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Abstract

In this article we prove the regularity of weakly biharmonicmaps of domains
in Euclidean four space into spheres, as well as the corresponding partial regu-
larity result of stationary biharmonic maps of higher-dimensional domains into
spheres.c© 1999 John Wiley & Sons, Inc.

Introduction

In this article we consider the notion of biharmonic maps andbegin an analytic
study of the regularity properties of such maps in dimensions greater than or equal
to four. To motivate our study, we observe that the conformaltransformations of
Euclidean spaces are not in general harmonic except in dimension two. The ba-
sic reason is that the energy integrand for harmonic maps is conformally invariant
only in dimension two. Thus it is natural to study critical points of the conformally
invariant energy functionals. There have been several studies of the energy inte-
grand associated with thep-Laplacian (see, for example, [5, 11]). In dimension
n the natural first-order functional is the conformally invariant n-energy:

R
|∇u|n.

Unfortunately, the class ofn-harmonic maps, although quite abundant, do not en-
joy good regularity properties due to the possible degeneration of |∇u|n (see [9]).
For this reason, it is of interest to study higher-order energy functionals that are
conformally invariant and enjoy better regularity properties.

In this article we consider for simplicity the class of biharmonic maps from Eu-
clidean domains to spheres. We realize the standard spheresS

k as unit vectors in
R

k+1, and consider mapsu : Ω → S
k as vector-valued functions that are contained

in S
k. The energy functional for biharmonic maps is then

R
Ω |∆u|2dx. A locally de-

fined biharmonic map is a map that is critical with respect to compactly supported
variations. We note that in the case where the domain has dimension four, this en-
ergy functional is conformally invariant, and hence conformal maps of Euclidean
four-space are biharmonic in this sense. We remark that thisdefinition of bihar-
monic map depends on the embedding of the target space in Euclidean space. We
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do not use the more natural definition in which the energy integrand is replaced by
the intrinsic|(∆u)T |2 wherevT denotes the tangential component of the vectorvT .

In analogy with the regularity theory of harmonic maps, we derive correspond-
ing regularity results for biharmonic maps. Our main results are the following:

• Theorem 2.1:Any biharmonic map in W2,2 defined on a disk of dimension
four to the standard sphereSk is Hölder-continuous.

• Theorem 4.1:A stationary biharmonic map from an m-dimensional Eucli-
dean disk(m≥ 5) to the sphereSk is Hölder-continuous except on a set of
(m−4)–dimensional Hausdorff measure zero.

• Theorem 5.1:If u is a weak solution of the biharmonic map equation and if
u is continuous in B1, then u is smooth.

A companion article [2] to this one provides a simplified treatment of the ana-
logues of the preceding results for harmonic maps and servesas an introduction to
the techniques used here as well as references to previous work. Our method builds
on the technique first introduced by Hélein [7] to write the nonlinearity in deter-
minant form but proceeds more directly to exploit the special quadratic structure
of the nonlinearity; thus we were able to avoid the deep structure theory of Hardy
BMO duality. Our argument may allow flexibility to deal with other problems of
this kind. We hope to return to the problem involving generaltargets in a future
article. We mention here the related article [1] that provesregularity of minimizing
solutions of semilinear scalar equations of fourth order with nonlinearity of similar
structure to the biharmonic map equation. We also mention that Hardt and Mou
also have some regularity results for locally minimizing biharmonic maps [6].

We remark here that Theorems 2.1 and 4.1 remain valid for mapsfrom domains
in a Riemannian manifold. In fact, the elliptic estimates weuse remain valid pro-
vided we interpret all derivatives in the formula as covariant derivatives. Recently
a result analogous to Theorem 2.1 with the extrinsic quantity ∆u replaced by the
intrinsic (∆u)T was also established by Y. Ku.

1 Derivation of the Euler Equation

Consideru a map(Mm,g) → (Sk,h) with h the standard canonical metric on
the unit sphereSk. Supposeu = (u1, . . . ,uk+1) is a critical point of the energy
functional; defineE2(u) ≡

R
M ∑k+1

α=1(∆guα)2 dVg. In this section we will derive the
Euler-Lagrange equation foru.

PROPOSITION1.1 Suppose u∈W2,2 is a critical point of the functional E2; then
u satisfies

∆2uα = −uαλ , α = 1,2, . . . ,k+1,(1.1)

whereλ = ∑k+1
β=1[(∆uβ)2 + ∆(|∇uβ|2) + 2∇uβ ·∇∆uβ] and ∇∆uβ exists in the Lp

sense for all p< 3
4.
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PROOF: Sinceu : Mm → S
k, the Euler equation ofE2(u) = 0 satisfies

(∆2u)T = 0,

where(∆2u)T denotes the tangential component of∆2u. Therefore for someλ,
∆2uα = (∆2uα)N = −uαλ where(∆2u)N denotes the normal component of∆2u.

It remains to computeλ. To do so, we observe that when the target manifold
of the map isSk, we haveuβ ·uβ = 1; hence∇uβ ·uβ = 0 and∆uβ ·uβ = −|∇uβ|2

(where we treatuβ as a vector, and the equality holds by summing overβ). Thus if
we inner product both sides of (1.1) byuα and sum overα, we get

k+1

∑
α=1

∆2uα ·uα = −λ .(1.2)

Multiplying both sides of (1.2) by a testing functionϕ ∈ C∞
0 (M) and integrating

overM, we get

−

Z
λϕ = ∑

α

Z
(∆2uα)uαϕ

= ∑
α

Z
∆uα∆(uαϕ)

= ∑
α

[Z
(∆uα)2ϕ+2

Z
∆uα∇uα∇ϕ+

Z
∆uαuα∆ϕ

]

= −∑
α

Z
[

(∆uα)2 +2∇∆uα∇uα]

ϕ−∑
α

Z
|∇uα|2∆ϕ

= −∑
α

Z
[

(∆uα)2 +2∇∆uα∇uα]

ϕ−∑
α

Z
∆|∇uα|2ϕ .

Thus

λ = ∑
β

[(∆uβ)2 + ∆(|∇uβ|2)+2∇∆uβ ·∇uβ]

as claimed.

In the following, we are going to rewrite the right-hand sideof equation (1.2) in
a “divergence" form. The purpose of doing so is to establish our regularity results
later. (Some motivation for this approach is explained in [2]). We remark that for
the purpose of establishing our regularity result (Theorem2.1 below) for domain
Mm with m= dimM = 4, we only need a simpler form of the right-hand side of
(1.2) than the form that appears in (1.3), which we will derive below. But for our
approach to work for allm≥ 4, it is easier that we establish the right-hand side as
it appears in (1.3).

We now fix a geodesic ball and assume it is a ball of radius 1, B1 = B1(x0).
Fix an indexα, and for eachα = 1, . . . ,k+1, denotecα =

R
-B1u

α(x)dx, the average
value ofuα over B1. We are going to use the convention that the upper indexα,
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β, etc., denotes the component ofu, the lower indexi, j, etc., denotes the partial
differentiation in thei, j, etc., direction. We also skip the summation overβ and j
with the understanding thatβ is summed over from 1 tok+1 and thatj is summed
over from 1 tom.

Definition. We denote a termof typeI by T1 if

T1 ≡
(

uα
j ∆uβ(uβ −cβ)

)

j
or

(

(uα −cα)uβ
i uβ

i j

)

j
terms.

