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Abstract We prove a regularity result for critical points of the polyharmonic energy

E(u) =
∫

�
|∇ku|2dx in W k,2p(�, N ) with k ∈ N and p > 1. Our proof is based on a

Gagliardo–Nirenberg-type estimate and avoids the moving frame technique. In view of the

monotonicity formulae for stationary harmonic and biharmonic maps, we infer partial regu-

larity in theses cases.

Keywords Polyharmonic maps · Harmonic maps · Biharmonic maps ·

Gagliardo–Nirenberg inequality

1 Introduction

Let � ⊂ R
m be a smooth open bounded domain and N a smooth closed Riemannian man-

ifold isometrically embedded in R
N . For k ∈ N and 1 ≤ p ≤ ∞, we define the Sobolev

spaces

W k,p(�, N ) := {u ∈ W k,p(�, R
N ) : u(x) ∈ N for a.e. x ∈ �}

equipped with the topology inherited from the topology of the linear Sobolev space

W k,p(�, R
N ).

For u ∈ W 1,2(�, N ), we consider the Dirichlet energy

D(u) :=

∫

�

|∇u|2dx .
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Critical points of D(·) in W 1,2(�, N ) with respect to compactly supported variations in the

target manifold are called weakly harmonic. If u ∈ W 1,2(�, N ) is weakly harmonic, and

in addition, is a critical point with respect to compactly supported variations in the domain

manifold, then u is called stationary harmonic.

Regularity properties of weakly harmonic maps have been intensely studied during the

last decades. For m = 2, Morrey [16] showed in 1948 that every minimizing map u ∈

W 1,2(�, N ) belongs to C∞(�, N ). The regularity problem for general critical points of the

harmonic energy functional had remained open for a long time. In 1981, again for the case

m = 2, Grüter [11] proved smoothness of conformal weakly harmonic maps. Schoen [24]

introduced the notion of stationary harmonic maps and extended Grüter’s result to this class.

Finally, Hélein [12] showed that every weakly harmonic map in the case m = 2 is smooth.

For m ≥ 3, more complex phenomena show up. Schoen and Uhlenbeck [25] showed that if

u ∈ W 1,2(M, N ) is energy minimizing, then u is smooth except on a closed subset S with

Hausdorff dimension dimH(S) ≤ m−3. In particular, for m = 3, they show that S is reduced

to at most isolated points. This result is optimal since the radial projection from Bm into Sm−1

is a minimizing map for m ≥ 3, as shown by Brezis et al. [4] for m = 3 and Lin [14] for

m ≥ 3. On the other hand, Rivière [21] proved the existence of everywhere discontinuous

weakly harmonic maps. For the intermediate class of stationary harmonic maps, Evans [6]

showed partial regularity for maps into the sphere and Bethuel [3] generalized this result

for arbitrary target manifolds. Their proofs rely on a monotonicity formula for stationary

harmonic maps adapted from Price [19].

Similar questions were studied for weakly (extrinsic) biharmonic and stationary bihar-

monic maps, which are the critical points of the Hessian energy functional

B(u) =

∫

�

|�u|2dx

in W 2,2(�, N ). Chang et al. [5] showed smoothness for weakly biharmonic maps into the

sphere and m ≤ 4 (see also Strzelecki [28]), and asserted partial regularity for stationary

biharmonic maps into the sphere and m ≥ 5. Wang generalized these results for arbitrary

target manifolds in [31] and [32]. Once again, a monotonicity formula derived from the sta-

tionarity assumption is crucial in the proof of partial regularity for m ≥ 5. This monotonicity

formula appeared in [5] for sufficiently regular maps. However, a rigorous proof in the case

of stationary biharmonic maps of class W 2,2(�, N ), concluding the partial regularity, results

in the above mentioned papers, first appeared in Angelsberg [2].

In the case of target manifolds without symmetry, another important tool for proving

(partial) regularity for harmonic and biharmonic maps is the technique of moving frames.

This was introduced for harmonic maps in two dimensions by Hélein [12], applied to station-

ary harmonic maps by Bethuel [3] and later to (stationary) biharmonic maps by Wang in [31]

and [32]. Only very recently, Rivière [22] succeeded in rephrasing the harmonic map system

as a conservation law when m = 2, allowing him (amongst other results) to give a direct

proof of regularity of weakly harmonic maps in two dimensions avoiding the use of moving

frames. After that, Rivière and Struwe [23] developed a related gauge-theoretic approach

to prove partial regularity in higher dimensions. Moreover, this new approach allowed the

authors to reduce Hélein’s C5-assumption on the target manifold to C2, which seems to be

the natural assumption to ensure that the second fundamental form is well defined. Finally,

Lamm and Rivière [13] showed smoothness for weakly biharmonic maps in four dimensions

avoiding moving frames and Struwe [27] proved partial regularity for stationary biharmonic

maps in higher dimensions via gauge theory.
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Strengthening the natural hypotheses for the regularity of a stationary biharmonic map

u slightly by assuming some higher integrability of the leading order derivative, we here

show similar partial regularity results for biharmonic maps without using moving frames.

Our method is not restricted to this fourth order problem and also provides regularity results

for polyharmonic maps, which are defined below.

For k ∈ N and u ∈ W k,2(�, N ), we consider the k-harmonic energy functional

E(u) =

∫

�

|∇ku|2dx .

Define the BMO space and the Morrey spaces M p,λ for 1 ≤ p < ∞, 0 < λ ≤ m as

BMO(�) :=

⎧

⎪

⎨

⎪

⎩

u ∈ L1(�) : [u]B M O(�) := sup
Br ⊂Rm

⎧

⎪

⎨

⎪

⎩

r−m

∫

Br ∩�

|u − u Br ∩�|dx

⎫

⎪

⎬

⎪

⎭

< ∞

⎫

⎪

⎬

⎪

⎭

and

M p,λ(�) :=

⎧

⎪

⎨

⎪

⎩

u ∈ L p(�) : [u]
p

M p,λ(�)
:= sup

Br ⊂Rm

⎧

⎪

⎨

⎪

⎩

rλ−m

∫

Br ∩�

|u|pdx

⎫

⎪

⎬

⎪

⎭

< ∞

⎫

⎪

⎬

⎪

⎭

,

where u Br := −

∫

Br

udx denotes the average of u on Br .

