAD) and

Product Development (PD)), where the use of the proposed regression testing approach

is useful, for example: (i) during reference architecture evolution and modification, (ii)

when changes in the product architecture (PA1) should be propagated through the overall

product line, (iii) maintenance of the conformance among product architectures and the

reference architecture, and (iv) to address the problems raised from a typical selective

retest technique.

6.2 Other Directions in SPL Regression Testing

The formal notations used to describe software architecture specification serve as basis on

which effective testing approaches and techniques can be developed. For example, Knodel

and Lindvall (Duszynski et al., 2009) present a tool which analysis the compliance of

existing systems to control and asses its implementation with their architectures. Kolb

and Muthig (Kolb and Muthig, 2006) consider that test can be more efficient and effective

by considering testability in architectural design. Winbladh et. al. (Winbladh et al., 2006)

present a specification-based testing approach that verifies software specifications, as

software architecture against system goals. Muccini and Hoek (Muccini and van der

Hoek, 2003) report that test product line architectures is more complex than software

architectures and present some activities.

In an important survey in the testing area, Bertolino (2007) proposes a roadmap

to address some testing challenges, discussing some achievements and pinpoint some

dreams. Concerning to SPL, she describes the challenge “Controlling evolution” as

a way to achieve the dream “Efficacy-maximized test engineering” highlighting the

importance of effective regression testing techniques to reduce the amount of retesting, to

prioritize regression testing test cases and reduce the cost of their execution. Briefly, it is

important to scale up regression testing in large composition system, define an approach to

regression testing global system properties when some parts are modified and understand

how to test a piece of architecture when it evolves.
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6.3 A Regression Testing Overview

Although unit, integration and system test levels have their importance to detect specific

defects, regression testing is a way to efficiently test the conformance after a modification.

Instead of submitting the modified software to all test levels, regression testing is applied,

reducing costs and detecting faults early.

In the following sections, some concerns related to regression testing are detailed, as

means to provide information to better understand the proposed approach.

6.3.1 Maintenance Categories

Characterized by their huge cost and expensive implementation, maintenance initiates

after the product release and aims to correct, keep the software updated, as well as fit

with the environment new needs. According to (Pressman, 2001), around 20% of all

maintenance work is spent fixing mistakes, the remaining 80% are spent adapting the

system according to the external environment needs, making enhancements requested by

users and reengineering an application for future use. One way to reduce the maintenance

cost can be achieved by an efficient and effective regression testing.

In (Lientz and Swanson, 1980) and ISO/IEC 14764 (Iso, 2006), four categories of

maintenance are defined, as follows:

• Adaptive Maintenance: Aims to adapt the system in response to data requirements

or environment changes;

• Perfective Maintenance: Addresses the modifications after product delivery to

handle any enhancements in respect of system performance or maintainability

improvements;

• Corrective Maintenance: It is a reactive modification of a system, usually called

“fixes” and performed after delivery. It is responsible for fix discovered problems

(software, implementation and performance failures); and

• Preventive Maintenance: It is concerned to correct and detect faults before it

becomes a fault, preventing problems in the future.

During the adaptive or perfective maintenance, the software specification is modified

to join the improvements or adaptations (Wahl, 1999). In corrective maintenance, the

specification may not be modified or no new modules may not be added. Most of the

86



6.3. A REGRESSION TESTING OVERVIEW

changes imply in addition, modification and deletion of instructions (Leung and White,

1989). Preventive maintenance is usually performed on critical systems (Abran et al.,

2004).

In (Hatton, 2007), Hatton analyzes the first three categories (Adaptive, Corrective and

Perfective) using five studies and indicates the distribution regarding to the spent time

over these categories. The results are presented in Table 6.1.

Table 6.1 Software Maintenance Categories Distribution Hatton (2007).
Study Authors Adap.(%) Corr.(%) Perf.(%)

Dekleva 46 18 25
Helms and Weiss 29 19 28

Glass 42 37 23
Sneed 52 9 35

Kemerer and Slaughter 83 12 5

6.3.2 Corrective vs Progressive Regression Testing

Based on the possible modifications, regression testing can be classified in two classes

(Staff, 1992),(Leung and White, 1989).

Corrective Regression which is often performed after some corrective action on the

software, it is applied when specifications are unmodified (e.g. when the code is not in

conformance with the specification). When the modification affects only some instruc-

tions and design decisions (e.g. changing only the way used to implement the variability

inheritance, parameterization and design patterns without modify the specification), it

makes the test cases from the previous test plan be more reused. However, when they

involve possible changes to the control and data flow structures, some existing test cases

likely to be no longer valid to testing that portion of the software. Since program failures

can occur any time, this type of regression testing should be applied for every correction.

Progressive Regression is typically performed after adaptive and perfective main-

tenance (Section 6.3.1), it is used when specifications are modified (e.g. the addition

of a new feature or functionality). This specification modification is caused by new

enhancements or new data requirements, which should be incorporated in the system.

In order to handle the testing of this modification, new test cases need to be designed.

This type of regression testing is performed during regular intervals since adaptive or

perfective maintenance is typically done at a fixed interval (e.g. every six months).
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6.3.3 Test Case Classes

Let P be a program, let P’ be a modified version of P, and let T be a test suite created to

test P. The main idea behind regression testing techniques is to select a subset of tests

T’ of T to make confidence that P’ was correctly modified, still working properly as

previously and no new errors were inserted (Rothermel and Harrold, 1996).

During architecture evolution or modification it may affect the specification, as a result,

the architecture structure implementing the specification must be changed. However,

when the specification is not modified only the architecture structure is changed.

In (Leung and White, 1989) and (Briand et al., 2009), the authors categorize test

cases created in the previous phase (integration testing) from the previous test plan in the

following classes:

• Reusable Tests: Responsible for testing a unmodified portion of the specification

and architecture structure. They are still valid but do not need to be executed again

to guarantee the regression testing safety;

• Retestable Tests: This class includes all tests that should be repeated because the

software structure was modified, even though the specification regarding to the

software structure are not modified. They are still valid and need to be rerun;

• Obsolete Tests: Comprehend the test cases that cannot be executed on the new

version, since they become invalid for the new context. According to (Leung and

White, 1989), there are three reasons for that:

– The structural tests (based on the control and data structures) are designed

to increase the structural coverage of software. Since the structure can be

changed of different versions of the software, some test cases become obsolete,

because they are not contributing with the software structural coverage;

– Due to some changes in a specific software component, some test cases

may not be testing the same structure, despite they correctly specify the

input/output relation; and

– When the test cases specify an incorrect input/output relation. It happens when

a specification is modified and the related tests are not according updated.

• Unclassified Tests: Involve the test cases which may either be retestable or obsolete.

According to (Leung and White, 1989), two new classes of test cases can be

included in the test plan:
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– New-structural tests: Include tests which aims to test the modified software

structure. Often they are design to improve the structural coverage;

– New-specification tests: Comprehend the test cases that evaluate the new code

generated from the modified portion of the specification.

Figure 6.1 Corrective and Progressive Regression Testing Leung and White (1989).

In order to better understand the relation between the types of regression testing

(Section 6.3.2) and they correspondent test classes, Figure 6.1 shows this relation (adapted

from (Leung and White, 1989)). Left side of Figure 6.1 shows that after performing a

modification, obsolete test cases are removed and new-structural tests are added to the

new test plan. Right side of Figure 6.1 shows that besides remove obsolete test cases, new-

structural and new-specification test cases need to be design to test the modified version

of the software. Since in this type of regression testing the specification is modified,

new-specification test cases are developed.

6.3.4 Typical Selective Retest Technique

When regression testing approach is applied, an important prerogative is how to select a

subset of test cases, from the original test suite, as means to test the modified version of

the software (Orso et al., 2004). To address this problem, a retest selection technique can

be useful. Harrold et. al. in (Rothermel and Harrold, 1996), (Harrold, 1998), (Rothermel

and Harrold, 1994), (Rothermel and Harrold, 1997), (Todd Graves, 1998) describe the

steps involved in it, as well as, the problems arise from each step.

1. Select a set of test cases T’ to execute on P’;

2. Test the modified program P’ with T’ in order to establish the correctness of P’

with respect to T’;

3. If needed, create a new test suite T”, a set of new-specification and new-structural

test cases (Section 6.3.3) to test P’;
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4. Test P’ with T” in order to establish the correctness of P’ with respect to T”;

5. Repeat the step 3 selecting the test cases from T, T’ and T” to be executed in P’.

The first problem arises from step 1, which is the regression test selection problem:

select a subset T’ from T to test P’ (Orso et al., 2004). The coverage identification

problem raised from step 3, consists in identifying portions of P’ or its specification

that needs additional testing. Steps 2 and 4 involve the test suite execution problem:

regarding to efficiently execute the test suites and checking their results. At last, the test

suite maintenance problem addressed by step 5, the problem to update and store test

information.

Selection regression testing idea came up from the need of reducing the cost of

regression testing. For this reason, it has been broadly studied (Wahl, 1999). This cost

reduction is achieved by reusing existing tests and identifying the modified portion of the

software and specification that needs to be tested (Rothermel and Harrold, 1996).

For a regression test selection technique to be cost effective, the effort and time

devoted during the test selection and its executions needs to be less than the overall cost

to execute all test cases from the test suite (e.g. Retest-All) (H K N Leung, 1991). The

test suite is another factor to be considered, since it needs to be big enough to justify the

necessity of a test selection technique (Wahl, 1999).

6.4 Regression at Integration Level

As mentioned by McGregor (McGregor, 2001b), regression testing is a technique rather

than a testing level. Burstein et. al. (Burnstein, 2003) define it, as being “the retesting

of software that occurs when changes are made to ensure that the new version of the

software has retained the capabilities of the old version and that no new defects have been

introduced due to the changes”. Considering this point of view, regression testing can

be performed after any test level, in our context, it will be performed after integration

testing, since the purpose of the approach is to verify the integration among modules and

components which composes the SPL architecture.

In order to figure out which point of the testing process this approach is applied, a

brief contextualization about integration test is presented.

After unit testing level, where the components are individually tested, integration

testing comes in scene. The product map, which is a SPL artifact build during scoping

phase that groups all products and its respective features Bayer et al. (1999), is analyzed
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in order to identify commonality among SPL members. In addition, by analyzing the

feature model and feature dependency diagram, the Test Architect can understand the

relationship among features. These information are important during test design and test

suite composition, since it shows the product features, as well as, shows how it interacts.

Thus, the test cases are designed considering these interactions. During design, it serves

as input to define modules and components that composes the reference architecture and,

during testing, it guides the design of test cases which evaluate the interaction between

components and modules (integration testing).

The architecture diagram, composed by components and modules are also important

during testing phases, since it provides the way in which the components and modules

interacts.

Figure 6.2 A Sequence Diagram with two variation points.

Based on previous information (feature model, product map, feature dependency

and architecture diagrams) and architecture views, the integration tests can be designed.