We denote a term oftypeII by T2 if

T2 ≡ ∆
(

(uα −cα)|∇uβ|2
)

,∆((uβ −cβ)∆uβ) or ∆
(

uα(uβ −cβ)∆uβ
)

terms.

We denote a termof typeIII by T3 if

T3 ≡
(

(uβ −cβ)uβ
j

)

jii
.

PROPOSITION1.2 Suppose u: Mm → S
k satisfies equation(1.1); then the right-

hand side of(1.1)

−uαλ ≡ uα
[

(∆uβ)2 + ∆(|∇uβ|2)+2∇uβ ·∇∆uβ
]

= linear combination of terms of the form T1, T2, and T3 .
(1.3)

We start with a technical lemma.

LEMMA 1.3 For each fixedα,

cα(∆|∇uβ|2) ,(1.4)

(uα
j (|∇uβ|2)) j ,(1.5)

are a combination of Tℓ terms forℓ = 1,2,3.

PROOF: To establish (1.4), we write

cα∆(|∇uβ|2) = cα∆(uβ
j u

β
j )

= cα∆
{(

(uβ −cβ)uβ
j

)

j
− (uβ −cβ)∆uβ

}

= cα
(

(uβ −cβ)uβ
j

)

jii
−cα

(

(uβ −cβ)∆uβ
)

ii

= T2 +T3 terms.

To establish (1.5), we have

(uα
j |∇uβ|2) j =

{(

(uα −cα)|∇uβ|2
)

j
−2(uα −cα)uβ

i uβ
i j

}

j

= ∆
(

(uα −cα)|∇uβ|2
)

−2
(

(uα −cα)uβ
i uβ

i j

)

j

= T2+T1 terms.
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PROOF OFPROPOSITION1.2: We name

S1 = uα(∆uβ)2 , S2 = 2uαuβ
j (∆uβ) j , S3 = uα∆|∇uβ|2 .

Then, using identitiesuβ ·uβ
j = 0 anduα∆∆uβ = uβ∆∆uα, we get

S2

2
= uαuβ

j (∆uβ) j

=
[

uα(∆uβ) j −uβ (∆uα) j

]

uβ
j

=
[

uα(∆uβ) j −uβ(∆uα) j −uα
j (∆uβ)+uβ

j (∆uα)
]

uβ
j

+
[

uα
j (∆uβ)−uβ

j (∆uα)
]

uβ
j

=
{[

uα(∆uβ) j −uβ(∆uα) j −uα
j (∆uβ)+uβ

j (∆uα)
]

(uβ −cβ)
}

j

+
[

uα
j (∆uβ)−uβ

j (∆uα)
]

uβ
j

=
{[

uα(∆uβ)−uβ(∆uα)
]

(uβ −cβ)
}

j j
−

{[

uα(∆uβ)−uβ(∆uα)
]

uβ
j

}

j

−2
{[

uα
j (∆uβ)−uβ

j (∆uα)
]

(uβ −cβ)
}

j
+

[

uα
j (∆uβ)−uβ

j (∆uα)
]

uβ
j

= −
{[

uα(∆uβ)−uβ(∆uα)
]

uβ
j

}

j

+
[

uα
j (∆uβ)−uβ

j (∆uα)
]

uβ
j +T1+T2 terms.

(1.6)

For theS3 term we have

S3 = uα∆|∇uβ|2

= (uα −cα)∆|∇uβ|2 +cα∆(|∇uβ|2) (by (1.4))

= ∆((uα −cα)|∇uβ|2)−2uα
j (|∇uβ|2) j − (∆uα)|∇uβ|2 +Tℓ terms

= −2(uα
j |∇uβ|2) j +(∆uα)|∇uβ|2 +Tℓ terms (by (1.5))

= (∆uα)|∇uβ|2 +Tℓ terms

= −(∆uα)uβ∆uβ +Tℓ terms.

(1.7)

From (1.7) we have

S1 +S3 =
[

uα∆uβ −uβ∆uα
]

∆uβ +Tℓ terms

=
{[

uα∆uβ −uβ∆uα
]

uβ
j

}

j
−

[

uα
j ∆uβ −uβ

j ∆uα
]

uβ
j

−
[

uα(∆uβ) j −uβ(∆uα) j

]

uβ
j +Tℓ terms
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= −
1
2

S2−
1
2

S2 +Tℓ terms (by (1.6))

= −S2 +Tℓ terms.

ThusS1 +S2 +S3 = combination ofTℓ terms as claimed.

2 Hölder Regularity on M4

In this section, we will prove the following theorem:

THEOREM 2.1 Any biharmonic map in W2,2 defined on a disk of dimension four
to the standard sphereSk is Hölder-continuous.

To prove the theorem, we start with some general inequalities for equations of
type like that of (1.3).

LEMMA 2.2 Fix a ball B onR
m. Suppose v∈W2,2 is a weak solution of

∆2v = div(F) =
m

∑
j=1

∂F j

∂x j
on B(2.1)

or

∆2v = ∆G on B(2.2)

or

∆2v = div(∆H j) =
m

∑
j=1

∂
∂x j

(∆H j) on B,(2.3)

with
{

v = 0 on ∂B
∂v
∂n = 0 on ∂B.

Then for any1 < q < ∞, we have either

‖∇3v‖Lq(B) . ‖F‖Lq(B)(2.4)

or

‖∇2v‖Lq(B) . ‖G‖Lq(B)(2.5)

or

‖∇v‖Lq(B) . ‖H‖Lq(B)(2.6)

accordingly.
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For any ballB of radiusr(B = Br) in R
m, any p > 1, andq with 1

q = 1
2 −

1
m,

denote

E(u)(Br) ≡

(

r4
Z
–
Br

|∇2u|2
)

1
2

+

(

rq
Z
–
Br

|∇u|q
)

1
q

Mp(u)(Br) ≡

(Z
–
Br

|u−u|p
)

1
p

,

(2.7)

where

u =
Z
–
Br

u and Dp(u)(Br) =

(

r p
Z
–
Br

|∇u|p
)

1
p

.

The following is the main technical lemma of this section:

LEMMA 2.3 Let u be as in Theorem2.1 and m= 4. Then, given any0 < β < 1,
there exists someτ < 1

4 andε > 0 so that if E(u)(B1) < ε, we have

(Mp0(u)+Dp1(u))(Bτ) < τβ(Mp0(u)+Dp1(u))(B1) ,(2.8)

where p1 is any fixed number strictly between2 and4, and 1
p0

= 1
p1
− 1

4.

PROOF OFLEMMA 2.3: We fixed a ballB, sayB = B1, onR
m, and some1

2 ≤

r ≤ 1 to be chosen later. Letk denote the biharmonic mapk = (k1, . . . ,kk) defined
on Br with ∆2kα = 0 on Br andkα = uα on ∂Br , and ∂kα

∂n = ∂uα

∂n on ∂Br . Denote
v = u− k; thenv satisfies equation (1.3). We then definevi , i = 1,2,3, to be the
unique function satisfying∆2vi = Ti onBr andvi =

∂vi
∂n = 0 on∂Br ; thenv= ∑3

i=1 vi .
We now apply Lemma 2.2 to each of the functionsvi and conclude that for any
1 < pi < ∞ and any constantA0 = (c1, . . . ,ck) we have

‖∇3v1‖Lp3(Br) +‖∇2v2‖Lp2(Br) +‖∇v3‖Lp1(Br)

. ‖(u−A0)∇u∇2u‖Lp3(Br) +‖(u−A0)|∇u|2‖Lp2(Br )

+‖(u−A0)∇u‖Lp1(Br) .