Definition 1 A map u ∈ W k,2(�, N ) is called weakly k-harmonic if u is a critical point of

the k-harmonic energy functional with respect to compactly supported variations on N . That

is, if for all ξ ∈ C∞
0 (�, R

N ), we have

d

dt

∣

∣

∣

∣

t=0

E(π(u + tξ)) = 0,

where π denotes the nearest point projection onto N .

Definition 2 A weakly k-harmonic map in W k,2(�, N ) is called stationary k-harmonic if,

in addition, u is a critical point of the k-harmonic energy E(·) with respect to compactly

supported variations on the domain manifold, i.e., if

d

dt

∣

∣

∣

∣

t=0

E (u ◦ (id + tξ)) = 0 for all ξ ∈ C
∞
0 (�, R

m), (1)

where id denotes the identity map.

Remark 1.1 (Stationary) 1-harmonic maps are the (stationary) harmonic maps. Observing

that |∇2u|2 and |�u|2 only differ by a divergence term, we conclude that the (stationary)

2-harmonic maps are precisely the (stationary) biharmonic maps.

Our main result then reads

Theorem 1.1 For p > 1 and 2kp ≤ m, let u ∈ W k,2p(�, N ) be weakly k-harmonic. There

exists ǫ > 0, such that for each point x0 ∈ � for which there exists some r0 > 0 with

k
∑

µ=1

[

∇µu
]

M
2k
µ ,2k

(Br0
(x0))

≤ ǫ,
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we have

u ∈ C
∞
(

B r0
4
(x0), N

)

.

Remark 1.2 For 2kp > m, Sobolev embedding implies that every map u in W k,2p(�, N ) is

Hölder-continuous. Smoothness then follows at once from elliptic bootstrapping arguments.

In view of the monotonicity formulae for stationary harmonic and biharmonic maps, the con-

dition on the Morrey semi-norms is natural, and in these cases, satisfied almost everywhere.

More precisely, we deduce the following

Corollary 1.2 For k ∈ {1, 2} and p > 1, let u ∈ W k,2p(�, N ) be stationary k-harmonic.

Then, u is smooth outside a closed set S with Hm−2kp(S) = 0.

Conceivably, a monotonicity formula allowing to guarantee the condition on the Morrey

semi-norms in Theorem 1.1 will also hold for k ≥ 3.

The proof of Theorem 1.1 is based on a Morrey decay estimate for the rescaled poly-

harmonic energy. We employ an interpolation inequality by Adams-Frazier [1] (see also

Meyer-Rivière [15], Strzelecki [29] and Pumberger [20]) to bound the W k,2p-norm by the

BMO-semi-norm and the W 2k,p-norm.

The idea of proving ǫ-regularity results with interpolation inequalities first appeared in

Meyer-Rivière [15] in the context of Yang-Mills fields. Recently, it has also been used by

Strzelecki and Zatorska-Goldstein [30] for proving the smoothness of bounded weak solu-

tions of a fourth order nonlinear elliptic system with critical growth under suitable smallness

assumptions.

Regarding the integrability assumption, we would like to point out that the critical case

p = 1 would be the most natural exponent for the present problem. Moreover, Corollary 1.2

directly follows from Bethuel [3] and Wang [32], respectively, applying Poincaré’s inequal-

ity. Nevertheless, our proof still is of interest since it is more direct and avoids the moving

frame technique.

We would like to remark that polyharmonic maps have already been studied by Gastel in

[7], where he considered the polyharmonic map heat flow in the critical dimension.

2 Euler–Lagrange equation for polyharmonic maps

In this section we derive the geometric form of the Euler–Lagrange equation for weakly

polyharmonic maps and analyze its structure. We consider the tubular neighborhood Vδ of N

in R
N , for δ > 0 sufficiently small, and the smooth nearest point projection �N : Vδ −→ N .

For p ∈ N , P(p) := ∇�(p) is the orthonormal projection onto the tangent space TpN . The

orthonormal projection onto the normal space will be denoted by P⊥. Recalling P+P⊥ = id ,

we have

Lemma 2.1 (Euler–Lagrange) If u ∈ W k,2(�, N ) is weakly k-harmonic, it satisfies

P(u)(�ku) = 0 (2)

in the sense of distributions.

Proof For ξ ∈ C∞
0 (�, R

N ), we compute

0 =
d

dt

∣

∣

∣

∣

t=0

∫

�

|∇k(�N ◦ (u + tξ))|2dx = 2

∫

�

∇ku∇k(P(u)(ξ))dx . ⊓⊔
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Remark 2.1 For a weakly polyharmonic map u in C∞(�, N ) ∩ W k,2(�, N ) and ξ ∈

C∞
0 (�, R

N ), with ξ(x) parallel to Tu(x)N for all x ∈ �, we have P(u)(ξ) = ξ . The proof of

Lemma 2.1 then shows that �ku ⊥ TuN in the sense of distributions.

In order to formulate the following lemma, we introduce the l-divergence ∇(l), by defining

∇(1) · u := ∇ · u and ∇(l) · u := ∇ ·
(

∇(l−1) · u
)

for l ≥ 2.

Lemma 2.2 If u ∈ W k,2(�, N ) is weakly k-harmonic, there exist f and g jl with

�ku = f +
∑

j, l ≥ 0
1 ≤ 2 j + l ≤ k

∇(l) · � j g jl , (3)

where

| f | ≤ C
∑

λ∈	

k
∏

µ=1

|∇µu|γλ,µ with
∑

µ

µγλ,µ = 2k for every λ ∈ 	,

|g jl | ≤ C
∑

λ∈	 jl

k
∏

µ=1

|∇µu|γλ,µ with
∑

µ

µγλ,µ = 2k − (2 j + l) for every λ ∈ 	 jl ,

with 	 and 	 jl consisting of finitely many indices and γλ,µ ≥ 0 for every λ ∈ 	 (or λ ∈ 	 jl )

and 0 ≤ µ ≤ k.