Whereas behavioral view (sequence diagrams) provides information about the functional-

ities of the architecture, the structural view (component and module class diagrams) give

us information about the architecture structure. Figure 6.2 shows a sequence diagram in a

scenario where a user requests for a account creation and the system can create two types

of accounts, special and savings account. Two variation points (optional features) can

be viewed, the first VP1 represents the functionality responsible for creating the special

account, the second one VP2 represents the functionality that aims to create the savings

account. The bind of VP1, VP2 or both, should be specified in the product specific

architecture. It is important to note that a test case can be designed to verify different

scenarios and configurations, depending on the feature(s) that was/were bound.
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6.5 Regression Testing in SPL Architectures

There are three different scenarios where the regression testing approach is attractive.

Figure 6.3 shows all of them, which are following described:

Figure 6.3 Similarities among product architectures.

• Scenario 1: Given a Reference Architecture (RA) Figure 6.4, composed by the

integration of components (A,B,C and D), which has its conformance verified

during integration testing (Section 6.4). Imagine that a component A should be

modified to A’ in order to reflect a change, due to a evolution or corrective action.

A new version of the reference architecture (RA’) is developed. Considering these

two versions, the original V1 (A,B,C and D) and the new one V2 (A’,B,C and D),

they need to be applied against a regression testing approach which aims to gather

confidence that the new version is free of faults and still working properly.

Figure 6.4 Two Reference Architecture Versions.
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• Scenario 2: Given the reference architecture (RA) and the product architecture

PA1. Considering these two architectures as difference versions V1 (A,B,C and D)

and V2 (A,B,C,D,E and H), the regression testing approach can be useful (Figure

6.5). This scenario is also considered a testing strategy commonly used in SPL

testing exploiting the existing commonalities among SPL members. While the first

product is tested individually, the following products are tested using regression

testing techniques (Tevanlinna et al., 2004).

Figure 6.5 Reference Architecture and Product Specific Architecture.

• Scenario 3: Given two product line architectures PA4 and PA5, considering both as

two different versions V1 (A,B,C,D,G,L and M) and V2 (A,B,C,D,G,L and N), the

regression testing approach can be applied in this context. By observing the Figure

6.6, the reader can be induced to think that since the PA4 was previously tested

during integration testing, PA5 can be verified reusing the common tests and only

considering the integration of the last component N. It is a wrong consideration

because the integration of the last component could bring faults in the previous

tested structure, for this reason, the application of a regression testing approach is

crucial to understand the impact of the last integration.

The regression testing approach defined was considered in two ways. Firstly, during

CAD when it aims to test the conformance of the reference architecture (RA) after a

modification in a component or module which is part of it. Later, during the PD with the

purpose to test a product architecture in respect with the reference architecture or others

product architectures considering their common features. The product line members are

seen as variants of each other, making regression testing in PD attractive. The overall

view of the testing approach is showed in Figure 6.12.

93



6.6. A REGRESSION TESTING APPROACH FOR SPL ARCHITECTURES

Figure 6.6 Similar Product Architectures.

6.6 A Regression Testing Approach for SPL Architec-

tures

The purpose of regression testing on this phase is to check if new defects are introduced

into previous tested architecture and it continues working properly. To be confident that

the architecture is working properly, its specification can be used as test oracle to identify

when the tests pass or fail.

The main inputs are the two versions (modified and original) of the architecture

code, the test cases, test scripts and test suites from integration testing level saved

to be further reused, all of these artifacts are considered mandatory in this approach.

Architectural specifications as behavioral and structural views, as well as, the feature

model, product map, feature dependency diagram can be useful to extract information

from the architecture, serving as guide to identify portions that needs to be retested. Using

the structural view, the relation among classes and components are clearly specified and

identified. From this view and using the use cases (Riple-RE) and sequence diagrams

(Riple-DE) previously built. They are used in order to better represent the relation among

the components and classes, facilitating the creation of integration testing to be used in

the regression approach. The feature model and feature dependency diagram are used to

understand the relation among features, for example, in cases where a feature excludes

another one and even the presence of optional features (Figure 6.2). These information

should be considered when designing integration test cases.

Specific product architectures can be instantiated based on product maps and decision

models which contain information such as mandatory, optional and variant features
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for each product. Based on this information, the test architects are able to instantiate a

architecture by selecting specific features and components. Thus, when components or

modules are modified, regression testing must be performed on the application architec-

ture, as means to evaluate its correctness Jin-hua et al. (2008).

6.6.1 Approach Steps

In this section the proposed regression testing approach is described. The overall approach

can be viewed in Figure 6.7. Although they are presented as sequentially initiated,

this process represents an incremental and iterative development step, since feedback

connections enable refinements along the approach. This flow illustrates the approach

workflow comprising its activities, inputs, outputs, tasks and involved roles. A complete

view of it is shown in Figure 6.12.

Figure 6.7 The Regression Testing Approach.

6.6.1.1 Planning

The planning is performed as means to guide the test cycle execution. In this phase,

the Test Plan is created gathering information about the adequacy criteria, the coverage

measure, resources and associated risks.
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The Test Plan is a document which describes the scope, approach, resources, schedule

of intended testing activities, the testing tasks, who will do each task, any risks requiring

contingency planning, as well as a list of CRs that originate the modifications performed

in the old version of the architecture. It aids in the identification of test items and the

features to be tested. The test plan was done based on IEEE (1998).

6.6.1.2 Analyzes

The customer send a change request describing an issue during the credit function.

1. Analyzes

This step is performed in order to understand how a correction or evolution impact the

architecture. By manually analyzing the architecture specification, the modified classes

and methods are identified, and the relevant tests can be designed or selected based on

this information (e.g.: comparing two class diagrams). It serves as guide to support the

next steps, restricting the coverage of the modified version that should be examined.

After processing a change request or receiving an architecture evolution request, the

test architect starts the analysis phase. Figure 6.8, shows an illustrative example of a

class diagram with five classes of a bank system. In the context where a customer sends a

change request describing an issue found in the credit function, the Test Architect will

analyze the class diagram in order to identify the impacted classes. Considering that a

modification was done in the credit method from Account class, it may cause problems

(regarding to business rules) in credit method (Figure 6.9) from SpecialAccount class. If

the SavingAccount class has a similar implementation as SpecialAccount, for example

using “super.credit(value)”, this class will be also impacted. Considering this scenario

the Test Architect can see that the method credit in the classes Facade, Account and

SpecialAccount need to be investigated more carefully. It is important to highlight that

some classes were removed from Figure 6.8 in order to facilitate the visualization and

understanding.

Based on the category of the modification (Section 6.3.1), two types of regression

testing (Section 6.3.2) can be performed, both types are handled by the approach.

Firstly, considering a corrective scenario, depending on the architecture size, the

analyzes of overall architecture structure can be an expensive and hard task. In order to

reduce the scope that must be studied to understand a modification, the test architect can

optimize the analyzes. Studying the impact of the change by looking at the architecture

views, it helps in the identification of test classes (Section 6.3.3) and isolates the area

(architecture classes and methods) that needs to be retested, a walkthrough technique is
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Figure 6.8 An illustrative example of a bank system class diagram.

Figure 6.9 Credit method from Special Account class.

recommended to perform this task. Some components, classes and methods are irrelevant

to architecture’s regression testing, since their change do not impact in others components,

thus these irrelevant components, classes and methods, can be safely removed without

lost probable critical paths.

Take into consideration the example described in the previous paragraph (Figure 6.8),

the area that needs to be retested is the linking among Facade, Account and SavingAccount

classes, on the other hand, tests that exercises the link between Facade and Customer do

not need to be retested.

In cases where no information about the modification is available, the use of a diff

tool (Textual Comparison) to start the analyzes step is advisable. It is used in the area in

which the modificarion was performed, also considering the code related to that change.

Considering a progressive scenario, when the architecture suffers a modification

due to an evolution, the impact is also studied, to visualize where the modifications are

located. Based on this analyze, the test architect can focus only in that relevant area. It
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reinforces the importance to maintain the architecture specifications always converging

with its implementation after performing modifications. If this synchronization is not

kept, it can cause problems for evolution, maintenance and the comprehensibility of a

system, this problem is known as “Architectural Drift” Rosik et al. (2008).

This analysis work as a filter in order to identify the modified architecture portion,

restricting the search space.

6.6.1.3 Test Design and Selection

2. Graph Generation

After performing the analyzes step, the test architect may need to generate graphs to

catch code behaviors. Thus, a graph representation for both versions of modified portions

of the architecture (the new and old versions) are generated.

This graphs can be a control flow graph (CFG), program dependence graph, control

dependence graph or a Java Interclass Graph (JIG) depending on the test selection

technique. CFGs are suitable for representing the control flow in a single procedure,

but it cannot handle inter procedural control flows or features of Java language such

as polymorphism, dynamic binding, inheritance and exception handling Harrold et al.

(2001). As much language features the graph represents, more refined will be the analysis,

increasing the code coverage and decreasing the number of undetected faults.

Apiwattanapong et al. (2007) propose the Enhanced Control-Flow Graphs (ECFG) to

suitably represent object-oriented constructs and model their behavior. They also present

JDiff tool that generates ECFG representation for two program different versions and

compare these versions. This tool considers both, the program structure and semantics of

the programming-languages constructs Apiwattanapong et al. (2007).

In the proposed approach, the use of this type of tool is optional and depends on the

specificity of the fault, in some cases, a simple textual comparison is able to found the

critical path (or fault). When using a textual diff tool, it is important to select a person

with high experience and knowledge in the architecture (domain) in order to identify the

problems.

When textual differentiation is enough, this step and the next one are replaced by a

diff tool.

3. Graph Comparison

In order to identify critical edges and understand how the code changed, the graphs

are compared. A good knowledge in control flow graphs analysis is required during this

step, since the Test Architect will see more easily how the code behaves. Figure 6.10

98



6.6. A REGRESSION TESTING APPROACH FOR SPL ARCHITECTURES

shows two versions of a program. In yellow are the differences between the two versions.

In order to better understand the behavior of the code after this change, the Figure 6.11

shows the ECFG for both versions.

Figure 6.10 Two different versions of a program (Apiwattanapong et al., 2007)

Figure 6.11 Two different versions of a method (Apiwattanapong et al., 2007)

When performing progressive regression testing, the last two steps (graph generation

and comparison) are replaced by specification comparison. This step aims to compare

the original specification with the modified one, identifying added, deleted or changed

components, classes, features.
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4. Test Design and Selection

After the graphs, specification or textual(code) comparison, the critical edges and

paths are analyzed aiming to find some test that exercise a modified portion of the

architecture. In this step, the Test Architect analyses the paths trying to classify the

previous designed tests (integration tests) from the repository according to the classes

established in Section 6.3.3. It will help during the suite composition, since all relevant

test cases will be identified. A good knowledge about the SPL architectures and expertise

are required from the Test Architect to perform this step, since he need to understand the

change and how it impact over the code, always considering the variation points and its

variants.

When the correction or evolution involve structural or specification changes, some

test cases (and/or scripts) need to be designed to reflect the new architecture constructs.