(2.9)

We choosep2 and p3 as 1
p2

= 1
p1

+ 1
m, 1

p3
= 1

p2
+ 1

m = 1
p1

+ 2
m, and apply Sobolev

embedding to the left-hand side of (2.9) to obtain

‖∇v‖Lp1(Br) . ‖(u−A0)∇u∇2u‖Lp3(Br) +‖(u−A0)|∇u|2‖Lp2(Br)

+‖(u−A0)∇u‖Lp1(Br) .
(2.10)

We observe that by our assumptionu∈W2,2, we have∇u∈W1,q with 1
q = 1

2 −
1
m.

Thus, we may apply the Hölder inequality to the right-hand side of (2.10) and
obtain

‖∇v‖Lp1(Br) .
(

‖∇2u‖2
L2(Br)

+‖∇u‖2
Lq(Br)

+‖∇u‖Lq(Br)

)

·
(

‖u−A0‖Ls(Br) +‖u−A0‖Lt (Br)

)

,
(2.11)
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where1
s = 1

p1
+ 3

m−1, 1
t = 1

p1
− 1

q = 1
p1

+ 1
m− 1

2.

Notice that in the special case whenm = 4, q = 4, we may apply Sobolev
embedding on the left-hand side of (2.11) to obtain forp0 = s= t, 1

p0
= 1

p1
− 1

4,

‖v‖Lp0(Br) +‖∇v‖Lp1(Br) .
(

‖∇2u‖2
L2(Br)

+‖∇u‖2
L4(Br)

+‖∇u‖L4(Br)

)

‖u−A0‖Lp0(Br) .
(2.12)

We now choosep1 to be any number strictly between 2 and 4 so thatp0, p2, p3 > 1,
and chooser with 1

2 ≤ r ≤ 1 so that

(2.13)

(Z
∂Br

|u−A0|
p0

)
1
p0

+

(Z
∂Br

|∇u|p1

)
1
p1

.

(Z
B1

|u−A0|
p0

)
1
p1

+

(Z
B1

|∇u|p1

)
1
p1

.

We then have for anyτ, τ < 1
4, and anyx ∈ Bτ that the biharmonic functionk

satisfies

|∇k(x)| .
Z

∂Br

|u−A0|+

Z
∂Br

∣

∣

∣

∣

∂u
∂n

∣

∣

∣

∣

.

(Z
B1

|u−A0|
p0

)
1
p0

+

(Z
B1

|∇u|p1

)
1
p1

(by 2.13)

= Mp0(u)(B1)+Dp1(u)(B1) ,

(2.14)

where we takeA0 =
R
-B1u. Thus it follows for (2.12) and (2.14) that for anyτ < 1

4,

Mp0(u)(Bτ)+Dp1(u)(Bτ)

=

(

τ−4
Z

Bτ

|u−u|p0

)
1
p0

+

(

τp1−4
Z

Bτ

|∇u|p1

)
1
p1

= τ−
4
p0 ‖u−u‖Lp0(Bτ) + τ1− 4

p1 ‖∇u‖Lp1(Bτ)

. τ−
4
p0 ‖u−k(0)‖Lp0(Bτ) + τ1− 4

p1 ‖∇u‖Lp1(Bτ)

. τ−
4
p0

(

‖v‖Lp0(Bτ) +‖k−k(0)‖Lp0(Bτ)

)

+ τ1− 4
p1 ‖∇v‖Lp1(Bτ) + τ1− 4

p1 ‖∇k‖Lp1(Bτ)

. τ1− 4
p1 (E2(u)+E(u))(B1)‖u−A0‖Lp0(B1) + τ sup

x∈Bτ

|∇k(x)|

. τ1− 4
p1 ε‖u−A0‖Lp0(B1) + τ

(

‖u−A0‖Lp0(B1) +‖∇u‖Lp1(B1)

)

.
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Thus, if we chooseτ sufficiently small and thenε small, we may conclude that
whenE(u)(B1) < ε, then

(Mp0(u)(Bτ)+Dp1(u)(Bτ)) ≤ τβ (Mp0(u)(B1)+Dp1(u)) (B1) ,

which finishes the proof of Lemma 2.3.

PROOF OFTHEOREM 2.1: We claim that we may apply Lemma 2.3 iteratively
to the functionu. That is, ifE(u)(B1) < ε, then we have for eachj

(Mp0(u)+Dp1(u)) (Bτ j ) ≤ τ jβ (Mp0(u)+Dp1(u)) (B1) .(2.15)

From (2.15) it follows from Morrey’s estimate thatu is Hölder-continuous.
To establish the iteration argument, it suffices to show thatE(u)(Br) < ε when-

everE(u)(B1) < ε wherer = τ j for all j = 1,2, . . . . Since in the casem= 4,

E(u)(Br) =

(Z
Br

|∇2u|2
)

1
2

+

(Z
Br

|∇u|4
)

1
4

,

it is clearE(u)(Br) < ε wheneverE(u)(B1) < ε. This establishes (2.15) and hence
the theorem.

3 Monotonicity Formula for Stationary Biharmonic Maps

In this section we will derive the monotonicity formula fromthe stationary
assumption of a biharmonic map. We begin with a lemma.

LEMMA 3.1 If u is a stationary biharmonic map on B2r , then when we write X=
Σxi

∂
∂xi

, we have Z
∂Br

|∆u|2X ·
X
r

dσ =

Z
Br

(X(|∆u|2)+m|∆u|2)dx.(3.1)

PROOF: Fix ε > 0 and letψε be a cutoff function defined on[0, r] such that
ψε(s) = 1 for 0≤ s≤ r − ε, ψε(s) = 1− s−(r−ε)

ε for r − ε ≤ s≤ r. Consider the
one-parameter (int) family of diffeomorphismsϕε(t) : B2r →B2r with ϕε(0)(x) = x
and

d
dt

∣

∣

∣

∣

t=0
ϕε(t)(x) = ψε(|x|)X(x) for all x∈ B2r .

The stationary assumption implies

0 =
d
dt

∣

∣

∣

∣

t=0

Z
B2r

|∆u|2(ϕε(t)(x)d(ϕ−1
ε (t)(x))

=
Z

B2r

ψεX(|∆u|2)+div(ψεX)|∆u|2dx

=

Z
B2r

(

ψεX(|∆u|2)+ ψε(divX)|∆u|2 +(∇ψε ·X)|∆u|2
)

dx.

Let ε tend to zero and we get (3.1).
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Remark. In the proof of the above lemma, we need to justify that the termZ
Br

(X(|∆u|2)

makes sense for stationary harmonic functions for almost every r. This can be
done using the method of the difference quotient. We also remark that here is the
only place where we used the fact thatu is stationary. In the proof of the next
proposition, we will encounter terms such as(∆u)k that can also be justified by the
same method.

