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Abstract

In this article we prove the regularity of weakly biharmomiaps of domains
in Euclidean four space into spheres, as well as the comelépp partial regu-
larity result of stationary biharmonic maps of higher-dimei®nal domains into
spheres(©) 1999 John Wiley & Sons, Inc.

Introduction

In this article we consider the notion of biharmonic maps la@gin an analytic
study of the regularity properties of such maps in dimersineater than or equal
to four. To motivate our study, we observe that the confortraaisformations of
Euclidean spaces are not in general harmonic except in gimemwo. The ba-
sic reason is that the energy integrand for harmonic mapsnfomally invariant
only in dimension two. Thus it is natural to study criticalits of the conformally
invariant energy functionals. There have been severalestuaf the energy inte-
grand associated with theLaplacian (see, for example, [5, 11]). In dimension
n the natural first-order functional is the conformally ineat n-energyy |Ou|".
Unfortunately, the class af-harmonic maps, although quite abundant, do not en-
joy good regularity properties due to the possible degeioeraf |Ju|” (see [9]).
For this reason, it is of interest to study higher-order gndunctionals that are
conformally invariant and enjoy better regularity propest

In this article we consider for simplicity the class of bilmmic maps from Eu-
clidean domains to spheres. We realize the standard spbfeessunit vectors in
RK*1, and consider maps: Q — SK as vector-valued functions that are contained
in SK. The energy functional for biharmonic maps is thignAu|2dx. A locally de-
fined biharmonic map is a map that is critical with respectampactly supported
variations. We note that in the case where the domain hasdioefour, this en-
ergy functional is conformally invariant, and hence confal maps of Euclidean
four-space are biharmonic in this sense. We remark thad#fisition of bihar-
monic map depends on the embedding of the target space iid&amcispace. We
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do not use the more natural definition in which the energygnated is replaced by
the intrinsic|(Au)" |2 wherev' denotes the tangential component of the veector

In analogy with the regularity theory of harmonic maps, wewdecorrespond-
ing regularity results for biharmonic maps. Our main resale the following:

e Theorem 2.1:Any biharmonic map in \&? defined on a disk of dimension
four to the standard sphef is Hélder-continuous

e Theorem 4.1:A stationary biharmonic map from an m-dimensional Eucli-
dean disk(m > 5) to the sphereésK is Holder-continuous except on a set of
(m— 4)—dimensional Hausdorff measure zero

e Theorem 5.11f u is a weak solution of the biharmonic map equation and if
u is continuous in B then u is smooth

A companion article [2] to this one provides a simplified treant of the ana-
logues of the preceding results for harmonic maps and sas/asa introduction to
the techniques used here as well as references to previols @or method builds
on the technique first introduced by Hélein [7] to write thenlieearity in deter-
minant form but proceeds more directly to exploit the sdegimdratic structure
of the nonlinearity; thus we were able to avoid the deep siradheory of Hardy
BMO duality. Our argument may allow flexibility to deal withrer problems of
this kind. We hope to return to the problem involving gendaagets in a future
article. We mention here the related article [1] that praeggilarity of minimizing
solutions of semilinear scalar equations of fourth ordehwonlinearity of similar
structure to the biharmonic map equation. We also mentiat kardt and Mou
also have some regularity results for locally minimizingdsimonic maps [6].

We remark here that Theorems 2.1 and 4.1 remain valid for fnagsdomains
in a Riemannian manifold. In fact, the elliptic estimateswge remain valid pro-
vided we interpret all derivatives in the formula as covairiderivatives. Recently
a result analogous to Theorem 2.1 with the extrinsic quadiit replaced by the
intrinsic (Au)T was also established by Y. Ku.

1 Derivation of the Euler Equation

Consideru a map(M™,g) — (S, h) with h the standard canonical metric on
the unit spheres®. Supposeu = (ul,...,u*1) is a critical point of the energy
functional; defineEa(u) = [y YKL (Agu®)2dV,. In this section we will derive the
Euler-Lagrange equation for

PROPOSITION1.1 Suppose & W?? is a critical point of the functional E then
u satisfies

(1.1) AU =\, a=12... k+1,

whereA = E"[(AUWP)2 + A(|OUP|?) + 20uP - DAWP] and DAWP exists in the B
sense for all p< 3.
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PROOF. Sinceu: M™ — Sk, the Euler equation dE(u) = O satisfies
(&%) =0,
where (A%u)T denotes the tangential componentu. Therefore for soma,
AU = (A%u*)N = —u®\ where(A%u)N denotes the normal componentAsiu.

It remains to comput@. To do so, we observe that when the target manifold
of the map isS¥, we haveuP - uP = 1; henceluP - uP = 0 andAuP - uP = —|OuP?
(where we treat® as a vector, and the equality holds by summing @®)ef hus if
we inner product both sides of (1.1) bff and sum ovea, we get

k+1
(1.2) > TV

a=1
Multiplying both sides of (1.2) by a testing functigne Cz (M) and integrating
overM, we get

=g
=3 [ o)
-3 [/(Au“)2¢+2/Au“Du°‘D¢+/Au°‘u°‘A¢]
=3 [l 2omeneo- 5 [ 0w ag
-3 [ [ 20800 )6 - 3 JEENES

Thus

A= S [(AP)?+A(OUP?) + 2040 - DuP]
B
as claimed. O

In the following, we are going to rewrite the right-hand sadequation (1.2) in
a “divergence” form. The purpose of doing so is to establishregularity results
later. (Some motivation for this approach is explained ij). [2Ve remark that for
the purpose of establishing our regularity result (Theogeinbelow) for domain
M™ with m= dimM = 4, we only need a simpler form of the right-hand side of
(1.2) than the form that appears in (1.3), which we will deribelow. But for our
approach to work for alin > 4, it is easier that we establish the right-hand side as
it appears in (1.3).