Not only new test cases need to be designed, but also some of them need to be redesigned

(updated) to cover a specific modified portion of the architecture. An important aspect

when dealing with test case update and design is how to keep track (mapping) the test

case with the architecture code portion. A simple modification may impact in a large

number of tests, making update tasks expensive. The more suitable is this mapping, less

escaped defects and more easy to maintain the test suite composition, since a simple code

modification will revel which test cases should be updated.

5. Instrumentation

To check about the test cases efficiency and coverage, the identified paths and new

code from the previous step can be instrumentalized. Doing so, Test Designers will be

confident that the tests really exercise the desired paths/code. If the selected test case did

not cover the required path, a new test case (or script) should be designed.

In additional, this step can be useful to detect false positive and false negative test

cases. False positive happens when the verification activities inform that the asset is

correct when it is not, it can occur due to a wrong test case or a less than complete

test set. This can be a dangerous mistake in critical systems, since we cannot double

check every positive result McGregor (2009). False negative happens when verification

activities indicate that the asset is not correct when it is. It is safer than false positive but

also expensive. Resources are used unnecessarily to attempt to fix what is not broken

McGregor (2009). Moreover, incorrect test cases may generate false negatives.

6. Test Suite Composition

After the test case selection and design, a test suite is composed using them. The Test

Designer can create test suites grouping tests based on different information, for example,
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a test suite responsible for exercising a determined feature, component or even a specific

functionality. This test suite will be used to build the regression test cycle to be further

executed.

7. Test Case Prioritization

This prioritization aims to order the test cases and scripts from the test suite, exe-

cuting tests with highest priority, based on some criterion (e.g. criticality or complexity

implementation), earlier than lower priority test cases. Prioritization techniques may be

used, some of them take advantage of some information about previous executed test

cases to order the test suite Rothermel et al. (2001). Testers might wish to schedule test

cases in a sequence that cover all the critical (most important or instantiated) variabilities

implementation first, exercises features from a specific product, or tests which cover a

specific architecture quality attribute. Rothermel et. al. in Rothermel et al. (2001) analyze

some prioritization technique and show that an improvement can be achieved even with

the least expensive of those techniques.

6.6.1.4 Execution

During the test execution phase, the test suites are executed against the modified version

in a regression testing cycle. The Test Engineer exercises the architecture, executing the

test cases. If some inconsistence is observed, he should search in the repository for a CR

that reports the problem, in case where no CRs is found, a new one should be raised. The

execution results and the new and associated change requests (CRs) with their respective

responsibles are recorded and an investigation starts in order to precisely identify which

components, modules, versions and modification caused the failure.

Depending on the failure, the regression test approach will forward the damaged

portion to unit test or integration test, for the purpose of creating a test case to cover that

path.

6.6.1.5 Reporting

All these information will be gathered to further compose the Test Report during reporting

phase. This report is extremely important for the Test Manager since he will use this

information for component, architecture or product schedules and also to build other test

plans.

A full view of the regression testing approach is showed in Figure 6.12.
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6.7 Chapter Summary

The growth of new technologies, such as component-based systems and product lines, and

the emphasis on software quality, reinforce the need of improved testing methodologies

(Harrold, 2000). Current test techniques need that software architecture based approach

be completely rerun from scratch for a modified software architecture version (Muccini

et al., 2006).

This regression testing architecture approach is part of a testing process for SPL

projects, in which unit and integration testing are also considered. As reported previously,

it is applied during integration testing.

This approach was developed in order to handle test selection problems, raised when

a SPL architecture needs to be retested, as well as, to deal with SPL features, reusing

test suites and execution results as much as possible. This approach can be applied in

three main scenarios: firstly, when the architectures (reference and product architecture)

are modified, it is used to compare the two versions and select effective test cases.

Secondly, it is useful to maintain the conformance between reference architecture and

product architectures, preserving their compatibility. At last, during product derivation, a

specific product architecture is instantiated and tested. Taking advantage of the product

architectures similarities this approach can be useful to select test cases.

In order to better evaluate the proposed approach an experimental study was performed

and presented in the next chapter.
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Figure 6.12 The Overall Regression Testing Approach.
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“One who tried and did not achieve is superior than that one

which never tried.”

Archimedes 7
The Experimental Study

7.1 Introduction

In the previous chapters, a regression approach was defined as being a technique employed

during integration level. The integration approach aims to verify if the SPL architecture

is in conformance with their specification. When this architecture is modified or suffers

some evolution, a regression testing approach is applied in order to verify if the new

version still working properly. Some scenarios where the regression approach may be

applied were also described, as well as their activities and artifacts.

This chapter describes an experimental study discussing its definition, planning,

operation, analysis and interpretation, as well as, other aspects concerning empirical ex-

periments. The remaining of this chapter is organized as follows: Section 7.2 presents the

definition of the experiment; in Section 7.3, the planning of the experiment is presented;

Section 7.4 describes how the operation of the experiment was performed; in Section

7.5, the analysis and interpretation of the results are presented; and finally, Section 7.6

presents the lessons learned.

7.2 Definition

With the purpose to define this experiment, a mechanism for defining and evaluating a

set of operational goals using measurement was used: the Goal/Question/Metric (GQM)

mechanism (Basili et al., 1986, 1994) which has three levels:

• Goal or Conceptual level: It is defined for an object, for many reasons, with respect

to several models of quality, from various standpoints, relative to a particular

environment.
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• Question or Operational level: It is used in order to characterize the way the

assessment of a goal is going to be performed. It usually breaks down the issue

into its major components.

• Metric or Quantitative level: The questions are refined into metrics, which can be

classified in two classes. The objective, when it depends only on the object that is

been measured and subjective when it depends on both object and the standpoint

from which they are taken.

7.2.1 Goal

The goal is formulated from the problem to be solved. In order to capture its definition, a

framework has been suggested by Wohlin et al. (2000). It is described as follows.

Object of study (What is studied?). The object of study of this experiment is the

regression testing approach, likewise their activities, steps, artifacts and roles.

Purpose (What is the intention?). Verify its applicability in a designed SPL archi-

tecture. In addition, metrics are collected with the purpose to improve the approach

understandability, completeness, applicability and effectiveness, and minimize the risks

of applying it in a real and critical scenario.

Quality focus (Which effect is studied?). The benefits gains obtained by the use of

the approach, which will be assessed by the number of defects found and the difficulties

found by the subjects during its understanding and use.

Perspective (Whose view?). There are two perspectives in this experiment, one from

the researcher point of view assessing the viability of the approach use and another one

from the test engineer.

Context (Where is the study conducted?). The experiment environment is composed

by seven software testing specialists, all of them M.Sc. students, and one M.Sc. in the

component testing area, all of them from the Computer Science department at Federal

University of Pernambuco, Brazil. In addition, the experiment will be performed dis-

tributed, which means that the subjects are free to choose their work environment (home

or university laboratories). Regarding to the data, a set of classes and their integration are

used in it, in order to simulate the integration of architecture components. The study is

conducted as a Multi-test within object study (Wohlin et al., 2000).
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7.2.2 Questions

To achieve the goal previously defined, some quantitative and qualitative questions were

defined and described as follows.

• Effort:

Q1. How much effort does it take to apply each step defined in the approach?

• Usability and Understandability

Q2. Do the subjects have difficulties to understand/apply the approach?

• Completeness

Q3. Is there any missing activity, roles or artifact?

• Effectiveness

Q4. How many defects were detected using the approach?

Q5. How many tests were correctly classified (Re-testable, Reusable, Obsolete and

Unclassified)?

7.2.3 Metrics

Once the questions were defined, they need to be mapped to a measurement value, in

order to characterize and manipulate the attributes in a formal way. The metrics are

quantitative ways to answer the questions.

M1. Effort to Apply the Approach (EAA)

Related to Question Q1, this metric measure the the amount of time spent in order

to understand and follow the Regression Testing approach and produce the artifacts

proposed.

EAAstep =
TotalTimeSpentApplyingEachStep

TotalTimeSpentInT heApproach

M2. Approach Understanding and Application Difficulties (AUAD)

Related to Question Q2, this metric aims to identify possible misunderstandings in

the approach usage, it is necessary to identify and analyze the difficulties found by users

when applying the approach.
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AUAD = Number of subjects with difficulties raised during the approach learn and

application.

M3. Activities, Roles and Artifacts Missing (ARAM)

Related to Question Q3, it intends to identify the activities, roles and artifacts con-

sidered absent from the regression testing approach in order to calibrate or even include

them, depending on the analysis.

ARAM = Number of missing activity/steps/role/artifact identified during the approach

execution.

M4. Number of Defects (ND)

Related to Question Q4, it intends to identify the total number of defects in a given

time period/activity/step in the software.

ND = The number of seeded defects identified, during the approach execution.

M5. Number of Tests Correctly Classified (NTCC)

Related to Question Q5, it aims to identify the correct classification of the test cases

used and designed during the approach execution.

NTCC = The number of tests correctly classified (Re-testable, Reusable, Obsolete

and Unclassified). It is important to select the test cases that need to be executed in the

software new version.

7.2.4 Definition Summary

Analyze the regression testing approach for the purpose of evaluation with respect

to understandability, usability, completeness, applicability and effectiveness from

the point of view of SPL researchers and test engineers in the context of a software

product line project.

7.3 Planning

While the definition determines the foundation for the experiment, why the experiment is

conducted, the planning prepares for how the experiment is conducted. The latter, can be
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divided in six steps (Figure 7.1), further detailed in the following sub-sections.

Figure 7.1 Planning phase overview (Wohlin et al., 2000).

7.3.1 Context Selection

In order to achieve the most general results in an experiment, it should be executed in

large, real software projects, with professional staff. However, conducting an experiment

involves risks and not always the required resources, time and money are available. These

issues require a balance between making studies valid to a specific context or valid to the

general software engineering domain. Therefore, this context of the experiment can be

characterized according to four dimensions (Wohlin et al., 2000).

1. Off-line versus On-line: In this case, it is Off-line, since it was performed out of

the semester lessons.

2. Student versus Professional: Students are the final user population to use the

approach.

3. Toy versus Real Problem: The experiment addresses a toy problem, since it

considers the approach in the integration of classes instead of components.

4. Specific versus General: This investigation concerns a specific problem, when the

code suffer a modification due to a corrective action or evolution.
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The context is also characterized according to the number of objects and subjects

involved in the experiment. As previously mentioned, this experiment is a Multi-test

within object study, since it examines one object (Regression testing approach) and

more than one subjects (eight students).

7.3.2 Hypothesis Formulation

The basis for the statistical analysis of an experiment is the hypothesis testing. If the

hypothesis can be rejected then conclusions can be drawn based on the hypothesis testing

under given risks (Wohlin et al., 2000).

The experiment definition is formalized into hypothesis: (i) The Null Hypothesis (H0)

which states that there are no real underlying trends or patterns in the experiment setting.

This is the hypothesis that the experimenter wants to reject with as high significance as

possible. (ii) The Alternative Hypothesis (Hα ), this is the hypothesis in favor of which

the null hypothesis is rejected.