PROPOSITION3.2 (Monotonicity Formula)For a stationary biharmonic map u:
B2r → N, we have

1
rm−4

Z
Br

|∆u|2 dx−
1

ρm−4

Z
Bρ

|∆u|2 dx= P+R for 0 < ρ < r ,(3.2)

where

P = 4
Z

Br\Bρ

(

(uℓ +xiuiℓ)
2

|x|m−2 +
(m−2)(xiui)

2

|x|m

)

R= 2
Z

∂Br

(

−
xiuℓuiℓ

|x|m−3 +2
(xiui)

2

|x|m−1 −2
|∇u|2

|x|m−3

)

dσ

−2
Z

∂Bρ

(

−
xiuℓuiℓ

|x|m−3 +2
(xiui)

2

|x|m−1 −2
|∇u|2

|x|m−3

)

dσ .

Thus P is a positive term and R is a boundary term.

PROOF: We first remark that in the computation below, every term that has
subindicesi, k, andℓ is summed over these indices, but we will skip the summation
sign for simplicity. We begin with

rm−3 d
dr

R
Br
|∆u|2 dx

rm−4 = r
Z

∂Br

|∆u|2dσ− (m−4)

Z
Br

|∆u|2 dv

=

Z
∂Br

|∆u|2X ·
X
r

dσ− (m−4)

Z
Br

|∆u|2 dx

=
Z

Br

(X(|∆u|2)+4|∆u|2)dx (by Lemma 3.1)

=

Z
Br

(2xi(∆u)i(∆u)+4|∆u|2)dx

=

Z
∂Br

2xixkuik∆u
r

dσ

+
Z

Br

(4|∆u|2−2|∆u|2−2xiuik(∆u)k)dx

=

Z
∂Br

2xixkuik∆u−2xixkui(∆u)k

r
dσ
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+
Z

Br

(2|∆u|2 +2(∆u)kuk)dx (by equation (1.1))

=

Z
∂Br

2xixkuik∆u−2xixkui(∆u)k +2xkuk∆u
r

dσ .

Hence
1

rm−4

Z
Br

|∆u|2−
1

ρm−4

Z
Bρ

|∆u|2 = 2
Z

Br\Bρ

(I + II + III )dx

where

I =
xixk(∆u)uik

|x|m−2 , II = −
xixkui(∆u)k

|x|m−2 , and III =
xkuk∆u
|x|m−2 .

After several integrations by parts, we can rewriteZ
Br\Bρ

I dx=

Z
∂Br

(

xixkxℓuℓuik

|x|m−1 −
xiuℓuiℓ

|x|m−3

)

dσ

−

Z
∂Bρ

(

xixkxℓuℓuik

|x|m−1 −
xiuℓuiℓ

|x|m−3

)

dσ

+

Z
Br\Bρ

(

xiuℓuiℓ

|x|m−2 +
(m−2)xixkxℓuℓuik

|x|m
+

xixkuℓkuiℓ

|x|m−2

)

dx

(3.3) Z
Br\Bρ

II dx= −

(Z
∂Br

xixkxℓuiuℓk

|x|m−1 dσ−

Z
∂Bρ

xixkxℓuiuℓk

|x|m−1 dσ
)

+

Z
Br\Bρ

(

xkuiuik

|x|m−2 +
xiui∆u
|x|m−2

+
(2−m)xixkxℓuiuℓk

|x|m
+

xixkuiℓuℓk

|x|m−2

)

dx

(3.4) Z
Br\Bρ

III dx=
Z

∂Br

(xkuk)
2

|x|m−1 dσ−
Z

∂Bρ

(xkuk)
2

|x|m−1 dσ

+

Z
Br\Bρ

(

−
|∇u|2

|x|m−2 +
(m−2)xkxℓukuℓ

|x|m
−

xkuℓuℓk

|x|m−2

)

dx.

(3.5)

Combining the terms in (3.3), (3.4), and (3.5), we find

1
rm−4

Z
Br

|∆u|2−
1

ρm−4

Z
Bρ

|∆u|2

= 2
Z

∂Br

(

−
xiuℓuiℓ

|x|m−3 +
(xiui)

2

|x|m−1

)

dσ−2
Z

∂Bρ

(

−
xiuℓuiℓ

|x|m−3 +
(xiui)

2

|x|m−1

)

+2
Z

Br\Bρ

[

xiuℓuℓi

|x|m−2 +
2(xiuiℓ)

2

|x|m−2 +
(xiui)∆u
|x|m−2 −

|∇u|2

|x|m−2

+
(m−2)(xiui)

2

|x|m

]

dx.

(3.6)
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After integrating by parts and using the identityZ
Br

|∇u|2

|x|m−2 dx+
Z

Br

xiuℓuiℓ

|x|m−2 dx=
1
2

Z
∂Br

|∇u|2

|x|m−3 dσ ,(3.7)

we find
1

rm−4

Z
Br

|∆u|2 dx−
1

ρm−4

Z
Bρ
|∆u|2 dx

= 2
Z

∂Br

(

−
xiuℓuiℓ

|x|m−3 +2
(xiui)

2

|x|m−1 −2
|∇u|2

|x|m−3

)

dσ

−2
Z

∂Bρ

(

−
xiuℓuiℓ

|x|m−3 +2
(xiui)

2

|x|m−1 −2
|∇u|2

|x|m−3

)

dσ

+4
Z

Br\Bρ

(

(uℓ +xiuiℓ)
2

|x|m−2 +
(m−2)(xiui)

2

|x|m

)

dx.

(3.8)

This finishes the proof of Proposition 3.2.

Remark. If we use the formula
d
dr

Z
∂Br

f dσ =
1
r

Z
∂Br

xi fi dσ+
m−1

r

Z
∂Br

f dσ ,

we may rewrite our monotonicity formula as

σ(r) =
1

rm−4

Z
Br

|∆u|2 dx+
1
r

d
dr

(

1
rm−5

Z
∂Br

|∇u|2
)

−4
Z

∂Br

(xiui)
2

rm−1 dσ ,

which is a monotonically increasing function inr. Actually,

σ(r)−σ(ρ) = P = 4
Z

Br\Bρ

(

(uℓ +xiuiℓ)
2

|x|m−2 +
(m−2)(xiui)

2

|x|m

)

.

One also observes thatσ(r)−σ(ρ) = 0 when and only whenu(x) = u(r x
|x| ) for

x∈ Br\Bρ.

4 Regularity Result for Stationary Biharmonic Maps

In this section, we will establish the following regularityresult for stationary
biharmonic maps:

THEOREM 4.1 A stationary biharmonic map from an m-dimensional Euclidean
disk (m≥ 5) to the sphereSk is Hölder-continuous except on a set of(m− 4)–
dimensional Hausdorff measure zero.

As in the proof of the corresponding result for stationary harmonic maps in [2],
our proof below is patterned after the proof in Section 2 of the case for the four-
dimensional argument. In the case when the dimension of the domain manifold
m≥ 5, the exponents resulting from the Sobolev inequalities (2.11) and (2.12) do
not match, so we will show instead that the BMO norm of the map decays when
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the energy is small. In fact, we have to show the decay of the map in every scale.
The monotonicity formula makes the control in every scale possible.

An added difficulty in the proof is how to handle the extra termR (which may
not be positive) in the monotonicity formula of Proposition3.2. We will show that
the size ofR is small compared to the size of the energy termE as defined in (2.7).
We start with some technical lemmas.