Proof We observe that

�k(a · b) =
∑

0 ≤ i, j, q ≤ k
i + j + q = k

ck
i jq�i∇qa · � j∇qb

where ck
i jq are positive integers. In particular, we have ck

k00 = ck
0k0 = 1. Combining this with

Eq. 2 shows that u satisfies

0 = P(u)(�ku) = �k−1(P(u)(�u)) −
∑

0 ≤ i, j, q ≤ k − 1
i + j + q = k − 1

(i, j, q) 
= (0, k − 1, 0)

ck−1
i jq �i∇q(P(u))� j+1∇qu

in the sense of distributions. Let A(·)(·, ·) denote the second fundamental form of N in R
N

and use the property P(u)(�u) = �u + A(u)(∇u,∇u) to derive

�ku =
∑

i, j, q
i + j + q = k − 1

(i, j, q) 
= (0, k − 1, 0)

ck−1
i jq �i∇q(P(u))� j+1∇qu − �k−1(A(u)(∇u,∇u)). (4)

First, we consider the case when k is even and analyze the Euler–Lagrange Eq. 4 term by

term. It suffices to show that every term in (4) can be written in the desired form.

For i, q such that i +
q
2

= k
2

, we have ck−1
i jq �i∇q(P(u))� j+1∇qu of the form f , where

we used the fact that

|∇β P(u)| ≤ C
∑

λ∈	

β
∏

µ=1

|∇µu|γλ,µ with
∑

µ

µγλ,µ = β for every β ≤ k and λ ∈ 	. (5)

Indeed, the chain rule gives ∇(P(u)) = ∇ P(u)∇u and ∇2(P(u)) = ∇2 P(u)∇u∇u +

∇ P(u)∇2u. We infer estimate (5) from iterating this computation, using the smoothness of
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�N and observing that the L∞-norm of u is bounded.

For i, q such that i +
q
2

> k
2

, we compute

�i∇q(P(u))� j+1∇qu = ∇ · (�i−1∇q+1(P(u))� j+1∇qu)

−�i−1∇q+1(P(u))� j+1∇q+1u

and/or

�i∇q(P(u))� j+1∇qu = ∇ · (�i∇q−1(P(u))� j+1∇qu) − �i∇q−1(P(u))� j+2∇q−1u.

Iterating these computations from (5), we get that ck−1
i jq �i∇q(P(u))� j+1∇qu is of the form

f +
∑

j̃, l ≥ 0

1 ≤ 2 j̃ + l ≤ k

∇(l) · � j̃ g
j̃ l

whenever i +
q
2

> k
2

. The terms for i, q such that i +
q
2

< k
2

are estimated similarly. Finally,

we have

�k−1(A(u)(∇u,∇u)) = ∇ · �γ gγ 1, with γ =
k

2
− 1,

completing the case when k is even.

For k odd, we distinguish between the three cases i +
q
2

= k+1
2

, i +
q
2

> k+1
2

, and

i +
q
2

< k+1
2

and proceed similarly to the case when k is even. Moreover, we get

�k−1(A(u)(∇u,∇u)) =

{

f for k = 1

�γ gγ 0, with γ = k−1
2

for k ≥ 3 odd.

This, completes the proof. ⊓⊔

Remark 2.2 Observe that harmonic maps (k = 1) satisfy

�u = −A(u)(∇u,∇u) in D
′.

Thus the harmonic map equation is of the form �u = f with

| f | = |A(u)(∇u,∇u)| ≤ C |∇u|2.

Weakly biharmonic maps (k = 2) satisfy

�2u = −�P(u)�u + ∇ · (2∇ P(u)�u − ∇(A(u)(∇u,∇u))) in D
′,

i.e., the biharmonic map equation is of the form �2u = f + ∇ · g01 with

| f | = |�P(u)�u| ≤ C(|∇2u|2 + |∇2u||∇u|)

and

|g01| = |2∇ P(u)�u − ∇(A(u)(∇u,∇u))| ≤ C(|∇2u||∇u| + |∇3u|).

However, we could also write the biharmonic map equation as

�2u = −�P(u)�u + ∇ · (2∇ P(u)�u) + �(−A(u)(∇u,∇u)) in D
′,
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i.e., it is also of the form �2u = f + ∇ · g01 + �g10 with

| f | = |�P(u)�u| ≤ C(|∇2u|2 + |∇2u||∇u|2), |g01| = |2∇ P(u)�u| ≤ C |∇2u||∇u|

and

|g10| = |A(u)(∇u,∇u)| ≤ C |∇u|2.

This shows that the representations of Lemma 2.2 are not unique.

3 Proof of Theorem 1.1

We will deduce Theorem 1.1 from the following

Proposition 3.1 For p > 1, let u ∈ W k,2p(�, N ) be weakly k-harmonic. There exist ǫ > 0

and τ ∈ (0, 1) such that for each point y0 ∈ � for which there exists a radius r0 > 0 with

k
∑

µ=1

[

∇µu
]

M
2k
µ ,2k

(Br0
(y0))

≤ ǫ,

we have

(τr)2kp−m

k
∑

µ=1

∫

Bτr (x0)

|∇µu|
2kp
µ dx ≤

3

4
r2kp−m

k
∑

µ=1

∫

Br (x0)

|∇µu|
2kp
µ dx, (6)

for all x0 ∈ Br0(y0), 0 < 4r < dist (x0, ∂ Br0(y0)).