As the variables are subdivided in three factors (Section 7.3.3), three null hypotheses

must be stated.

H0: It determines that the application of the regression testing approach in SPL

architectures does not produce benefit that justify its use, demonstrating a poor un-

derstandability, effectiveness, completeness and applicability and usability defined in

7.2.4.

H01 : µEAA ≥ 20%

H02 : µAUAD ≥ 40%

H03 : µARAM < 3 (Having in mind that the approach has four activities (with twelve

different steps), we came to the value of 25% (≈ 3 steps) as being a reasonable number).

H1: It determines that there is no benefits or gain of using the regression testing

approach to find defects in the SPL architecture.

H11 : µND ≥ 20%

H2: It determines that there is no gain of using the regression testing approach in

order to classify the existing test cases.

H21 : µNTCC ≥ 40%

An important aspect is that these previously defined metrics were never been used,

for this reason, an arbitrary value was chosen, based on practical experience and common
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sense, since there is no well-known value for it. These arbitrary values will serve as basis

to get new values or confirm the previous one, to perform new experiments.

The alternative hypotheses, consequently, are described next:

Hα0: It determines that the application of the regression testing approach in SPL

architectures produces benefits that justify its use, demonstrating a good understandability,

effectiveness, completeness and applicability.

Hα1 : µEAA < 20%

Hα2 : µAUAD < 40%

Hα3 : µARAM ≥ 3

Hα1: It determines that there are benefits and gains of using the regression testing

approach to find defects in the SPL architecture.

Hα11 : µND < 20%

Hα2: It determines that there are gains of using the regression testing approach in

order to classify the existing test cases.

Hα21 : µNTCC < 40%

7.3.3 Variables Selection

In the variables selection step, independent and dependent variables are chosen. The inde-

pendent variables are those variables that we can control and change in the experiment. In

this study, the independent variable is the code in which the experiment will be performed.

The dependent variables are mostly not directly measurable and we have to measure it

via an indirect measure instead, in its turn, must be carefully validated, because it affects

the result of the experiment. The defined dependent variables addressed by this study

are: (a) understandability, usability, effectiveness, completeness and applicability of the

approach; (b) the number of defects found; and, (c) the number of test cases correctly

classified.

7.3.4 Selection of Subjects

All of the subjects of this study have a post-graduation course in the software testing

area, being seven M.Sc. students and specialists in software testing and one M.Sc. All

eight were selected by convenience sampling, which means that the nearest and most

convenient persons are selected as subjects (Wohlin et al., 2000).
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7.3.5 Experiment Design

An experiment consists of a series of tests of the treatments, these tests must be carefully

planned and designed. In order to design an experiment, the hypothesis should be

analyzed to see which statistical analysis we have to perform to reject the null hypothesis.

During the design, it is important to determine how many tests the experiment shall have

to make sure that the effect of the treatment is visible (Wohlin et al., 2000).

The general design principles are randomization, blocking and balancing, and most

experiments designs use some combination of these.

• The randomization applies on the allocation of the objects, subjects and in which

order the tests are performed. Since we have only one factor (Regression approach)

and one treatment, no randomization is required.

• The blocking is used to eliminate the undesired effect in the study and therefore

the effects between the blocks are not studied. Since this experiment considers only

one factor this concept is not applied.

• The balancing concerns to the number of subjects per treatment, since the experi-

ment considers only one treatment, the experiment is already balanced.

7.3.6 Instrumentation

In this study, the Regression testing approach documentation will be available for the

subjects in order to execute the proposed activities, steps and available tools. A subject

training will be conducted with the purpose to provide the basis for the approach use.

This training will be divided into two steps: (i) Concepts related to software product lines,

variability and software testing; (ii) and Regression testing approach flows, activities,

tools and steps.

Due to time and resource limitation, this experimental study will be performed with a

set of classes simulating a SPL architecture. It has two versions of a bank system which

manages accounts, saving accounts, customers and companies. The first version (V1) was

developed with eighteen (18) classes and one interface, and fifty-eight (58) integration

test cases used to test the conformance of the system against its specification. A second

version of it, was developed with new functionalities (simulating a evolution) and a set

of seven faults seeded. This new version (V2), is composed by twenty-four classes and

three interfaces. These changes aim to evaluate the regression testing approach in both

scenarios during an evolution and correction.
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It is important to highlight that these injected faults were inserted based on four

sources: (i) McGregor’s SPL fault model (McGregor, 2008) where he summarizes the

most common faults found in SPL projects; (ii) based on the mapping study previously

performed; (iii) the experimenter knowledge in the application domain; (iv) the most

common Java development faults extracted from the internet.

Firstly, both code versions, a set of change requests (three), as well as, a set of

previous designed integration test cases were provided, in order to the subjects validate

the approach considering the correction scenario. The subjects need to apply the approach

aiming to find the faults previously seeded, as well as classify the integration test cases.

The need also to apply all approach steps and answer the questionnaire. It is important to

reinforce that the steps related to graph generation and graph comparison are optional in

the approach, but the subjects were asked to use them at least one time. After report this

first result, the class diagrams (from both versions) were provided in order to characterize

the evolution scenario. In this context, the subjects should evaluate the specification

changes, correctly classify the existing integration tests and create new test cases. The

test cases should be designed obeying the same coverage criteria used in the previous

designed integration test cases. Figure 7.2 summarize all scenarios.

Figure 7.2 Experiment Scenarios.

Before performing the experiment, two pilot projects were conducted with the same

structure defined in this planning (Section 7.3). The first pilot was performed by the

author of this dissertation, who knows how to use the proposed approach. This pilot

aims to detect problems and calibrate the experiment before its real execution. An issue

regarding to how the approach deals with specification changes (evolution) was detected

during this first pilot, and in order to solve it, a new step was added to address this
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problem.

The second pilot was performed by a single subject, who has a certain experience in

industrial projects performing test execution and design to regression, integration and

exploratory testing. Some problems as code faults (not injected purposely) and absence

of new-structural test cases were detected. Modifications on both code versions (new

and old) were performed in order to solve these issues. A problem with the background

questionnaire, some important questions used to extract the subjects profile were absent,

was also detected and was solved adding a new question. During this pilot three new

threats were discovered, the code size, the provided CRs and the injected faults, that will

be described in threats section.

The results of the experiment will be collected using measurement instruments.

Thus, it will be prepared time-sheets to collect the time spent in each activity and

step. Furthermore, all subjects will receive a questionnaire (QT1) to evaluate their

educational background, participation in software development projects, experience in

testing and reuse. In addition, the subjects will receive a second questionnaire (QT2) for

the evaluation of subject’s satisfaction and difficulties using the proposed approach.

7.3.7 Validity Evaluation

It is important to consider the question of validity already in the planning phase in order

to plan for adequate validity of the experiment results. Adequate validity refers to that

the results should be valid for the population of interest, firstly, the results should be valid

for the population from which the sample is drawn. Secondly, if possible, generalize the

results to a broader population.

There are different classification schemes for different types of threats to the validity

of an experiment. This experiment adopted the classification proposed by Cook and

Campbell (1979) where four types of threats are presented. They are following described.

Conclusion validity: Threats for the conclusion validity are concerned with issues

that affect the ability to draw the correct conclusion about relations between the treatment

and the outcome.

• Experience of subjects: Subjects without experience in regression testing (selection

techniques, concepts and so on) also can affect this validity, since it is harder for

them to understand the approach. To mitigate the lack of experience, a training in

SPL and regression testing will be provided.
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• Experience in Java Development: Subjects with low experience in software devel-

opment (using Java) can affect this validity, since it is hard to understand the code

and its peculiarities. To mitigate this lack of experience, the versions specifications

were provided and we choose a small and common domain (Bank System).

• Measurement reliability: Once the measurement is not adequately, it can bring us

no reliable data. Aiming to mitigate this threat, it will be validated with RiSE 1

members.

• Fishing: Searching or fishing for specific results is a threat since the analyses are

no long independent, and the researchers may influence the results by looking for a

specific outcome.

Internal validity: Threats to internal validity are influences that can affect the inde-

pendent variable with respect to causality, without the researcher’s knowledge (Wohlin

et al., 2000). The following threats to internal validity are considered:

• Maturation: This is the effect that subjects react differently as time passes. Some

subjects can be affected negatively (tired or bored) during the experiment, and their

performance may be below normal. In order to mitigate this boredom, a familiar

domain and a small code version was provided.

• Instrumentation: This is the effect caused by the artifacts used for experiment

execution, such as data collection forms, code, seeded errors etc. If these are badly

designed, the experiment is affected negatively. Two pilot projects were performed

in order to have the more suitable experiment scenario.

• Gained Experience: It is the effect caused by the experiment execution order, in

our case, the corrective scenario was performed before the progressive scenario.

The subject gained a certain experience executing the first scenario, reducing the

time needed to perform the second scenario. Two groups of subjects need to be

used, one for each scenario.

• Selection: There were no volunteers in participating in the experiment. Thus, the

selected group is more representative for the whole population (since volunteers

are generally more motivated and may influence the results).

1www.rise.com.br
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External validity: Threats to external validity are conditions that limit our ability to

generalize the results of our experiment to industrial practice.

• Generalization of subjects: The study will be conducted with M.Sc. students and

one M.Sc which has knowledge about software testing. Thus, the subjects will not

be selected from a general population. In this case, if these subjects succeed using

the approach, we cannot conclude that a practitioner testing engineer would use it

successfully too. On the other hand, negative conclusions have external validity,

i.e., if the subjects fail in using the approach, then this is strong evidence that a

practitioner testing engineer would fail too.

• Generalization of scope: The experiment will be conducted on a defined time,

which could affect the experiment results. The code will be defined according

to this schedule to guarantee the complete execution of the approach. Thus, this

scenario have a toy size that will limit the generalization. However, negative results

in this scope is a strong evidence that in a bigger scope would fail too.

Construct validity: refers to the extent to which the experiment setting actually

reflects the construct under study.

• Mono-Operation Bias: Since the experiment includes a single treatment, it may

under-represent the construct, and thus not give the full picture of the theory.

• Experimenter Expectancies: Surely the experimenter expectancies may bias the

results, and for that reason, all formal definition and planning of the experiment

is being carefully designed beforehand, and reviewed by other RiSE members

(performing other experiments) and advisors.

7.4 Operation

The operation phase of an experiment consists of three steps: preparation where subjects

are chosen and instrumentation are prepared, execution where the subjects perform their

tasks according to different treatments and data is collected, and data validation where

the collected data is validated.

7.4.1 Preparation

The subjects were seven M.Sc. students, all of them specialists in software testing area,

and one M.Sc. also in the testing area. All of them from RiSE Labs, and representing a
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non-random subset from the universe of subjects. The subjects were informed that we

would like to investigate the outcome of the approach execution. However, they were

not conscious of what aspects we intended to study, i.e., they were not aware of the

hypotheses stated. Before the experiment can be executed, all experiment instruments

must be prepared and ready. Thus, all instrumentation defined in Section 7.3.6 were

provided.