Throughout this section we assumeu is a stationary biharmonic map defined on
the diskB2 on R

m.

LEMMA 4.2 For each r< 1, denote E2(u)(Br) =
(

r4R-Br |∇2u|2 dx
)1/2

. We have for
all 0 < ρ < r,

E2
2(u)(Bρ) ≤ E2

2(u)(Br )

+c

[(

r4
Z
–
∂Br

|∇2u|2dσ
)

1
2
(

r2
Z
–
∂Br

|∇u|2dσ
)

1
2

+ r2
Z
–
∂Br

|∇u|2dσ
]

+c

[(

ρ4
Z
–
∂Bρ

|∇2u|2dσ
)

1
2
(

ρ2
Z
–
∂Bρ

|∇u|2dσ
)

1
2

+ ρ2
Z
–
∂Bρ

|∇u|2dσ
]

,

(4.1)

where c is a universal constant depending only on dimension m.

PROOF: We first observe that if we denotẽE2(u) =
(

r4R-Br (∆u)2dx
)1/2

, then
(4.1) with E2 replaced byẼ2 is a direct consequence of the monotonicity formula
in Proposition 3.2. To compareE2 with Ẽ2, we apply the Bochner identity

1
2

∆|∇u|2 = (uik)
2 +(∆u)iui

and integrate over ballBr on both sides to obtainZ
Br

|∇2u|2 dx=

Z
Br

(∆u)2 +
1
r

Z
∂Br

uikuixk−
1
r

Z
∂Br

(∆u)uixi .(4.2)

Thus

E2
2(u)(Br ) ≤ Ẽ2

2(u)(Br)+c

(

r4
Z
–
∂Br

|∇2u|2 dσ
)

1
2
(

r2
Z
–
∂Br

|∇u|2 dσ
)

1
2

.(4.3)

Also, applying (4.3) toBρ, we obtain (4.1).

Definition. Fixing 0< r ≤ 1, if 1/2k+1 ≤ r < 1/2k for somek, we denoter∗ = 1/2k.
We say∂Br is agood sliceif it satisfies both

{

r
R

∂Br
|∇2u|2dσ ≤ 8

R
Br∗

|∇2u|2 dx

r
R

∂Br
|∇u|dσ ≤ 8

R
Br∗

|∇u|dx.
(4.4)
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We remark that such a good slice always exists for allk≥ 0.

LEMMA 4.3 There exists some constant c such that for all good slices∂Bρ, ∂Br ,
ρ < r < 1

2, for all η > 0,η sufficiently small, we have

E(u)(Bρ) ≤ cE(u)(B∗
r )+ ηE(u)(Bρ∗)+CηM(u)(Bρ∗) ,(4.5)

where Cη = cη−(3+m), M(u) = M1(u), and E(u) and M1(u) are defined as in(2.7).

PROOF: We first observe that by an interpolating inequality of L. Nirenberg
[10], we have

D2(u)(Br) . E2(u)(Br )M
1−a
1 (u)(Br)+M1(u)(Br ) ,(4.6)

where1
2 −

1
m = a(1

2 −
2
m)+(1−a) (thusa = 2+m

4+m, 1
2 < a < 1). By combining (4.6)

and (4.1), we obtain that for all good slicesρ, r where 0< ρ < r ,

E2
2(u)(Bρ) ≤ E2

2(u)(Br)+cE2(u)(Br∗)

+cE1+a
2 (u)(Bρ∗)M1−a

1 (u)(Bρ∗)

+cE2a
2 (u)(Bρ∗)M2(1−a)

1 (u)(Bρ∗)+cM2
1(u)(Bρ∗)

+cE2(u)(Bρ∗)M1(u)(Bρ∗) .

(4.7)

We now apply the inequalityxay1−a ≤ aηx+(1−a)C̄ηy for all x,y> 0, 0< a< 1,
whereC̄η = η−a/(1−a) = η−(1+m/2). We similarly applyx1+ay1−a ≤ 1+a

2 (ηx)2 +
1−a

2 (Cηy)2 with cη = η−(3+m) to (4.7), withx = E2(u)(Bρ∗),y = M1(u)(Bρ∗). We
obtain

E2(u)(Bρ) ≤ cE(u)(r∗)+cηE(u)(Bρ∗)+cCηM(u)(Bρ∗) .

We now observe that we can estimateDq(u)(Bρ) via Sobolev embedding and (4.6).
Thus, we obtain (4.5) after adjusting the constantη.

As an immediate corollary of Lemma 4.3, we have the following:

COROLLARY 4.4 Suppose u is a stationary biharmonic map on B2. Then there is
a constant c such that for all0 < 4ρ < r < 1 andη sufficiently small, we have

E(u)(Bρ∗) ≤ cE(u)(B2r∗)+ ηE(u)(B2ρ∗)+CηM(u)(B2ρ∗) .(4.8)

PROOF: Given anyρ andr with 4ρ < r < 1
2, say 1

2k+1 ≤ ρ < 1
2k , we may choose

ρ1 with 1
2k ≤ ρ1 < 1

2k−1 a good slice, andr1 a good slice similarly chosen with
r
2 ≤ r∗1 < r so thatρ1 < r1. We then apply (4.7) toρ1, r1 and observe thatρ∗

1 = 2ρ∗,
r∗1 = 2r∗. Equation (4.8) then follows.

The following lemma is the version of Lemma 2.3 form≥ 5:
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LEMMA 4.5 There exists someτ < 1
4 and c a dimensional constant so that for all

r < 1,

(Mp0(u)+Dp(u)) (Bτr) ≤ cτ1−m
p E2(u)(Br)Ms(u)(Br )

+cτ1−m
p Dq(u)(Br )Mt(u)(Br)

+ τ(Ms(u)+Dp(u)) (Br) ,

(4.9)

where1
q = 1

2 −
1
m, 1

s = 1
p + 3

m−1, 1
t = 1

p + 1
m− 1

2, 1
p0

= 1
p −

1
m, and p is a suitably

chosen constant bigger than1.

PROOF: We choose1
2 < r < 1 with ∂Br a good slice and run through exactly

the same argument (and same notation) as in the proof of Lemma2.3. We obtain
for any p = p1 > 1 suitably chosen,

‖∇v‖Lp(Br) .
(

‖∇2u‖L2(Br) +‖∇u‖Lq(Br )

)

‖u−A0‖Ls(Br)

+‖∇u‖Lq(Br)‖u−A0‖Lt(Br) ,
(2.11)

where1
q = 1

2 −
1
m, 1

s = 1
p + 3

m−1, 1
t = 1

p + 1
m− 1

2, andA0 is any constant. Thus, if

p is chosen with1
m < 1− 3

m < 1
p < 1< 3

2 −
1
m < 2− 3

m, thenm≥ 5 implies that such
1 < p < m exists withs, t > 1. We now apply Sobolev embedding to the left-hand
side of (2.11) and obtain for1p0

= 1
p −

1
m and any constantB,

‖v‖Lp0(Br) +‖∇v‖Lp(Br) .
(

‖∇2u‖2
L2(Br)

+‖∇u‖2
Lq(Br)

)

‖u−A0‖Ls(Br)

+‖∇u‖Lq(Br)‖u−A0‖Lt (Br) .
(4.10)

We now chooseτ < 1
4; then for allx∈ Bτ and∂Br a good slice that the biharmonic

functionk satisfies

|∇k(x)| ≤
Z

∂Br

|u−A0|+

Z
∂Br

∣

∣

∣

∣

∂u
∂n

∣

∣

∣

∣

dx. M1(u)(B1)+D1(u)(B1) for all |x| ≤ τ .