Proof We let v be the k-harmonic extension of u defined as the unique solution to the fol-

lowing Dirichlet problem:

⎧

⎨

⎩

�kv = 0 in Br (x0)

∂ lv

∂νl
=

∂ lu

∂νl
on ∂ Br (x0),

for 0 ≤ l ≤ k − 1, where ν denotes the unit normal vector to ∂ Br (x0). According to

Lemma C.1 we have

∫

Bρ (x0)

|∇µv|
2kp
µ dx ≤ C

(ρ

r

)m
k
∑

λ=1

∫

B r
4
(x0)

|∇λv|
2kp
λ dx (7)

for 0 < ρ ≤ r
4

and 1 ≤ µ ≤ k. It follows that
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k
∑

µ=1

∫

Bρ (x0)

|∇µu|
2kp
µ dx ≤ C

k
∑

µ=1

∫

Bρ (x0)

|∇µv|
2kp
µ dx + C

k
∑

µ=1

∫

Bρ (x0)

|∇µ(u − v)|
2kp
µ dx

≤ C
(ρ

r

)m
k
∑

µ=1

∫

B r
4
(x0)

|∇µv|
2kp
µ dx+C

k
∑

µ=1

∫

B r
4
(x0)

|∇µ(u − v)|
2kp
µ dx

≤ C
(ρ

r

)m
k
∑

µ=1

∫

Br (x0)

|∇µu|
2kp
µ dx + C

k
∑

µ=1

∫

B r
4
(x0)

|∇µ(u−v)|
2kp
µ dx .

(8)

In view of Lemma 2.2, we introduce the auxiliary maps u f and ug jl
for all j, l ≥ 0 with

1 ≤ 2 j + l ≤ k as the solutions to the Dirichlet problems

�ku f = f with u f − u ∈ W
k,2p
0 (Br (x0)),

�kug jl
= ∇(l) · � j g jl with ug jl

∈ W
k,2p
0 (Br (x0)),

where f and g jl satisfy (3). Observe that the uniqueness of the Dirichlet problems implies

u = u f +
∑

j, l ≥ 0
1 ≤ 2 j + l ≤ k

ug jl
. (9)

Moreover, u f − v ∈ W
k,2p
0 (Br (x0)) satisfies

�k(u f − v) = f.

Lemma 2.2, Hölder’s inequality, and Nirenberg’s interpolation inequality (33) give

‖ f ‖L p(Br (x0)) ≤ C
∑

λ∈	

k
∏

µ=1

∥

∥∇µu
∥

∥

γλ,µ

L
2kp
µ (Br (x0))

≤ C
∑

λ∈	

k
∏

µ=1

‖u‖
γλ,µ(1−

µ
k
)

L∞(Br (x0))
‖u‖

µγλ,µ
k

W k,2p(Br (x0))

≤ C‖u‖2
W k,2p(Br (x0))

< ∞,

and similarly, we obtain

‖g jl‖L
r jl (Br (x0)) ≤ C‖u‖

η jl

W k,2p(Br (x0))
< ∞, (10)

where

r jl =
2kp

2k − (2 j + l)
and 1 ≤ η jl :=

2k − (2 j + l)

k
≤ 2.

Thus, Lemma B.1 and Lemma B.3 imply that

u f − v ∈ W 2k,p(Br (x0)), ug jl
∈ W 2k−(2 j+l),r jl (Br (x0)),

and
∥

∥

∥
∇2k(u f − v)

∥

∥

∥

L p(Br (x0))
≤ C‖ f ‖L p(Br (x0)),

∥

∥

∥
∇2k−(2 j+l)ug jl

∥

∥

∥

L
r jl (Br (x0))

≤ C‖g jl‖L
r jl (Br (x0)). (11)

123



Ann Glob Anal Geom (2009) 35:63–81 71

We remark that the only place where we need p > 1 is to ensure the first estimate for u f −v.

From (9), we get

∫

B r
4
(x0)

|∇µ̃(u − v)|
2kp
µ̃ dx ≤ C

∫

B r
4
(x0)

|∇µ̃(u f − v)|
2kp
µ̃ dx

+ C
∑

j, l ≥ 0
1 ≤ 2 j + l ≤ k

∫

B r
4
(x0)

|∇µ̃ug jl
|

2kp
µ̃ dx (12)

for 1 ≤ µ̃ ≤ k. We apply the Gagliardo–Nirenberg interpolation inequality (34), Lemma

B.2, estimates (11), and Lemma 2.2 to obtain

∥

∥

∥
∇µ̃(u f − v)

∥

∥

∥

L
2kp
µ̃ (B r

4
(x0))

≤ C
[

u f − v
]1−

µ̃
2k

B M O(B r
4
(x0))

‖u f − v‖
µ̃
2k

W 2k,p(B r
4
(x0))

≤ C
[

u f − v
]1−

µ̃
2k

B M O(B r
4
(x0))

‖∇2k(u f − v)‖
µ̃
2k

L p(Br (x0))

≤ C
[

u f − v
]1−

µ̃
2k

B M O(B r
4
(x0))

‖ f ‖
µ̃
2k

L p(Br (x0))

≤ C
[

u f − v
]1−

µ̃
2k

B M O(B r
4
(x0))

∥

∥

∥

∥

∥

∥

∑

λ∈	

k
∏

µ=1

|∇µu|γλ,µ

∥

∥

∥

∥

∥

∥

µ̃
2k

L p(Br (x0))

,

with
∑

µ µγλ,µ = 2k for every λ ∈ 	, where a resacling argument shows that the constant

C is independent of r . Next, we use Hölder’s and Young’s inequalities to derive

∥

∥

∥

∥

∥

∥

∑

λ∈	

k
∏

µ=1

|∇µu|γλ,µ

∥

∥

∥

∥

∥

∥

L p(Br (x0))

≤
∑

λ∈	

k
∏

µ=1

∥

∥∇µu
∥

∥

γλ,µ

L
2kp
µ (Br (x0))

≤ C

k
∑

µ=1

∥

∥∇µu
∥

∥

2k
µ

L
2kp
µ (Br (x0))

,

where we remark that
∑k

µ=1
µγλ,µ

2k
= 1. Combining the above estimates, we obtain

∫

B r
4
(x0)

|∇µ̃(u f − v)|
2kp
µ̃ dx ≤ C

[

u f − v
]

(

1−
µ̃
2k

)

2kp
µ̃

B M O(B r
4
(x0))

k
∑

µ=1

∫

Br (x0)

|∇µu|
2kp
µ dx . (13)

For the second term in (12), as before, the Gagliardo–Nirenberg interpolation inequality (34)

gives

∥

∥

∥
∇µ̃ug jl

∥

∥

∥

L
2kp
µ̃ (B r

4
(x0))

≤ C
[

ug jl

]1−
µ̃
k
θ jl

B M O(B r
4
(x0))