7.4.2 Execution

The experiment was conducted during the first semester of 2010, from February to

March. Initially, the subjects were trained in several aspects of SPL, control flow graphs,

Junit, Eclemma plugin, JDiff tool and in the applied approach (February), and after, they

performed the regression testing approach in the code provided. Most of the students

had participated in industrial projects. However, the subjects had low or none industrial

experience in reuse activities, such as component development and SPL engineering. On

the other hand, all of the subjects are members of the RiSE Labs, and their research area

involve these aspects, which give them theoretical knowledge. Regarding to software

testing, all of them have a post-graduation in it, and medium industrial experiences.

Despite the experience reported regarding to regression testing, they have no or low

experience in control flow graph analysis and most of them never used a test selection

technique. Table 7.1 summarizes the subject’s profile.
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Table 7.1 Subject’s Profile.

Subject

ID

Years since

graduation

Testing course

during studies

Experience

in Java

Exp. in software

development

Exp. in soft. test-

ing

Exp. in Regression Test-

ing

Test selection

technique

Exp. in CFG

analysis

Exp. in SPL de-

velopment

1 4 Other High Academic(2years) Industry(2years)
Academic(Low)
Industry(High 2years)

None Medium Academic(1year)

2 3
Graduation
Specialization
Other

Low Industry(3years)
Academic(1year)
Industry(2years)

Academic(Medium 1year)
Industry(Medium 2years)

None Low None

3 3 Other Medium
Academic(1year)
Industry(1years)

Academic(1year) None None None Academic(1year)

4 5
Graduation
Specialization
Other

High
Industry(5years)
Academic(0.5year)

Industry(1year)
Academic(High 5years)
Industry(High 7years)

None Low Academic(1year)

5 3
Specialization
Other

Medium
Industry(1year)
Academic(4years)

Industry(2years)
Academic(3years)

Academic(None)
Industry(None)

None Medium Academic(2years)

6 2
Specialization
Other

High
Alone(5years)
Industry(1year)
Academic(2years)

Industry(1year)
Academic(1year)

Academic(High 0.5year)
Industry(High 1year)

Low None Academic(1year)

7 2 Specialization High Industry(2years) Industry(1year)
Academic(None)
Industry(None)

None None Academic(1year)

8 3 Specialization High
Alone(4years)
Industry(2years)
Academic(2years)

Academic(2years)
Industry(2years)

Academic(None)
Industry(None)

None None Academic(1year)
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The subjects were suggested to perform the experiment activities on their free time,

using the place more convenient for them. Furthermore, we needed only to setup the

environment on Eclipse, Junit and Eclemma for the approach execution.

7.4.3 Data Validation

In this phase, all data are checked in order to verify if the data are reasonable and that

it has been collected correctly. This deals with aspects such as if the participants have

understood the forms and therefore filled them out correctly (Wohlin et al., 2000).

Data were collected from 8 students. By analysing the subjects reports, two problems

were observed. Firstly, data from 2 subjects (ID 1,3 - see Table 7.1) will not be considered

when evaluating test classification (Test selection and design step), since they did not

participate in the experiment seriously, did not understand the questionnaire or even

did not answer it correctly. For this reason, these two subjects were excluded from test

classification evaluation.

Secondly, a problem was detected in subject (ID 4), he did not report the time used

during the report step, for this reason this subject will not be evaluate during the step

analysis.

Regarding to the graph generation and graph comparison steps both were considered

optional in this experiment, since we are not interested in validate the tool, for this reason

both steps will not be considered.

7.5 Analysis and Interpretation

After collecting experimental data in the operation phase, we are able to draw conclusions

based on these data. The results obtained with the experimental study are presented.

7.5.1 Effort to Apply the Approach

This aspect was evaluated in two scenarios corrective and progressive. The corrective

scenario spent 94.78 hours to be performed, the progressive scenario was executed in

56.06 hours. These numbers are concerning to total number of worked hours of the

members in each step. In the next sections, each of these scenarios will be analyzed.
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7.5.1.1 Corrective Scenario

In this scenario, the subjects were asked to apply the approach after a modification due to

a corrective action performed in the code. In this section, all collected data were analyzed,

as well as data validation was carried out in order to identify outliers. Table 7.2 shows the

brute data collected after the experiment execution, where “not considered (NC)” means

that the step was not report correctly and “not reported (NR)” means that none time was

reported by the subject.

Table 7.2 Approach execution effort (minutes) considering corrective scenario.
Subjects/Steps ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 Total

Planning 120 26 90 5 90 255 180 120 886
Analyzes 60 10 90 60 180 60 60 60 580

Graph Generation NR 20 120 NR NR 140 150 25 455
Graph Comparison NR 30 15 NR NR NR 60 60 165
Textual Comparison 240 73 240 20 240 90 120 60 1083

Test Design and Selection NC 55 NC 10 290 25 30 60 813
Instrumentation 30 20 110 5 30 110 120 30 455

Test Suite Composition 10 23 76 5 120 180 90 20 524
Test Case Prioritization 10 10 24 8 30 20 30 10 142

Test Execution 10 60 175 5 60 7 10 120 447
Reporting 50 30 160 NR 30 60 60 90 480

Before analyzing the collected data, some issues were observed. For example, Test

Design and Seleciton step needed to be submitted to a refinement (exclusion of two

subjects (ID 1 and 3)), since the subjects did not report it correctly (Section 7.4.3).

In additional, some steps (Graph Generation, Graph Comparison and Reporting) were

not reported completely, whereas steps Graph Generation and Graph Comparison were

defined as optional by the approach and some subjects did not report it, the Reporting

was not reported by the subject ID 4. All, was taken into account during the assessment.

Data validation deals with identifying false data points based on execution of the

experiment. Thus, we intend to identify outliers not only based on the experience

execution, but instead looking at the results from execution in the form of collected data

and taking into account, for example, descriptive statistics. This way, we are able to

identify if people have participated seriously in the experiment.

In order to isolate the outliers of this experimental study, the same idea presented in

(Almeida, 2007) was used and described in the next paragraphs. All steps were submitted

to this outliers identification, in order to explain in details how it was performed, the first

one was considered.

As it can be seen in Figure 7.3, subjects ID 4 and ID 6 presented values low (5) and

high (255), respectively, when compared with other data points. Thus, these values could
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Figure 7.3 Planning step distribution.

be considered as outliers. In order to analyze this aspect, a box plot graphic can be useful

(Fenton and Pfleeger, 1998), since it is recommended to visualize the dispersion and

skewness of samples. Box plots can be made in different ways (Wohlin et al., 2000). In

this dissertation, the approach defined by Fenton and Pfleeger (1998) was chosen. The

main difference among the approaches is how to handle the whiskers. Fenton & Pfleeger

proposed to use a value, which is the length of the box, multiplied by 1.5 and added or

subtracted from the upper and lower quartiles respectively.

The middle bar in the box is the median. The lower quartile q1, is the 25% percentile

(the median of the values that are less than median), and the upper quartile q3 is the 75%

percentile (the median of the values that are greater than median). The length of the box

is d = q3 - q1.

The tails of the box represent the theoretical bound within all data points are likely

to be found if the distribution is normal. The upper tail is q3 + 1.5d and the lower tail

is q1 - 1.5d. Figure 7.4 shows the box plot graphic with its information, considering the

planning step.

Figure 7.4 Box plot analysis.
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After this data validation some outliers were identified during the approach execution.

All steps were analyzed, whereas we identified outliers in Planning, Analyzes, Test

Design and Selection, Test Suite Composition, Execution and Reporting steps, as shown

in Figures 7.5(a),7.5(b),7.5(c),7.5(d), 7.5(e) and 7.5(f). In Graph Generation, Graph

Comparison, Textual Comparison, Instrumentation and Test Case Prioritization steps no

outliers were identified. Only the steps where some outliers were identified are displayed.

(a) Outliers (IDs 6, 4) from Planning step. (b) Outliers (IDs 5, 2) from Analyzes step.

(c) Outlier (ID 5) from Test Design and
Selection step.

(d) Outlier (ID 6) from Test Suite Compo-
sition step.

After performing the outliers analysis, we chose to leave all subjects identified as

outliers and consider its times in the effort analysis, since the limited number of subjects.

The effort to apply the approach is shown, in Tables 7.3(a) and 7.3(b). The first, shows the

effort to apply each step, whereas the second shows only the steps that were completely

and correctly reported.

The time spent during the planning step can be justified buy the fact that none of the

subjects had performed it previously. Since it was their first time, they need some time

to understand the test plan and collect all information in order to fill it. Beside to gather
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(e) Outlier (ID 3) from Test Execution step. (f) Outlier (ID 3) from Reporting step.

Figure 7.5 Outliers Analysis.

Table 7.3 Effort to apply the approach.

(a) Effort to apply the corrective sce-
nario considering all steps.

Steps EAA (%)

Planning 15.58
Analyzes 10.20

Graph Generation 8.00
Graph Comparison 2.90
Textual Comparison 19.04

Test Design and Selection 8.26
Instrumentation 8.00

Test Suite Composition 9.21
Test Case Prioritization 2.50

Test Execution 7.86
Reporting 8.44

(b) Effort to apply the corrective sce-
nario considering some steps.

Steps EAA (%)

Planning 21.52
Analyzes 14.08

Textual Comparison 26.30
Instrumentation 11.05

Test Suite Composition 12.72
Test Case Prioritization 3.44

Execution 10.85

information theu should plan the test cycle considering the constraits and information

provided for the instrumenter.

Regarding the textual comparison step, the subjects need to compare both code

versions, as well as, understand how the change impacts on the domain application rules.

They should identify portions of the code in order to discover critical paths, that will be

further exercised by the created and selected test cases.

Since the graph generation and comparison steps were considered as optional in our

approach, some subjects have the need to use. Some of them figure out the importance of

the need of such a tool in order to identify and catch language behaviors. Its important to

highlight that most of the subjects complained about boredom when executing this steps.

In this dissertation, we adopted the data presented in Table 7.3(a), which rejects the

null hypothesis since none of the steps had effort above to 20%, as previous established

in Section 7.3.2. We chose this data set since we can have a better understand of how all
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steps in the approach behave. However, if we consider the data set presented in Table

7.3(b), where was identified an absence of report or a wrong report in some steps, the

null hypothesis is not rejected. As we can see in Table 7.3(b), the Planning (21.52%) and

Textual Comparison (26.30%) steps exceed the established metric.

7.5.1.2 Progressive Scenario

In this scenario all subjects were asked to apply the regression approach after a modifica-

tion in the architecture specification due to an evolution. In this section, all collected data

were analyzed and the same previous realized data validation was performed. Table 7.4

shows the general(brute) data collected after the experiment execution.