(4.11)

Thus, we have from (4.10) and (4.11)

Mp0(u)(Bτ)+Dp(u)(Bτ)(4.12)

. τ−
m
p0

(Z
Bτ
|u− ūτ|

p0

)
1
p0

+

(

τp
Z
–
Bτ
|∇u|p

)
1
p

. τ−
m
p0

(

‖v‖Lp0(Bτ) +‖k−k(0)‖Lp0(Bτ)

)

+ τ−
p−m

p
(

‖∇v‖Lp(Bτ) +‖∇k‖Lp(Bτ)

)
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. τ−
m
p0 E2(u)(B1)‖u−A0‖Ls(Br) + τ−

m
p0 (Dqu)(B1)‖u−A0‖Lt(Br)

+ τ−
m
p0 τ1+ m

p0 sup
x∈Bτ

|∇k(x)|+ τ
p−m

p τ
m
p sup

x∈Bτ

|∇k(x)|

. τ1−m
p E2(u)(B1)Ms(u)(B1)+ τ1−m

p Dq(u)(B1)Mt(u)(B1)

+ τ(M1(u)(B1)+D1(u))(B1) .

We observe that every term scales in an invariant way in (4.12); therefore we
may rewrite (4.12) in the form of (4.9). This finishes the proof of Lemma 4.5.

COROLLARY 4.6 Let r andτ be as in Lemma4.5. Then

(Mp0(u)+Dp(u))(Bτr ) ≤
(

τ1−m
p (E2(u)+E(u))(Br)+ τ

)

(Ms(u)+Dp(u))(Br) .
(4.13)

Our next observation is that by our choices ofp0, p, s, t, and q, we have
1 < p < q < m, 1 < p0 < t < s< m, and 1

p > 1− 3
m; thusMt(u)(Br) . Dq(Br) ≤

E(u)(Br). Taking this together with the trivial estimate that‖u‖∞ ≤ 1, which im-
plies Ms(u)(Br ) ≤ 2 for all r < 1, we obtain directly from (4.12) the following
estimate:

COROLLARY 4.7 Let r,τ be as in Lemma4.5; then

M1(u)(Bτr) ≤ cτ1−m
p E2(u)(Br )+cτ(M1(u)+D1(u)) (Br)

≤ cτ1−m
p E2(u)(Br )+cτE(u)(Br) .

(4.14)

We now combine estimate (4.14) with the monotonicity formula (4.5) to derive
the following estimate:

LEMMA 4.8 For ε andρ0 sufficiently small, there exists some constant C so that if
E(u)(B1) < ε, then

E(u)(B) ≤CE(u)(B1) for all balls B⊆ Bρ0 ⊂ B1 .(4.15)

PROOF: For simplicity we now writeE(u)(Bρ)= E(ρ) andM1(u)(Bρ)= M(ρ).
We notice that from (4.8) and (4.14) we have

∀2ρ < r < 1, E(ρ∗) ≤ cE(2r∗)+ ηE(2ρ∗)+CηM(2ρ∗) ,(4.16)

∀τ ≤
1
4
, r < 1, M(τr) ≤ cτ1−m

p E2(r)+cτE(r) .(4.17)

We will now apply (4.16) and (4.17) to establish (4.15). To dothis, we fixτ0 = 2−ℓ

(ℓ large to be chosen later) and considerρk = τ2k
0 for eachρ = ρk. We estimate
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E(ρ) by applying (4.16) as

E(ρ∗
k) ≤ cE(1)+CηM(2ρ∗

k)+ ηE(2ρ∗
k)

≤ cE(1)+CηM(2ρ∗
k)+ η(cE(1)+ ηE(4ρ∗

k))+CηM(4ρ∗
k)

= c(1+ η)E(1)+CηM(2ρ∗
k)+CηηM(4ρ∗

k)+ η2E(4ρ∗
k)

≤
c

1−η
E(1)+Mk+ η2l E(ρ∗

k−1) (inductively) ,

(4.18)

where

Mk = Cη

2ℓ−1

∑
j=0

η jM(2 j+1ρ∗
k) .

We claim that there exists someδ < 1 so that following estimates hold for allk≥ 1:

(a)k Mk ≤
Cη

1−η

(

b
c

1−δ
+cτ0+2η2ℓ

)

E(ρ∗
k−1)

(b)k E(ρ∗
k) ≤

2c
1−η

E(1)(1+ δ+ · · ·+ δk) ,

whereb = c(τ2
0)

1−m
p E(1) and we setρ∗

0 asρ∗
0 = 1.

We establish (a)k and (b)k inductively. When k= 1.

(a) Estimate ofM1: For each 0≤ j ≤ 2ℓ−1, we apply (4.17) toM(2 j+1ρ∗
1) to

obtain

M(2 j+1ρ∗
1) ≤ c(2 j+2ρ1)

1−m
p E2(1)+c2 j+2ρ1E(1) .

Notice

τ2
0 ≤ 4ρ1 ≤ 2 j+2ρ1 ≤ 2ℓ+1ρ1 ≤ 2τ0 for 0≤ j ≤ ℓ−1

and

τ2
0 ≤ 4ρ1 ≤ 2 j+2ρ1 ≤ 22ℓ+1ρ1 ≤ 2 for ℓ ≤ j ≤ 2ℓ−1.

Thus, denotingb = c(τ2
0)

(1−m
p)E(1), we have

M1 ≤Cη

ℓ−1

∑
j=0

η j(b+2cτ0)E(1)+Cη

2ℓ−1

∑
j=ℓ

η j(b+2c)E(1)

≤Cη
1

1−η
(b+2cτ0 +2cηℓ)E(1) .

(4.19)

(b) Thus, if we chooseδ1 so that

Cη(b+2cτ0 +2cηℓ) ≤ δ1 ,(4.20)

thenM1 ≤ c
1−η δ1E(1). It then follows from (4.18) that ifδ1 ≤ δ, E(ρ∗

1) ≤
2c

1−η(1+ δ)E(1).



18 S.-Y. A. CHANG, L. WANG, AND P. C. YANG

For general k.We assume(a) j and(b) j for j ≤ k−1.

(a) Estimate ofMk:

Mk = Cη

2ℓ−1

∑
j=0

η jM(2 j+1ρ∗
k) .

We now estimateM(2 j+1ρ∗
k) by (4.17) with 2j+1ρ∗

k = τ̃ jρ∗
k−1. Thus τ̃ j =

2 j+1τ2
0 andτ2

0 ≤ 2τ2
0 ≤ τ̃ j ≤ 2ℓτ2

0 = τ0 for 0≤ j ≤ ℓ−1, andτ2
0 ≤ 2τ2

0 ≤ τ̃ j ≤
22ℓτ2

0 = 1 for ℓ ≤ j ≤ 2ℓ−1. Hence, for 0≤ j ≤ ℓ−1 we have:

M(2 j+1ρ∗
k) ≤ cτ̃

1−m
p

j E2(ρ∗
k−1)+cτ̃ jE(ρ∗

k−1)

≤ c(τ2
0)

1−m
p E2(ρ∗

k−1)+cτ0E(ρ∗
k−1) (for p < m)

≤

[

c(τ2
0)

1−m
p E(1)(1+ δ+ · · ·+ δk−1)

2c
1−η

+cτ0

]

E(ρ∗
k−1)

(by (b)k−1)

≤

(

b
2c

1−η
1

1−δ
+cτ0

)

E(ρ∗
k−1) .