∥

∥ug jl

∥

∥

µ̃
k
θ jl

W
2k−(2 j+l),r jl (B r

4
(x0))

, (14)

where

1

2
≤ θ jl :=

k

2k − (2 j + l)
= η−1

jl ≤ 1

for all j, l ≥ 0 with 1 ≤ 2 j + l ≤ k. Furthermore, we again apply Lemma B.2 with

µ = 2k − (2 j + l), estimates (11), Lemma 2.2, Hölder’s inequality, and Young’s inequality
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to get

∥

∥ug jl

∥

∥

W
2k−(2 j+l),r jl (Br (x0))

≤

∥

∥

∥
∇2k−(2 j+l)ug jl

∥

∥

∥

L
r jl (Br (x0))

≤ C
∥

∥g jl

∥

∥

L
r jl (Br (x0))

≤ C
∑

λ∈	

k
∏

µ=1

∥

∥∇µu
∥

∥

γλ,µ

L
2kp
µ (Br (x0))

≤ C

k
∑

µ=1

∥

∥∇µu
∥

∥

kη jl
µ

L
2kp
µ (Br (x0))

, (15)

where

η jl :=
2k − (2 j + l)

k
= θ−1

jl .

Combining (14) and (15) gives

∫

B r
4
(x0)

|∇µ̃ug jl
|

2kp
µ̃ dx ≤ C

[

ug jl

]

(

1−
µ̃
k
θ jl

)

2kp
µ̃

B M O(B r
4
(x0))

k
∑

µ=1

∫

Br (x0)

|∇µu|
2kp
µ dx . (16)

From Lemma 3.3 below, we infer

[

u f − v
]

(

1−
µ̃
2k

)

2kp
µ̃

B M O(B r
4
(x0))

+
∑

j,l

[

ug jl

]

(

1−
µ̃
k
θ jl

)

2kp
µ̃

B M O(B r
4
(x0))

≤ Cǫβ (17)

for some β > 0, all 1 ≤ µ̃ ≤ k and all j, l ≥ 0 with 1 ≤ 2 j + l ≤ k. Thus, from (12)–(13)

and (16)–(17) we conclude

∫

B r
4
(x0)

|∇µ̃(u − v)|
2kp
µ̃ dx ≤ Cǫβ

k
∑

µ=1

∫

Br (x0)

|∇µu|
2kp
µ dx . (18)

Finally, we combine inequalities (8) and (18) into

ρ2kp−m

k
∑

µ=1

∫

Bρ (x0)

|∇µu|
2kp
µ dx

≤ C1

(

(ρ

r

)2kp

+ ǫβ
(ρ

r

)2kp−m
)

r2kp−m

k
∑

µ=1

∫

Br (x0)

|∇µu|
2kp
µ dx .

We conclude the proof of this proposition by setting τ :=
ρ
τ

equal to (2C1)
− 1

2kp and choosing

ǫ > 0 sufficiently small so that C1ǫ
βτ 2kp−m ≤ 1

4
. ⊓⊔

It remains to show (17) for which, as a first step, we prove the subsequent lemma.
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Lemma 3.2 There exists a constant C > 1 such that

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Br (x0))

≤ C

k
∑

µ=1

[

∇µu
]

2k
µ

M
2k
µ ,2k

(B4r (x0))

+ Cr2k−m

k
∑

µ=1

∫

Br (x0)

|∇µug jl
|

2k
µ dx . (19)

Proof For Bs(x) ⊂ B4r (x0), we consider the k-harmonic extension v jl of ug jl
on Bs(x),

where ug jl
is set to zero outside Br (x0). Then, w jl := ug jl

− v jl ∈ W
k,2
0 (Bs(x)) satisfies

�kw jl = ∇(l) · � j g̃ jl ,

where g̃ jl := χBr (x0)g jl . Analogous to (10), we conclude that w jl ∈ W 2k−(2 j+l),r jl (Bs(x)),

and similar to (15), we get

∥

∥w jl

∥

∥

W
2k−(2 j+l),r jl (Bs (x))

≤ C

k
∑

µ=1

∥

∥∇µu
∥

∥

kη jl
µ

L
2k
µ (Bs (x))

.

Here and henceforth in the proof of Lemma 3.2, we set p = 1 and observe that the second

estimate in (11) is still valid in this case.

Applying the Gagliardo–Nirenberg inequality (34) and the preceding estimate gives

∫

B s
4
(x)

|∇λw jl |
2k
λ dx ≤ C

[

w jl

]
2k
(

1
λ
− 1

2k−(2 j+l)

)

B M O(B s
4
(x))

2k−(2 j+l)
∑

µ=0

∫

B s
4
(x)

|∇µw jl |
r jl dx

≤ C
[

w jl

]
2k
(

1
λ
− 1

2k−(2 j+l)

)

B M O(B s
4
(x))

k
∑

µ=1

∫

Bs (x)

∣

∣∇µu
∣

∣

2k
µ dx (20)

for 1 ≤ λ ≤ k. As v jl is the k-harmonic extension of ug jl
, we obtain with Hölder’s inequality,

Poincaré’s inequality, and Lemma C.2

[

w jl

]2k

B M O(B s
4
(x))

≤ sup
B⊂B s

2
(x)

⎧

⎨

⎩

−

∫

B

|w jl − w jl B
|dx

⎫

⎬

⎭

2k

≤ C
[

∇w jl

]2k

M2,2(B s
2
(x))

≤ C
[

∇ug jl

]2k

M2,2(B s
2
(x))

+ C
[

∇v jl

]2k

M2,2(B s
2
(x))

≤ C
[

∇ug jl

]2k

M2,2(B s
2
(x))

+ C

⎛

⎜

⎝

k
∑

µ=1

∫

Bs (x)

∣

∣∇µug jl

∣

∣

2k
µ dx

⎞

⎟

⎠

µ

. (21)

Arguing with the help of Poincaré’s inequality and (10), we show that

‖ug jl
‖W k,2(Br (x0)) ≤ C‖∇kug jl

‖L2(Br (x0))≤C‖g jl‖L2(Br (x0))