Table 7.4 Approach execution effort considering progressive scenario.
Subjects/Steps ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 Total

Planning 60 23 120 2 90 90 120 120 625
Analyzes 30 10 60 5 150 30 30 60 375
Specification Comparison 30 22 53 20 80 60 90 30 385
Test Design and Selection NC 65 NC 15 270 120 120 60 650
Instrumentation 30 25 98 5 30 60 60 30 338
Test Suite Composition 10 17 20 5 30 130 60 20 292
Test Case Prioritization 10 10 34 5 10 10 15 10 104
Execution 10 25 34 5 60 10 8 60 212
Reporting 50 25 98 NR 30 60 60 60 383

Some subjects were not considered during this evaluation. For example, subjects

(ID 1 and 3) were excluded since they did not report correctly the output of Test Design

and Selection step, as well as subject (ID 4) was removed from Reporting step since he

did not report. This information was collected after an interview, where they (subjects)

explain their questionnaire answers, as well as, during the experiment data analysis.

After this previous analysis, the collected data was submitted to the same data vali-

dation performed in corrective scenario, this second validation aims to identify possible

outliers. The same method was used here, and to summarize, only the steps with outliers

are presented. Figures 7.6(a), 7.6(b), 7.6(c), 7.6(d), 7.6(e), 7.6(f), 7.7 show the steps and

its respective outliers.

As the previous scenario analysis, we chose to leave all subjects pointed as outliers

since the limited number of subjects. Tables 7.5(a) and 7.5(b) show the effort to apply the

steps, whereas the first shows the effort to apply each step, the second shows the effort to

apply the progressive scenario considering some steps.

The same was observed for progressive scenario, if we do not consider the wrongly

reported or incomplete steps, the null hypothesis is not rejected. As mentioned before,
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(a) Outliers (IDs 4) from Planning step. (b) Outliers (IDs 5) from Analyzes step.

(c) Outlier (ID 5) from Test Design and
Selection step.

(d) Outlier (ID 3 and 4) from Instrumenta-
tion step.

(e) Outlier (ID 6) from Test Suite Compo-
sition step.

(f) Outlier (ID 3, 4 and 7) from Test Case
Prioritization step.

Figure 7.6 Outliers Analysis.

in this dissertation, we will consider all steps, so in this context, the null hypotheses is

rejected since the most costly (in time) step did not exceed 20% (H01 : µEAA ≥ 20%).

We observed that the time spent to perform the progressive scenario was less than the

124



7.5. ANALYSIS AND INTERPRETATION

Figure 7.7 Outlier (ID 3) from Reporting step.

Table 7.5 Effort to apply the approach.

(a) Effort to apply the progressive sce-
nario considering all steps.

Steps EAA (%)

Planning 18.57
Analyzes 11.14

Specification Comparison 11.44
Test Design and Selection 19.32

Instrumentation 10.04
Test Suite Composition 8.68
Test Case Prioritization 3.09

Test Execution 6.30
Reporting 11.38

(b) Effort to apply the progressive sce-
nario considering some steps.

Steps EAA (%)

Planning 26.81
Analyzes 16.08

Specification Comparison 16.51
Instrumentation 14.50

Test Suite Composition 12.52
Test Case Prioritization 4.46

Test Execution 9.09

previous one. It can be explained since all subjects applied the corrective scenario first,

thus when performing the progressive scenario they already had some expertise in the

domain and code.

By analyzing the datasets, we can noticed that the time spent to perform the Test

Design and Selection step in progressive scenario was less than in corrective scenario,

it could be caused by the acquired experience or as reported by some subjects the fact

that during the progressive scenario the number of retestable test cases were less than in

corrective scenario.

7.5.2 Approach Understanding and Application Difficulties

Analyzing subject’s answers regarding to difficulties during approach execution, it was

identified that 62.5% subjects had any kind of difficulty to understand the approach.

Because of the understanding problem, all of them had also problems to apply the

approach. The difficulties are summarized in Table 7.6.
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Table 7.6 Difficulties to use the approach.
Difficulty Number of subjects

Large number of steps 2
Test Classification 3
Input/Output Identification for each step 2
Relation between Role and Task 1

Two subjects (ID 1,5) claimed that the main problem to the understandability of the

approach was the number of steps and tasks, that were too many and very complex,

requiring a certain knowledge in both, development and testing areas. Another three

subjects (ID 3,4,5) reported that one of the understandability issues was the lack of

examples during test design and selection, more specifically to help the test classification

task. The subjects (ID 3,6) stated that the input and output of each step were not clearly

presented in the approach. At last, subject (ID 1) report his difficulty in understanding

the relation between role and tasks, which tasks each role should perform.

Figure 7.8 shows the histogram with the distribution density of the found difficulties.

Figure 7.8 Difficulties during approach execution.

The null hypothesis related to the percentage of subjects with any kind of difficulty in

the process defines a percentage of more than 40% (H02 : µAUAD ≥ 40%). Since we had

62.5% of the subjects with at least one difficulty, this null hypothesis was not rejected.

However, in the same way as the previous hypothesis, this value for the null hypothesis

was defined without any previous data.

7.5.2.1 Correlation Analysis

As we can observe, there is no correlations among the characteristics of subjects profile

and the difficulties to understand the approach. Although subjects (ID 3,4,5) which have
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no experience in applying test selection techniques, reported the absence of examples

to help the test classification, other subjects with no experience did not indicate this

problem.

7.5.3 Activities, Roles and Artifacts Missing

The goal with this question was collect more information about the regression testing

approach missing steps. In this sense, the subjects were asked if there was any missing

step, activities, roles and artifacts.

Analyzing the data, we could notice that none of the subjects identified any missing

activities, roles, artifacts or steps. Since we had 0 (zero) identified as missing, the

(H03 : µARAM < 3) null hypothesis is rejected.

7.5.3.1 Correlation Analysis

As we can see, all subjects have at least 1 year of experience in software testing, have some

kind of course in the testing area and some of them have been worked with regression

testing. It can serve as clue to indicate that the approach is complete and well structured.

7.5.4 Number of Defects

By analyzing the faults found during the approach application, the following dataset

(Table 7.7) was structured. As it can be seen, all injected faults were identified.

Table 7.7 Defects per subjects.
Subject ID Fault1 Fault2 Fault3 Fault4 Fault5 Fault6 Fault7

ID1 x x x
ID2 x x x x x x
ID3 x x
ID4 x x x
ID5 x x x x
ID6 x x x x
ID7 x x x x
ID8 x x x x

During the analysis, we could noticed that the subjects did not report only the root

cause of the issue, they report faults in different architecture layers. For example, a fault

was injected in a lower layer and it is propagated to layers above, nevertheless the subjects

report the faults in all layers. In additional, not purposely injected faults and identation

errors were identified. These aspects should be considered in further experiments and

something should be done to avoid it.
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It is important to highlight that only the root cause was considered to evaluate

this aspect, as well as, the not purposely injected faults and identation faults were not

considered in this evaluation. Faults wrongly reported in the questionnaire were also not

considered. All of them will serve as lessons learned to avoid in future experiments.

Figure 7.9 Boxplot Analysis.

In order to identify any outlier during this aspect evaluation, the same method applied

in Section 7.5.1 was used here. By analyzing Figure 7.9, we could see that subject (ID 2)

was pointed as outlier. He was not removed from the analysis, since the limited amount

of subjects. An interpretation of this performance can be viewed in correlation analysis

Section (7.5.4.1).

Figure 7.10 shows the number of subjects per fault found.

Considering these data, all injected faults were found by at least one subject, since we

had 0 faults no identified, the H11 : µND ≥ 20% null hypothesis is rejected.

7.5.4.1 Correlation Analysis

By observing the subject with the best results in this aspect, we could see that all of them

have more than 2 years of experience in software development. It can indicate that a high

experience in development is required by the person which will apply the approach. The

subject (ID 2) had the best results in fault detection, the unique factor that was observed

and could justify its success is the fact that he was the first one to deliver the experiment

results. It could influence, since the experiment was performed with less gaps (stops).

Regarding to the number of subjects that found a specific fault (see Figure 7.10), we

can notice that the faults (1,2 and 7) were the most found during this experiment, it could
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Figure 7.10 Number of Subjects vs Faults.

be explained by the fact that the CRs provided by the experimenter described these faults.

It can indicate that the CRs help the approach execution. In additional, no correlation

was found regarding to the type of fault.

Although the rejection of the hypothesis and the approach has been proven efficient

in fault detection, it can not be considered as absolute truth. A more complex experiment,

with real SPL architectures, faults and tests, needs to be performed.

7.5.5 Number of Tests Correctly Classified

The goal of this aspect was to evaluate how the approach is aiding the subjects during the

test classification step. In this direction, the subjects were asked to classify the test cases

in five categories (obsolete, reusable, retestable, new-structural and new-specification).

Unfortunately, some subjects (ID 1, 3) were excluded of this evaluation since they did

not report anything or wrongly report the results.

Table 7.8 summarizes the number of test correctly classified by subjects. Where “not

reported (NR)” means that the subjects report some test cases but not correctly, and “none”

indicates that no test cases were reported.

A set of 58 test cases were provided to the subjects, among these tests, 3 obsolete, 14

retestable, 41 reusable, 2 new-structural and 14 new-specification. Most of the subjects

complained about the absence of examples regarding each kind of test. It can explain the

bad results in this aspect.
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Table 7.8 Number of tests correctly classified.
Subject ID Obsolete Reusable Retestable New-Structural New-Specification NTCC (%)

ID2 NR 13 3 NR 14 40.54
ID4 1 30 6 NR NR 50
ID5 none 2 9 none 3 18.91
ID6 1 3 5 none 14 31.08
ID7 1 3 5 none 14 31.08
ID8 NR 7 NR NR NR 9.45

By analyzing the results, we noticed that the test classification description should

be improved. Nevertheless, two subjects achieve more than 40% of correctly classified

test cases. For this reason, we consider the null hypotheses (H21 : µNTCC ≥ 40%) was

rejected.

To improve the test classification task, guidelines describing how to identify each

category of test, should be provided.

7.5.5.1 Correlation Analysis

We notice that subjects with high experience in software development, had better results.

It can indicate that experience in development can help the process of test classification.

7.6 Lessons Learned

After concluding the experimental study, some aspects should be considered in order to

repeat the experiment, since there were limitations in this first execution.

Project Context. The architecture (code) context was the main issue regarding the

regression approach experiment execution. One of the problems was that the architecture

was not a real SPL architecture composed by components and modules. In additional, the

faults were artificially injected in the code. Thus, the approach needs to be evaluated in a

more real context.

Training. The regression approach presentation was satisfactory, but for the subjects,

it seems to be too much information at once. Therefore, it is interesting to have some

support materials for the experiment, with examples on how to use the approach in

different scenarios (corrective and progressive).

Motivation. As the project was not short and most of the subjects complained about

boredom, it was difficult to keep the subject’s motivation during all the execution. Thus,

this aspect should be analyzed in order to try to control it. A possible solution can be

to define some checkpoints during the approach application or split in two individual
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experiments (corrective and progressive).