Similarly, for ℓ ≤ j ≤ 2ℓ−1 we have

M(2 j+1ρ∗
k) ≤ c(τ2

0)
1−m

p E2(ρ∗
k−1)+cE(ρ∗

k−1)

≤

(

b
2c

1−η
1

1−δ
+c

)

E(ρ∗
k−1) .

Thus, we have

Mk = Cη

2ℓ−1

∑
j=0

η jM(2 j+1ρ∗
k)

≤
Cη

1−η

(

b
2c

1−η
1

1−δ
+cτ0

)

E(ρ∗
k−1)

+
Cη

1−η
ηℓ

(

b
2c

1−η
1

1−δ
+c

)

E(ρ∗
k−1) .

(4.21)

(b) For fixedη < 1, chooseℓ sufficiently large so that bothτ0 = 2−ℓ andηℓ are
sufficiently small; then chooseε sufficiently small so thatb= c(τ2

0)
1−m/pE(1)

with E(1) < ε small. Thus,

δ = max

(

Cη

1−η

(

4bc
1

1−η
+cτ0+cηℓ

)

δ1

)

< 1.

Then, inductively we obtain from (4.20) that

Mk ≤ δE(ρ∗
k−1)



REGULARITY OF BIHARMONIC MAPS 19

≤ δ
2c

1−η
E(1)(1+ δ+ · · ·+ δk−1) (by (b)k−1)

≤
2c

1−η
E(1)(δ+ δ2+ · · ·+ δk−1) .

By (4.18) we have thus established (b)k.
We now remark that once (b)k holds for allk, we haveE(ρ) . c

1−η
1

1−δE(1)

for all ρ ≤ τ2
0. From this it follows also thatE(u)(B)≤CE(1) for all B⊆ Bρ0

and for constantC whereρ0 = τ2
0 by some simple covering argument. We

have thus finished the proof of the lemma.

PROOF OFTHEOREM 4.1: We follow the same line of proof as theorem 2.5 in
[2]. For ε > 0 sufficiently small, withE(u)(B1) < ε, we have from Lemma 4.3

E(u)(B) ≤CE(u)(B1) ≤Cε for all B⊆ Bρ0 .

Thus, it follows from (4.13) that there exists someρ < 1 with

sup
B⊆Bρ

(Mp0(u)+Dp(u)) (B) ≤
(

Cρ1−m
p ε+Cρ

)

(Ms(u)+Dp(u)) (B1) .

If we apply the John-Nirenberg [8] inequality, we then conclude that there exists
some universal constantM such that

‖u‖BMOs(Bρ) +Dp1(u)(Bρ) ≤

M(Cρ1−m
p ε+Cρ)

(

‖u‖BMOs(B1) +Dp1(u)(B1)
)

,
(4.22)

where

‖u‖BMOs(B) = sup
B1⊆B

inf
constc

(Z
–
B1
|u−c|s

)
1
s

.

Now, for anyβ < 1 there is aρ = ρ0 small such thatMCρ0 < ρβ

2 , and thenε small

such thatMCρ1−m/p
0 ε ≤ ρβ

0/2. Accordingly, we have

‖u‖BMOs(Bρ0) +Dp1(u)(Bρ0) ≤ ρβ
0

(

‖u‖BMOs(B1) +Dp1(u)(B1)
)

.(4.23)

An iteration of (4.23) leads to

‖u‖BMOs(Bρk
0
) +Dp1(u)(Bρk

0
) ≤ ρkβ

0

(

‖u‖BMOs(B1) +Dp1(u)(B1)
)

,

for eachk = 1,2, . . . . The above inequality proves that

‖u‖BMOs(Br) +Dp1(u)(Br) ≤Crβ (

‖u‖BMOs(B1) +Dp1(u)(B1)
)

(4.24)

for all 0≤ r ≤ 1.

It follows from (4.24) and the standard covering argument (e.g., as in Evans
[3]) that the singularity set of the stationary map is a set of(m− 4)–Hausdorff
dimension zero. We have thus finished the proof of Theorem 4.1.
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Remark.We remark that we actually have proved that for allβ < 1,

‖u‖BMOs(Bρ0) +Dp1(u)(Bρ0) ≤Cρβ

whenever the energy is small near the center of the ball. Hence we proved a Hölder
regularity for any exponentβ < 1. Actually, one has for anyp1 < 4 and any expo-
nentβ < 1, there exists some constantC such that

Dp1(u)(Bρ0(x)) ≤Cρβ
0

holds for anyx in the regular set ofu for someρ0 sufficiently small. Thus it follows
from the Sobolev embedding and Hölder inequality that

|u(x)−u(y)| ≤C|x−y|β

wheny is sufficiently close tox.

5 Further Smoothness

In this section we show that the solution is actually smooth once it is continuous.
We remark that, according to the classical regularity theory, it suffices to prove that
the solution isC2,α for someα > 0.

In the previous section we showed thatu is Hölder-continuous with any expo-
nentβ < 1, that is,

|u(x)−u(y)| ≤C|x−y|β(5.1)

and

Dp1(u)(Bρ0) ≤Cρβ
0 ,(5.2)

when the center of the ballBρ0 is in the regular set ofu for somep1 < 4. Actually,
(5.2) implies (5.1).

THEOREM 5.1 If u is a Hölder-continuous biharmonic map satisfying(5.1) and
(5.2) in B1, then u is locally smooth.

We remark that one can modify the proof of Theorem 5.1 given below to prove
that any continuous biharmonic map is in fact smooth. But forsimplicity, we will
prove the result only in the setting of Theorem 5.1.

THEOREM 5.2 If the biharmonic map is Hölder-continuous as

r2
Z
–
Br(x)

|∇u|2 +‖u−u(x)‖2
L∞(Br(x))

≤Cr2β(5.3)

for all 0 < r ≤ ρ and for some x∈ Rm, then

ρ4
Z
–
Bρ(x)

|∇2u|2 ≤Cρ2β .(5.4)
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PROOF: Let η(x) be a cutoff function inBρ = Bρ(x) such that 0≤η≤ 1, |∇η| ≤
C
ρ , |∇2η| ≤ C

ρ2 with η = 1 in Bρ/2 andη = 0 near∂Bρ. Multiplying the biharmonic

map equation (1.1) byη4(u−u(x)) and integrating by parts, we have that for any
ε < 1,

−

Z
Bρ

η4(u−u(x))λu

=

Z
Bρ

∆(η4(u−u(x))∆u

≤
Z

Bρ

η4|u−u(x)||∇2u|2 + η4(u−u(x))∇(∇u∗∇2u)

.