≤ C‖u‖W k,2(Br (x0)) ≤ Cǫ ≤ 1,
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provided ǫ > 0 is sufficiently small. Thus, we can omit the exponent µ in (21) and estimate

[

w jl

]2k

B M O(B s
4
(x))

≤ C

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Bs (x))

. (22)

Combining estimates (20) and (22) with Young’s inequality yields

∫

B s
4
(x)

|∇λw jl |
2k
λ dx ≤ C

⎛

⎝

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Bs (x))

⎞

⎠

(

1
λ
− 1

2k−(2 j+l)

)

k
∑

µ=1

∫

Bs (x)

∣

∣∇µu
∣

∣

2k
µ dx

≤ Cγ

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Bs (x))

+ C(γ )

k
∑

µ=1

∥

∥∇µu
∥

∥

2kC(λ)
µ

L
2k
µ (Bs (x))

, (23)

with γ > 0 and C(λ) > 1 for 1 ≤ 2 j + l, λ ≤ k. With a rescaling argument, this gives

∫

B s
4
(x)

|∇λw jl |
2k
λ dx ≤ Csm−2kγ

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Bs (x))

+ C(γ )

k
∑

µ=1

∫

Bs (x)

|∇µu|
2k
µ dx, (24)

where the constants are now independent of s and λ. Here, we also used that

‖∇µu‖
L

2k
µ (B4r (x0))

≤ 1 for 1 ≤ µ ≤ k, provided ǫ > 0 is sufficiently small. Combin-

ing estimate (24) with Lemma C.1, we estimate for 0 < ρ ≤ s
4

as in (8)

k
∑

µ=1

∫

Bρ (x)

∣

∣∇µug jl

∣

∣

2k
µ dx ≤ C

(ρ

s

)m
k
∑

µ=1

∫

B s
4
(x)

∣

∣∇µug jl

∣

∣

2k
µ dx + C

k
∑

µ=1

∫

B s
4
(x)

∣

∣∇µw jl

∣

∣

2k
µ dx

≤ C
(ρ

s

)m
k
∑

µ=1

∫

Bs (x)

∣

∣∇µug jl

∣

∣

2k
µ dx + C(γ )

k
∑

µ=1

∫

Bs (x)

∣

∣∇µu
∣

∣

2k
µ dx

+ Csm−2kγ

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Bs (x))

. (25)

The proof of the lemma is completed by the following iteration argument. To simplify

notation, we define T (ρ) := ρ2k−m
∑k

µ=1

∫

Bρ (x)
|∇µug jl

|
2k
µ dx so that the above estimate

becomes

T (ρ) ≤ C
(ρ

s

)2k

T (s) + C(γ )
(ρ

s

)2k−m

s2k−m

k
∑

µ=1

∫

Bs (x)

|∇µu|
2k
µ dx

+ Cγ
(ρ

s

)2k−m
k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Bs (x))

. (26)
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From now on, we choose τ :=
ρ
s

sufficiently small such that Cτ 2k ≤ 1
2

. For any Bσ (x) ⊂

B2r (x0), there exists i ∈ N (simply set i =
⌊

log σ
2r

/ log τ
⌋

) with τ i+12r ≤ σ ≤ τ i 2r , and

therefore, (τ i 2r)2k−m ≤ σ 2k−m ≤ (τ (i+1)2r)(2k−m). Estimate (26) then gives

T (τ i 2r) ≤
1

2
T (τ i−12r) + S,

with

S := C(γ )τ 2k−m

k
∑

µ=1

[

∇µu
]

2k
µ

M
2k
µ ,2k

(B4r (x0))

+ Cγ τ 2k−m

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Br (x0))

.

Iterating this inequality gives

T (τ i 2r) ≤ T (2r) +

i
∑

µ̃=1

1

2µ̃
S ≤ T (2r) + S,

from which we have

T (σ ) ≤ CT (τ i 2r)

≤ C(γ )

k
∑

µ=1

[

∇µu
]

2k
µ

M
2k
µ ,2k

(B4r (x0))

+ Cr2k−m

k
∑

µ=1

∫

Br (x0)

∣

∣∇µug jl

∣

∣

2k
µ dx

+ Cγ

k
∑

µ=1

[

∇µug jl

]

2k
µ

M
2k
µ ,2k

(Br (x0))

.

The desired result now follows from taking the supremum over all such balls Bσ (x), and

choosing γ > 0 sufficiently small to absorb the last term on the right-hand side. ⊓⊔

Now we are able to complete the proof of Proposition 3.1 with the following

Lemma 3.3 Assume that

k
∑

µ=1

[∇µu]
M

2k
µ ,2k

(Br (x0))
≤ ǫ.

Then, we have

[

u f − v
]

B M O(B r
4
(x0))

+
∑

j,l

[

ug jl

]

B M O(B r
4
(x0))

≤ Cǫβ

for some β > 0 and all j, l ≥ 0 such that 1 ≤ 2 j + l ≤ k.

Proof Similar to (20) and (23), we estimate

∫

Br (x0)

|∇λug jl
|

2k
λ dx ≤ Cγ

[

ug jl

]2k

B M O(Br (x0))
+ C(γ )

k
∑

µ=1

∥

∥∇µu
∥

∥

2k
µ

L
2k
µ (Br (x0))

(27)

for 1 ≤ λ ≤ k and every γ > 0. Moreover, Poincaré’s inequality implies

[

ug jl

]2k

B M O(Br (x0))
≤ C

[

ug jl

]2k

B M O(Rm )
≤ C

[

∇ug jl

]2k

M2k,2k (Br (x0))
.
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Combining this with Lemma 3.2 and estimate (27) gives

[

∇ug jl

]2k

M2k,2k (Br (x0))
≤ Cγ

[

∇ug jl

]2k

M2k,2k (Br (x0))
+ C(γ )

k
∑

µ=1

[

∇µu
]

2k
µ

M
2k
µ ,2k

(B4r (x0))

which for γ > 0 sufficiently small implies

[

∇ug jl

]2k

M2k,2k (Br (x0))
≤ C

k
∑

µ=1

[

∇µu
]

2k
µ

M
2k
µ ,2k

(B4r (x0))

.