Data Collection. Some subjects were influenced due to the order of some questions

in the questionnaire. For example, some of them were confused because the Q7 (faults

question) was before the Q8 (test classification). Regarding to the background ques-

tionnaire, some questions (Q4 and Q13) could be better formulated to avoid subjective

answers.

7.7 Chapter Summary

This Chapter presented the definition, planning, operation, analysis and interpretation of

the experimental study that evaluated the viability of the Regression testing approach.

The experiment, analyzed, the process understandability, effectiveness and completeness,

how it helps the subjects during test classification and defects search tasks, as well as, try

to identify any miss activity, step or role. Even with the reduced number of subjects (8),

and a not very appropriate context, we could identify some directions for improvements,

specially regarding understandability, based on the subjects difficulties. However, two

aspects should be considered: the study’s repetition in different contexts and studies

based on observation in order to identify other problems and points for improvements.

The next chapter will present the conclusions of this work, its main contribution and

directions for future works.
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“The art of living consists in turning life into an artpiece.”

Mahatma Gandhi

8
Conclusion

The software industry is constantly searching for new ways to achieve productivity gains,

reduce development costs, improve time-to-market, increase software quality (Linden

et al., 2007) and turn software development less handcrafted. Organizations adopt

software product lines approaches aiming to accomplish these goals with the purpose of

maintaining competitive in the current business environment.

In this context, as in single-system development, testing is essential (Kauppinen, 2003)

to uncover defects (Pohl and Metzger, 2006; Reuys et al., 2006). From an industry point

of view, with the growing SPL adoption by companies, more efficient and effective testing

methods and techniques for SPL are needed, since the currently available techniques,

strategies and methods make testing a very challenging process (Kolb and Muthig, 2003).

Testing in SPL aims to examine core assets - i.e. the architecture of the product line,

which comprises the common parts of the products - individual products - derived from

the common “architecture” prior established - and the interaction among them (McGregor,

2001b). As software architectures are becoming the central part during the development

of quality systems, being the first model and base to guide the implementation (Muccini

et al., 2006) and provide a promising way to deal with large systems (Harrold, 2000), it

is extremely important to consider testing since design level. For this reason, a software

product line regression testing approach was developed (Chapter 6), as being a technique

applied during integration level (Chapter 5), in order to be confident that SPL architectures

still working after a evolution or corrective modification. The integration test level was

chosen, due to the importance of the SPL architecture, considered the SPL main asset.

In addition, it can be useful to make confidence in the correctness of the software,

increasing its reliability Wahl (1999), as well as, identifying errors that were missed, after

applying traditional code-level testing Muccini et al. (2006). Since it is a worthwhile

ongoing investment, every company should be using regression testing to produce quality
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products Long (1993).

In this Chapter, the conclusion of this work is presented. The Chapter remainder is

organized as follows. The research contributions are highlighted in Section 8.1. The

related work to regression testing approach is described in Section 8.2 and future work

concerning to the defined approach are listed in Section 8.3. Academic contributions

are listed in Section 8.4 and the concluding remarks of this dissertation are described in

Section 8.5.

8.1 Research Contributions

The main contributions of this work can be split into the following aspects: (i) the

definition of a mapping study in order to understand and characterize the state-of-the-

art regarding to SPL and testing; (ii) the definition of an approach to integration test

the modules which composes SPL architectures, in order to check the conformance

of the architectures with its specification; (iii) the definition of an SPL architecture

regression testing approach; (iv) the execution of an experimental study which evaluated

the regression testing approach. These contributions are further described next.

• Mapping Study on Software Product Line Testing. Through this mapping study

forty-five studies were selected and analyzed according to the aspects related to the

mapping studie’s question: how the existing testing approaches deal in the context

of SPL?. This question was split in nine sub-questions each of them related with

SPL and testing concepts. The analysis results could identify gaps and points for

future research in testing area, as how the variability testing should be handled over

the SPL life-cycle, the metrics that should be used in SPL testing processes and the

theme proposed by this dissertation.

• Integration Testing Approach. Given a software architecture (SA) description,

conformance testing has been used to detect conformance errors between the SA

specification and its implementation. The SA specification has been used as a

reference model to which the source code should conform (Muccini et al., 2004).

In order to check this conformance, an integration testing approach was developed.

• SPL Architecture Regression Testing Approach. After the occurrence of a mod-

ification due to an evolution or correction, the SPL architectures need to be retested

to ensure that no new errors were inserted and that the new architecture version

still working as expected. For this reason, a SPL architecture regression testing

133



8.2. RELATED WORK

approach was developed, including its artifacts, roles, steps and activities. It was

applied during integration testing level.

• Experimental Study. An experimental study was performed in an academic

environment in order to evaluate the proposed approach. This initial validation of

the regression testing approach helped in the improvement of the approach, since

the findings and observed points suggested some modifications in the activities,

steps to improve the understandability and facilitate further applications.

8.2 Related Work

Some SPL testing techniques and methods were identified through the mapping study,

described in Chapter 4. However, among the approach included in this study, none of

them presented any kind of systematic and formal approach definition for regression

testing SPL architectures, and no study gives evidence on regression testing practices

applied to SPL, only few comments.

Several researchers highlighted the importance of regression testing in the context

of SPL, but not systematically. McGregor in (McGregor, 2001b) reports that during

products derivation, the assets are often modified to fit the products needs. The modified

portion of those assets are tested using regression testing and they are exercised using: (i)

existing functional tests, if the specification is not changed; (ii) new created functional

tests, if the specification is changed; and (iii) structural tests created to reflect the new

code. He also highlights the importance of test selection techniques and test automation.

According to Kolb (Kolb, 2003), the major problems in testing product lines are the

large number of variations, redundant work, the interplay between generic components

and product-specific components, and regression testing. In (Jin-hua et al., 2008) reports

that during the application test, regression test are needed to be performed on the realized

design patterns with test data from the domain test, in addition to the concrete classes.

Besides, when components or related component cluster are changed, regression test

is obliged to perform on the application architecture, in order to ensure the application

architecture in conformance with its specification.

While the (McGregor, 2001b) and (Jin-hua et al., 2008) are describing regression

testing in system test level, the next paragraphs describes some studies that comprises the

regression testing apllied in integration testing level, which is the same level reported by

this dissertation.

In Muccini et al. (2004), the authors emphasize that with the advent and use of
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software specifications, source code no longer has to be the single source for selecting

test cases. Their particular interest has been devoted to specification-based conformance

testing. The main goal of their work is to review and extend their previous work on

Software Architecture (SA)-based conformance testing, to provide a systematic way to

use an SA for code testing. They present an conformance testing approach, establishing a

set of steps in order to test a C2 style architecture. This work also presents a case study,

where the approach is applied in the elevator system’s architecture.

In Muccini et al. (2006), the authors explore how regression testing can be systemat-

ically applied at the software architecture level in order to reduce the cost of retesting

modified systems, and also to assess the regression testability of the evolved system. This

approach addresses two goals: (i) Test conformance of a modified implementation P’ to

the initial SA and (ii) test conformance of an evolved software architecture. To achieve

these goals, a set of steps and tools were used.

In our work we did not implement or restricted us to any test selection technique to

select test cases. Instead, we studied some approaches and their characterists in order

to figure out how systematically perform regression testing in SPL architectures taking

advantage of their similarities. The main difference between our work and Henry’s work

Muccini et al. (2004) is that we are considering conformance testing in SPL context,

taking into consideration the existing variability (the test cases are capable to represent

the variation points and its variants) and not being restricted to any architectural style.

Regarding the second study, besides he is not considering SPL context, he did not treat

test prioritization on his work. In additional, our approach defines a systematic way to

perform regression testing describing some artifacts, roles, activities and steps.

8.3 Future Work

Due to the time constraints imposed on the master degree, this work can be seen as an

initial climbing towards a process for testing product lines, and interesting directions

remain to improve what was started here and new routes can be explored in the future.

Thus, the following issues should be investigated as future work:

• Metrics. This dissertation proposed some metrics to evaluate regression testing

approach use in the experimental study, however these metrics were never used

before, this way, they need to be refined and reproduced. This metric set could be

also increased by several other metrics to measure the approach application in SPL

context.
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• Integration Testing Approach Industrial Evaluation. Since a integration test-

ing approach was also proposed and only an simple application(example) was

performed to evaluate this approach, it is necessary to perform a more elaborated

experimental study, applying it in industrial projects.

• Application of the Regression Approach in an industrial context As the regres-

sion testing approach was evaluated in academic conditions, it is necessary to

evaluate it in a more elaborated context with real SPL architectures.

• Test Classification Guideline. A very nice improvement for Regression approach

would be to have guidelines on how to classify the test cases. Those guidelines

would have examples explaining how to identify all types of tests.

• Tool Support. The need of a tool that based on the code and change analysis, can

identify and select the test cases that need to be executed in the architecture new

version.

• Test Prioritization. A nice improvement would be to study the best way to

prioritize test cases based on the most common issues found in SPL projects.

8.4 Academic Contributions

• Software Product Lines Testing: A Systematic Mapping Study. Under evaluation

(2nd round) in Information and Software Technology Journal.

• A Regression Testing Approach for Software Product Lines Architectures. Under

evaluation in 4th Brazilian Symposium on Software Components, Architectures

and Reuse (SBCARS 2010)

8.5 Concluding Remarks

Software reuse is a key aspect for organizations interested in achieving improvements

in productivity, quality and costs reduction. Software product lines, as a software reuse

approach, has proven its benefits in different industrial environments. Academic research

in the software product line is also very rich and a diversity of studies are being conducted

in different topics.

In this context, this work presented the SPL architecture regression testing approach,

which aims to verify if the new version of the architecture still working properly, after
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an evolution or correction modifications. It is applied at integration testing level (for

both CAD and PD) focusing on increasing reuse, productivity and reducing testing cost.

This approach can be seen as a systematic way to perform regression testing after a

modification in SPL architectures, through a well-defined sequence of activities, steps,

inputs, outputs, and guidelines.

Additionally, the approach was evaluated in a academic context, through an experi-

mental study on the Bank system domain. According to the data collected and analyzed

in the experimental study, the approach presents indications of its viability. We believe

this dissertation is one more step to the maturation of the regression testing approach in

software product line architectures.
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A
Experimental Study Questionnaires

A.1 Background Questionnaire

Name:

Date:

Amount of years since graduation:

1. - Did you conclude any post-graduation course?

( ) Specialization ( ) M.Sc. ( ) Ph.D. ( ) None

2. - Are you doing any post-graduation course?

( ) Specialization Student ( ) M.Sc. Student ( ) Ph.D. Student ( ) None

3. - Did you take any testing course during your studies?

( ) None ( ) Graduation ( ) Specialization ( ) M.Sc. ( ) Ph.D. ( ) Other (e.g. Qualiti)

Number of hours (Total):

4. - How you classify your experience in Java?

( ) High ( ) Medium ( ) Low ( ) None

5. - Which is your experience in software development? And how many years?

( ) Never develop.

( ) I have experience developing software alone. Years:

( ) I have experience developing software during a course. Years:

( ) I have experience developing software in company project. Years:
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A.1. BACKGROUND QUESTIONNAIRE

6. - What is your experience in software testing? And how many years?