Z
Bρ

ρβη4|∇2u|2 + η2|η2∇u+2(∇η2)(u−u(x))||∇u∗∇2u|

≤

(

2ε
Z

Bρ

η4|∇2u|2
)

+Cερm−4+4β +Cε‖∇u‖4
L4(Bρ)

≤

(

2ε
Z

Bρ

η4|∇2u|2
)

+Cερm−4+4β +Cε‖∇u‖4
L4(Bρ) ,

(5.5)

where we have takenρ to be sufficiently small. Now we apply the Gagliardo and
Nirenberg inequality [10] and we have

‖∇u‖4
L4(Bρ) ≤C

Z
Bρ

|∇2u|2‖u−u(x)‖2
L∞(Bρ) +Cρm−4‖u−u(x)‖4

L∞(Bρ)

≤Cρ2β
Z

Bρ

|∇2u|2 +Cρm−4+4β .
(5.6)

On the other hand, we have the following standard treatment for the left-hand side
of the above inequality:Z

Bρ

∆(η4(u−u(x))∆u

=
Z

Bρ

η4(∆u)2 +4η2(∇η2)∇u∆u+(∆η4)(u−u(x))∆u

=
Z

Bρ

η4(∆u)2 +4η2∆u(∇η2)∇u

+2η2∆u(u−u(x))(∆η2 +4|∇η|2)

≥
1
2

Z
Bρ

(|(η2∆u|2−C
Z

Bρ

(

|(∇η2)∇u|2 +Cρ−4|u−u(x)|2
)

≥
1
2

Z
Bρ

|η2∆u|2−C(ρm−2+ ρm−4+2β)

≥
1
2

Z
Bρ
|η2∆u|2−Cρm−4+2β ,

(5.7)
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whereas,Z
Bρ
|η2∆u|2 =

Z
Bρ
|η2∆(u−u(x))|2

≥
1
2

Z
Bρ

|∆(η2(u−u(x))|2−2C|(∇η2)∇u|2−C|(∆η2)(u−u(x))|2

≥
1
4

Z
Bρ

η4|∇2u|2−C|(∇η2)∇u|2−C|∇2η2|2|u−u(x)|2

≥
1
4

Z
Bρ

η4|∇2u|2−Cρm−2−Cρm−4+2β .

(5.8)

Combining the inequalities (5.5) with (5.8), we haveZ
Bρ/2

|∇2u|2 ≤
Z

Bρ

η4|∇2u|2

≤

(

8
Z

Bρ
∆(η4(u−u(x))∆u

)

+Cρm−4+2β

≤

(

(16ε+Cρ2β)

Z
Bρ
|∇2u|2

)

+Cρm−4+2β .

(5.9)

Then an iteration process in [4, p. 86] shows that if

σ(ρ
2) ≤ εσ(ρ)+Cρβ for 0 < ρ ≤ A with ε < 2−β ,

then

σ(ρ) . Cρβ for all 0 < ρ ≤ A.

Taking ε and ρ ≤ ρ0 small so that 16ε +Cρ2β
0 is small, it follows from the

iteration process above thatZ
Bρ2

|∇2u|2 ≤Cρm−4+2β .(5.10)

The theorem follows.

COROLLARY 5.3 Under the condition of the above theorem, we haveZ
Bρ
|∇u|4 ≤Cρm−4+4β .(5.11)

PROOF: The proof follows from the Gagliardo-Nirenberg inequality (5.6) as in
the proof of the above theorem.

TheC1,α regularity foru is a corollary of the following Campanato space esti-
mates:



REGULARITY OF BIHARMONIC MAPS 23

THEOREM 5.4 Assumeγ > 0 is a noninteger and p> 1. Suppose u is a weak
solution of

∆2u = f +
n

∑
i=1

∂gi

∂xi

with conditions thatZ
–
Br

| f | ≤Crγ−4 and

(Z
–
Br

|gi |
p
)

1
p

≤Crγ−3 .

Then, u is C[γ],{γ} at x, the center of the balls Br in the W3,1 norm, where[γ] denotes
the integer part and{γ} denotes the fractional part ofγ; i.e., there is a polynomial
of order [γ] such thatZ

–
Br

|u−P|+ r|∇(u−P)|+ r2|∇2(u−P)|+ r3|∇3(u−P)| ≤Crγ ,

where C depends on the estimates on f , gi , and|u|W3,1.

The above theorem can be proved using an argument similar to that of theorem
2.2 in [4, p. 84]; we will skip the proof here.

THEOREM 5.5 Let u be a biharmonic map that is Hölder-continuous with expo-
nent 1

2 < β < 1 in the following fashion:

r4
Z
–
Br(x)

|∇2u|2 +

(

r4
Z
–
Br(x)

|∇u|4
)

1
2

≤Cr2β for any x∈ B1
2
, 0 < r < 1.(5.12)

Then, u is C1,2β−1 in B1/2 in the sense that for each x∈ B1/2 there is a linear
function L such thatZ

–
Br(x)

|u−L|+ r|∇(u−L)|+ r2|∇2u|+ r3|∇3u| ≤Cr2β for all 0 < r < 1.

(5.13)

PROOF: Sinceu is a biharmonic map, applying equation (1.1), we write

∆2u = ∇2u∗∇2u+ ∇(∇u∗∇2u) = f + ∇g.

From (5.12) we see immediately thatZ
–
Br

| f α| ≤Cr2β−4 and

(Z
–
Br

|gα|
4
3

)
3
4

≤Cr2β−3 .

Thus, we may apply Theorem 5.4 withγ = 2β and conclude thatu isC1,2β−1.

Our next step is to show that anyC1,α solution isC2,α.

LEMMA 5.6 If a function is C1,α in W3,1 in the sense that for any x there is a linear
function L, then for any Br = Br(x), 0 < r ≤ 1,Z

–
Br

|u−L|+ r|∇(u−L)|+ r2|∇2u|+ r3|∇3u| ≤Cr1+α .(5.14)
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Then, u is C1,α in W2,2, i.e., Z
–
Br

r4|∇2u|2 ≤Cr2+2α .(5.15)

PROOF: First, we have thatu is in the classicalC1,α-space by the Morrey em-
bedding theorem. Then we can apply the Gagliardo-Nirenberginequality of the
form that

r4
Z
–
Br

|∇2u|2 ≤Cr4‖∇(u−L)‖L∞

Z
–
Br

|∇3u|+Cr2‖∇(u−L)‖2
L∞ ,

and thus (5.15) follows directly from (5.14).

PROOF OFTHEOREM 5.1: We will establish Theorem 5.1 in several steps. As-
sume thatu is a biharmonic map satisfying both conditions (5.1) and (5.2) with
some1

2 < β. Then, from Theorem 5.5 we conclude thatu is inC1,α for α = 2β−1.
Lemma 5.6 then asserts thatu is alsoC1,2β−1 in theW2,2 sense, as in (5.15). We
may then apply Theorems 5.4 and 5.5 again to obtain thatu is in fact inC[4β],{4β},
and hence inC2,4β−2. Thus,u is smooth by the classical regularity theory.

Remark.We remark that our scheme above actually indicates that oncea bihar-
monic map satisfies conditions (5.1) and (5.2) for someβ > 0, then we may iter-
ate to conclude that it satisfies (5.1) and (5.2) for 2β. Thus, we may iterate the
above scheme finite many times to prove that any biharmonic map that is Hölder-
continuous is in fact smooth.
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