Applying Hölder’s inequality and Poincaré’s inequality together with the above estimate, we

infer

[

ug jl

]2k

B M O(B r
4
(x0))

≤ C
[

∇ug jl

]2k

M2k,2k (Br (x0))
≤ C

k
∑

µ=1

[

∇µu
]

2k
µ

M
2k
µ ,2k

(B4r (x0))

≤ Cǫβ (28)

for some β > 0. From (9), we deduce

[

u f − v
]

B M O(B r
4
(x0))

≤ C
∑

j,l≥0

[

ug jl

]

B M O(B r
4
(x0))

+ C [u − v]B M O(B r
4
(x0)) . (29)

Hölder’s inequality and Poincaré’s inequality imply

[u − v]2k
B M O(B r

4
(x0)) ≤ C [∇(u − v)]2k

M2,2(B r
2
(x0))

≤ C

(

[∇u]2k
M2,2(B r

2
(x0))

+ [∇v]2k
M2,2(B r

2
(x0))

)

. (30)

As v is the k-harmonic extension of u, Lemma C.2 and Hölder’s inequality imply

[∇u]2k
M2,2(B r

2
(x0))

+ [∇v]2k
M2,2(B r

2
(x0))

≤ C

k
∑

µ=1

[

∇µu
]2k

M2,2µ(Br (x0))

≤ C

k
∑

µ=1

[

∇µu
]2k

M
2k
µ ,2k

(Br (x0))

≤ Cǫβ (31)

for some β > 0. Estimate (17) now follows from (28)–(31), which completes the proof.

⊓⊔

To finish the proof of Theorem 1.1, note that Proposition 3.1 implies

ρ2kp−m

k
∑

µ=1

∫

Bρ (x0)

|∇µu|
2kp
µ dx ≤ Cργ

for γ > 0 and all Bρ(x0) ⊂ B r0
4
(y0). Hence, by Morrey’s Dirichlet growth theorem in [17,

Theorem 3.5.2], we conclude that u ∈ C
0,

γ
p in a neighborhood of y0. The smoothness of u

near y0 then follows from elliptic bootstrapping arguments, which completes the proof of

Theorem 1.1.
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4 The harmonic and biharmonic cases

Here we give a derivation of Corollary 1.2. For stationary harmonic maps, i.e., k = 1, Cor-

ollary 1.2 follows from Theorem 1.1 and

Proposition 4.1 (Monotonicity formula [19]) For u ∈ W 1,2(B2, N ) stationary harmonic

and 0 ≤ ρ ≤ r ≤ 1, we have

ρ2−m

∫

Bρ

|∇u|2dx ≤ r2−m

∫

Br

|∇u|2dx . (32)

Indeed, consider u ∈ W 1,2p(�, R
N ) stationary harmonic and define the set

S :=

⎧

⎪

⎨

⎪

⎩

x0 ∈ � : lim
r→0

sup r2p−m

∫

Br (x0)

|∇u|2pdx ≥ γ p

⎫

⎪

⎬

⎪

⎭

,

with γ > 0 small. We have by Ziemer [33, Corollary 3.2.3.] that Hm−2p(S) = 0. Applying

Hölder’s inequality, we get that for any y0 ∈ � \ S, there exists R > 0 s.t.

R2−m

∫

BR(y0)

|∇u|2dx ≤ C

⎛

⎜

⎝
R2p−m

∫

BR(y0)

|∇u|2pdx

⎞

⎟

⎠

1
p

< γ.

Hence, the monotonicity formula (32) for x0 ∈ B R
2
(y0) implies

ρ2−m

∫

Bρ (x0)

|∇u|2dx ≤ C R2−m

∫

B R
2

(x0)

|∇u|2dx

≤ C

∫

BR(y0)

|∇u|2dx

≤ C2γ.

Fixing γ := ǫ
C2

, where ǫ is given by Theorem 1.1, the claim follows.

For stationary biharmonic maps, i.e., k = 2, we replace Proposition 4.1 by

Proposition 4.2 (Monotonicity formula [5,2]) For u ∈ W 2,2(B2, N ) (extrinsically) station-

ary biharmonic and a.e. 0 < ρ < r ≤ 1, we have

r4−m

∫

Br

|�u|2dx − ρ4−m

∫

Bρ

|�u|2dx = P + R,

where

P = 4

∫

Br \Bρ

(

(u j + x i ui j )
2

|x |m−2
+

(m − 2)(x i ui )
2

|x |m

)

dx

R = 2

∫

∂ Br \∂ Bρ

(

−
x i u j ui j

|x |m−3
+ 2

(x i ui )
2

|x |m−1
− 2

|∇u|2

|x |m−3

)

dσ.
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We observe that Nirenberg’s interpolation inequality (33) implies that ∇u ∈ L4p(�) and

define

S :=

⎧

⎪

⎨

⎪

⎩

x0 ∈ � : lim
r→0

sup r4p−m

∫

Br (x0)

(

|∇2u|2p + |∇u|4p
)

dx ≥ ηp

⎫

⎪

⎬

⎪

⎭

with η > 0 small. We have by Ziemer [33, Corollary 3.2.3.] that Hm−4p(S) = 0. For any

y0 ∈ � \ S there exists R > 0 s.t.

R4−m

∫

BR(y0)

(|∇u|4 + |∇2u|)2dx ≤ C

⎛

⎜

⎝
R4p−m

∫

BR(y0)

(|∇u|4p + |∇2u|2p)dx

⎞

⎟

⎠

1
p

< η.

As in the paper of Chang, et al. [5], the monotonicity formula implies [5, Corollary 4.4].

Combining this with [32, Lemma 5.4] (replacing [5, Corollary 4.7]), we can pursue the iter-

ation argument in [5, Lemma 4.8] to conclude the existence of ρ0 > 0 and ǫ0 > 0 such that

if R4−m
∫

BR(y0)
(|∇u|4 + |∇2u|2)dx ≤ ǫ ≤ ǫ0, we have

ρ4−m

∫

Bρ (x0)

(|∇u|4 + |∇2u|2)dx ≤ C3ǫ

for all Bρ(x0) ⊂ Bρ0(y0). See also Struwe [27]. Fix ǫ := min( ǫ
C3

, ǫ0) > 0 and η := ǫ > 0,

where ǫ > 0 is given by Theorem 1.1. This completes the proof.
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Appendixes

Appendix A: Gagliardo–Nirenberg inequalities

The following interpolation inequality was proven by Nirenberg in [18].