( ) Never test.

( ) I have experience testing software alone. Years:

( ) I have experience testing software during a course. Years:

( ) I have experience testing software in company project. Years:

7. - Describe your experience regarding the JUnit framework. And how many years?

8. - Describe your experience regarding the Eclemma tool. And how many years?

9. - Describe your experience regarding to regression testing tools. (Ex.: Jdiff,

DejaVoo) And how many years?

10. - How many commercial software projects did you participate after graduation?

Which role? (Tester, Developer or other).

11. - Regarding your personal experience in Software Testing (Integration Testing)

(mark x):
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A.1. BACKGROUND QUESTIONNAIRE

12. - Regarding your personal experience in Software Testing (Regression Testing)

(mark x):

13. - How do you describe your experience in control flow graphs (CFG) analysis? ( )

None ( ) Low ( ) Medium ( ) High

14. - Have you ever performed any analysis of regression testing (test selection) before?

If yes, which technique was used?

15. - Regarding your personal experience in test case design (mark x): Using White-box

Techniques:

Using Black-box Techniques:

16. - Regarding your personal experience in test case prioritization (mark x):

17. - Regarding your personal experience in software product lines (SPL) development?

And how many years? ( ) Never develop.

( ) I have experience developing software alone. Years:

( ) I have experience developing software during a course. Years:

( ) I have experience developing software in company project. Years:
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A.2. REGRESSION TESTING APPROACH ANALYSIS QUESTIONNAIRE

A.2 Regression Testing Approach Analysis Questionnaire

Name:

Date:

Regarding the regression testing approach, please answer the following questions:

1. - Did you have any difficulties in understanding or applying the regression testing

approach? Which one(s)?

2. - In your opinion, what are the strengths of the regression testing approach?

3. - In your opinion, what are the weak points of the regression testing approach?

4. - Is there any missing activity, roles or artifact in the regression testing approach?

Why?

5. - Which improvements would you suggest for the regression testing approach?

(Ex.: The graph comparison step can be replaced by textual comparison )

6. How many faults did you find using the regression testing approach? And where

the fault was found?(Ex.: The fault X was identified on class Y in the Z method )

7. How did you classify the test cases (old and new test cases)? Answer the question

adding the list of test cases identified by its ID.

Obsolete:

Retestable:

Reusable:

Unclassified:

- New-Structural Tests:

- New-Specification tests:

Number of updated test cases:

8. How much time did you spend in each step of the approach (Corrective Regres-

sion)?

1) Planning:

2) Analyzes:

3) Graph Generation:
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A.2. REGRESSION TESTING APPROACH ANALYSIS QUESTIONNAIRE

3a) Graph Comparison:

3b) Textual Comparison:

4) Test Design and Selection:

5) Instrumentation:

6) Test Suite Composition:

7) Test Case Prioritization:

8) Execution:

9) Reporting:

9. How much time did you spend in each step of the approach (Progressive Regres-

sion)?

1) Planning:

2) Analyzes:

3) Specification Comparison

4) Test Design and Selection:

5) Instrumentation:

6) Test Suite Composition:

7) Test Case Prioritization:

8) Execution:

9) Reporting:
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B
Mapping Study Sources

B.1 List of Conferences

Acronym Conference Name

AOSD International Conference on Aspect-Oriented Software Development
APSEC Asia Pacific Software Engineering Conference
ASE International Conference on Automated Software Engineering
CAiSE International Conference on Advanced Information Systems Engineering
CBSE International Symposium on Component-based Software Engineering
COMPSAC International Computer Software and Applications Conference
CSMR European Conference on Software Maintenance and Reengineering
ECBS International Conference and Workshop on the Engineering of Computer Based Systems
ECOWS European Conference on Web Services
ECSA European Conference on Software Architecture
ESEC European Software Engineering Conference
ESEM Empirical Software Engineering and Measurement
WICSA Working IEEE/IFIP Conference on Software Architecture
FASE Fundamental Approaches to Software Engineering
GPCE International Conference on Generative Programming and Component Engineering
ICCBSS International Conference on Composition-Based Software Systems
ICSE International Conference on Software Engineering
ICSM International Conference on Software Maintenance
ICSR International Conference on Software Reuse
ICST International Conference on Software Testing, Verification and Validation
ICWS International Conference on Web Services
IRI International Conference on Information Reuse and Integration
ISSRE International Symposium on Software Reliability Engineering
MODELS International Conference on Model Driven Engineering Languages and Systems
PROFES International Conference on Product Focused Software Development and Process Improvement
QoSA International Conference on the Quality of Software Architectures
QSIC International Conference on Quality Software
ROSATEA International Workshop on The Role of Software Architecture in Testing and Analysis
SAC Annual ACM Symposium on Applied Computing
SEAA Euromicro Conference on Software Engineering and Advanced Applications
SEKE International Conference on Software Engineering and Knowledge Engineering
SERVICES Congress on Services
SPLC Software Product Line Conference
SPLiT Software Product Line Testing Workshop
TAIC PART Testing - Academic & Industrial Conference
TEST International Workshop on Testing Emerging Software Technology
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B.2. LIST OF JOURNALS

B.2 List of Journals

Journals

ACM Transactions on Software Engineering and Methodology (TOSEM)
Communications of the ACM (CACM)
ELSEVIER Information and Software Technology (IST)
ELSEVIER Journal of Systems and Software (JSS)
IEEE Software
IEEE Computer
IEEE Transactions on Software Engineering
Journal of Software Maintenance Research and Practice
Software Practice and Experience Journal
Software Quality Journal
Software Testing, Verification and Reliability
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C
Quality Studies Scores

Id REF Study Title Year A B C

1 Condron (2004)
A Domain Approach to Test Automation of Product
Lines

2004 2 0 2

2 Feng et al. (2007)
A product line based aspect-oriented generative unit
testing approach to building quality components

2007 1.5 0 2.5

3 Nebut et al. (2003)
A Requirement-Based Approach to Test Product Fam-
ilies

2003 2.5 1 1.5

4 Reis (2006)
A Reuse Technique for Performance Testing of Soft-
ware Product Lines

2006 1.5 2 3

5 Kolb (2003)
A Risk-Driven Approach for Efficiently Testing Soft-
ware Product Lines

2003 2 1 2.5

6 Needham and Jones (2006) A Software Fault Tree Metric 2006 0 0 1
7 Hartmann et al. (2004) A UML-Based approach for Validating Product Lines 2004 1 2 0.5

8 Zeng et al. (2004)
Analysis of Testing Effort by Using Core Assets in
Software Product Line Testing

2004 1 1.5 2.5

9 Harrold (1998)
Architecture-Based Regression Testing of Evolving
Systems

1998 0 0.5 2

10 Li et al. (2007a)
Automatic Integration Test Generation from Unit
Tests of eXVantage Product Family

2007 1 1 2

11 McGregor (2002) Building reusable test assets for a product line 2002 2 2 0.5
12 Kolb and Muthig (2003) Challenges in testing software product lines 2003 0 3 1.5

13 Cohen et al. (2006)
Coverage and adequacy in software product line test-
ing

2006 1 1.5 2

14 Pohl and Sikora (2005) Documenting Variability in Test Artefacts 2005 1 0 1
15 Kishi and Noda (2006) Formal verification and software product lines 2006 2 1.5 2

16 Kauppinen et al. (2004)
Hook and Template Coverage Criteria for Testing
Framework-based Software Product Families

2004 0.5 0.5 3

17 Reis et al. (2007b)
Integration Testing in Software Product Line Engi-
neering: A Model-Based Technique

2007 1 0 3

18 Kolb and Muthig (2006)
Making testing product lines more efficient by im-
proving the testability of product line architectures

2006 1 1.5 1.5

19 Reuys et al. (2005)
Model-Based System Testing of Software Product
Families

2005 2 1 3.5

20 Olimpiew and Gomaa (2005b)
Model-based Testing For Applications Derived from
Software Product Lines

2005 0 1 1

* The shaded lines represent the most relevant studies according to the grades.
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Id REF Study Title Year A B C

21 Jaring et al. (2008)
Modeling Variability and Testability Interaction in
Software Product Line Engineering

2008 2.5 6 3.5

22 Bertolino and Gnesi (2003a) PLUTO: A Test Methodology for Product Families 2003 0.5 1 3
23 Olimpiew and Gomaa (2009) Reusable Model-Based Testing 2009 3 0.5 3.5

24 Olimpiew and Gomaa (2005a)
Reusable System Tests for Applications Derived from
Software Product Lines

2005 2.5 1 1

25 Li et al. (2007b)
Reuse Execution Traces to Reduce Testing of Product
Lines

2007 0 0.5 2

26 Kauppinen and Taina (2003)
RITA environment for testing framework-based soft-
ware product lines

2003 0 0 0.5

27 Pohl and Metzger (2006)
Software Product Line Testing Exploring principles
and potential solutions

2006 0.5 0 2.5

28 McGregor (2001a) Structuring Test Assets in a Product Line Effort 2001 1.5 1 0.5

29 Nebut et al. (2006)
System Testing of Product Lines From Requirements
to Test Cases

2006 0 2 2

30 McGregor (2001b) Testing a Software Product Line 2001 4 1.5 2

31 Denger and Kolb (2006)
Testing and inspecting reusable product line compo-
nents: first empirical results

2006 0 1 0.5

32 Kauppinen (2003) Testing Framework-Based Software Product Lines 2003 0.5 0.5 2
33 Odia (2007) Testing in Software Product Line 2007 2 2.5 2

34 Al-Dallal and Sorenson (2008)
Testing Software Assets of Framework-Based Prod-
uct Families during Application Engineering Stage

2008 3 1 4

35 Kamsties et al. (2003) Testing variabilities in use case models 2003 0.5 1.5 1.5
36 McGregor et al. (2004b) Testing Variability in a Software Product Line 2004 0 1 2.5

37 Reuys et al. (2006)
The ScenTED Method for Testing Software Product
Lines

2006 3 1 4.5

38 Jin-hua et al. (2008) The W-Model for Testing Software Product Lines 2008 1 3 1.5

39 Kang et al. (2007)
Towards a Formal Framework for Product Line Test
Development

2007 2 2 1

40 Beatriz Pérez Lamancha (2009)
Towards an automated testing framework to manage
variability using the UML Testing Profile

2009 0 0 1

41 Wübbeke (2008)
Towards an Efficient Reuse of Test Cases for Software
Product Lines

2008 0 0 2

42 Geppert et al. (2004)
Towards Generating Acceptance Tests for Product
Lines

2004 0.5 1.5 2

43 Muccini and van der Hoek
(2003)

Towards Testing Product Line Architectures 2003 0 2.5 1

44 Ganesan et al. (2005)
Towards Testing Response Time of Instances of a
web-based Product Line

2005 1 1.5 1

45 Bertolino and Gnesi (2003b) Use Case-based Testing of Product Lines 2003 1 1 2.5
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