Theorem A.1 (Gagliardo–Nirenberg type inequality 1) For k ∈ N and 1 < q, r ≤ ∞, let

u ∈ W k,r (Rm) ∩ Lq(Rm). Then, for 0 ≤ j < k, there exists C > 0 independent of u such

that

‖∇ j u‖L p(Rm ) ≤ C‖∇ku‖a
Lr (Rm )‖u‖1−a

Lq (Rm )
, (33)

where

1

p
−

j

m
= a

(

1

r
−

k

m

)

+ (1 − a)
1

q
,

for all

j

k
≤ a ≤ 1.
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Remark A.1 For a bounded domain � with smooth boundary, the result remains true if we

add the term C‖u‖L q̃ (�) for any q̃ > 0 to the right side of (33). The constants then also

depend on �.

In particular, we infer from Theorem A.1 that for a = 1
2

and q = ∞

‖∇ j u‖2
L p(Rm ) ≤ C‖∇ku‖Lr (Rm )‖u‖L∞(Rm ),

where

1

p
−

j

m
=

1

2r
−

k

2m
.

However, for our purposes in Sect. 3, this is not sharp enough, whence we need to employ

an improved version, where the L∞-norm is substituted by the B M O-seminorm. Such an

inequality first appeared in Adams-Frazier [1] and also in Meyer-Rivière [15], Strzelecki

[29], and Pumberger [20], where the following version of the Gagliardo–Nirenberg type

inequality is stated.

Theorem A.2 (Gagliardo–Nirenberg type inequality 2) Assume that u ∈ W k,r (�) for some

r > 1 and 1 ≤ j < k, with j, k ∈ N. If u ∈ B M O(�), then ∇ j u ∈ L p(�) for p := k
j
r and

‖∇ j u‖L p(�) ≤ C [u]1−θ
B M O(�)

‖u‖θ
W k,r (�)

, (34)

where θ :=
j
k

, for some constant C = C(k, j, r,�).

Remark A.2 When � = Bs(x0) for some radius s > 0, Eq. 34 becomes

(

s j p−m

∫

Bs (x0)

|∇ j u|pdx

)
1
p

≤ C [u]1−θ
B M O(Bs (x0))

⎛

⎝

k
∑

µ=0

sµr−m

∫

Bs (x0)

|∇µu|r dx

⎞

⎠

θ
r

,

where the constant C is independent of s.

Appendix B: Linear estimates

For m ≥ 2k + 1, the fundamental solution of �k on R
m is

Ŵk(x − y) = c|x − y|2k−m,

i.e.,

�kŴk(x − y) = δ(x − y) for x, y ∈ R
m .

The kernel K := ∇2kŴk verifies the hypotheses of Stein [26, Theorem II.3.2]:

Lemma B.1 Let f ∈ L p(�), 1 < p < ∞, K := ∇2kŴk , and u := K ⋆ f , which is the

convolution of f by K . Then, u ∈ W 2k,p(�)

�ku = f a.e.

and there exists C > 0 depending only on n and p such that

‖∇2ku‖L p(�) ≤ C‖ f ‖L p(�).
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Furthermore, we have

Lemma B.2 For 1 < p < ∞, µ ∈ N ∩ (k, 2k], and u ∈ W µ,p(�) ∩ W
k,p
0 (�) there exists

a constant C (independent of u) such that

‖u‖Wµ,p(�) ≤ C‖�
µ
2 u‖L p(�) for µ even,

and

‖u‖Wµ,p(�) ≤ C‖∇�
µ−1

2 u‖L p(�) for µ odd.

Proof The proof is completely analogous to Gilbarg–Trudinger [10, Lemma 9.17]. ⊓⊔

Lemma B.3 For a ball B ⊂ R
m , g ∈ Lr (B) with 1 < r < ∞, k ≥ 1, and j, l ≥ 0 with

1 ≤ l + 2 j ≤ k, there exists a unique weak solution u ∈ W
k,2
0 (B, R

N ) of

�ku = ∇(l) · � j g

satisfying

‖∇2k−(2 j+l)u‖Lr (B) ≤ C‖g‖Lr (B).

Proof The proof is similar to Gilbarg–Trudinger [10] and Giaquinta [8,9]. In the case r = 2,

existence of a unique solution follows from the Lax-Milgram Theorem, and using the method

of difference quotients, we also infer the existence of higher derivatives. Following the argu-

ments of Giaquinta [8], we conclude Lemma B.3 in this case. Stampacchia’s interpolation

theorem (see [9, Theorem 4.6]) then states that the claim remains true for 2 < r < ∞ and a

duality argument completes the proof. ⊓⊔

Appendix C: Decay Lemma

Lemma C.1 Let u ∈ W k,2(�) be a weakly k-harmonic function with ‖u‖W k,p(�) ≤ 1. For

x0 ∈ �, 0 < ρ ≤ r ≤ dist (x0, ∂�), and 2 ≤ p < ∞, we have C > 0 independent of u and

ρ such that

ρ−m

k
∑

l=1

∫

Bρ (x0)

|∇lu|
kp
l dx ≤ Cr−m

k
∑

l=1

∫

Br (x0)

|∇lu|
kp
l dx .

Proof The proof is similar to Giaquinta [8]. ⊓⊔

Lemma C.2 For r > 0, we consider u ∈ W k,2(Br ) and v solving the Dirichlet problem
{

�kv = 0

u − v ∈ W
k,2
0 (Br ).

Then, there exists C > 0 independent of u and r with

k
∑

µ=1

[

∇µv
]2

M2,2µ(B r
2
)
≤ C

k
∑

µ=1

∫

Br

|∇µu|2dx .

Proof The proof is again similar to Giaquinta [8]. ⊓⊔
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