We now fix a geodesic ball and assume it is a ball of radiuBsl= By (xo).
Fix an indexa, and for eaclt = 1,... ,k+ 1, denotec” = g, u%(x)dx, the average
value ofu® overB;. We are going to use the convention that the upper irdex
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B, etc., denotes the componentwgfthe lower index, j, etc., denotes the partial
differentiation in thd, j, etc., direction. We also skip the summation o@eand |
with the understanding thitis summed over from 1 th+ 1 and thatj is summed
over from 1 tom.

Definition. We denote a terrof typel by T, if

T = (u‘f‘Auﬁ(uB - CB)> or ((uo‘ — c“)uiﬁuiﬁ-) _terms
j

J

i
We denote a term diypell by T if

T = A((u“ —c%| Du5|2> AP —P)AlP)  or A(uo‘(uB — cB)AuB) terms
We denote a terrof typelll by T if
Ts= ((uB - cB)u?)

PROPOSITION1.2 Suppose uM™ — SK satisfies equatiorfl.1); then the right-
hand side of(1.1)
—uA=ul [(AUB)Z +A(|OWP?) + 20uP - DAUB}

= linear combination of terms of the form,TT,, and .

jii

(1.3)

We start with a technical lemma.
LEMMA 1.3 For each fixedn,
(1.4) c*(A|0WPP),
(1.5) (U (ID6P2));,
are a combination of jJiterms for/ = 1,2, 3.
PROOF. To establish (1.4), we write
AW ?) = A
— O‘A{ ((uG - cﬁ)u?> i~ (uP — cB)AuB}
= c® ((uG — cﬁ)u?) . o ((uG - CB)AUB)

=T+ Tzterms

To establish (1.5), we have
a B2y, _ a_ B2\ a oy B P

(uJ\Du 1) {((u c?)|0OuP| )j 2(u" —c)u'u }j

= A((u" —co‘)\DuBF) - 2<(u0‘ - co‘)uiBu-B-)j

=To+ Ty terms
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PROOF OFPROPOSITION1.2: We name
S =u(af)?, 5= ZUGU?(AUB)J' . S =utA|OuP?.

Then, using identities® - u‘f’ = 0 andu®AAUP = UPAALY, we get

|
—
C
Q
>
c
o)
~
|
c
o)
—
>
cC
Q
~
|
—
—
>
c
o)
~
_l_
o
i )
—
>
cC
Q
S~—
[E—
o
i )

T

J

- { [uo‘ (AuP) — uB(Au")} uf}

(

J
{[s@®)—diou [P -} + [uf o) - o) |of
|

u® (AUP) — uB(Au")] u?}j

+ [uf (AUP) — u?(Au“)] u? +T1+ Ty terms
For theS; term we have
Sz = uA|OuP|?
= (U — c)A|OWP2 + cA(IOWP1?)  (by (1.4)
= A((u" —c)|OuP?) — 2u (|OWP?); — (Bu™)|OuP [ + T, terms
= —2(u¥|0uP|?); + (Au")|OuP[? + T, terms (by (1.5))
= (AU |OWP 24T, terms
= —(Au)WPALP + T, terms

(1.7)

From (1.7) we have
S +S= [u‘]‘AuB - uBAu“] AP + T, terms

= { [u"‘AuB - UBAUO‘] u?} - [u‘j’AuB — u?Au“ u?
j

— [u“ (DuP); — uB(Au“)j} u? + T, terms
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_ _%& _ %SerTg terms  (by (1.6))

=-S5+ T, terms
ThusS, + S + S = combination ofT, terms as claimed. O

2 Holder Regularity on M4
In this section, we will prove the following theorem:

THEOREM 2.1 Any biharmonic map in \? defined on a disk of dimension four
to the standard sphei® is Hélder-continuous.

To prove the theorem, we start with some general inequalitieequations of
type like that of (1.3).

LEMMA 2.2 Fix a ball B onR™. Suppose & W?? is a weak solution of
m oF )

(2.1) A%v =div(F z 3%, on B
or
(2.2) Av=AG onB
or
AL

(2.3) A?v = div(AH) :Za—AHJ on B,
with

{v: 0 onoB

=0 onoB.

Then for anyl < g < o, we have either
(2.4) 10%V|Lae) < [IF [lLage)
or
(2.5) 10%V]|Lae) < IGllLage)
or
(2.6) 10Vl Lage) S [1H | acs)

accordingly.
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For any ballB of radiusr(B = B;) in R™, any p > 1, andq with %4 =31
denote
3_2L 1
q
E(u)(B,) = ( 4][ |D2u|2> <rq][ |Du|q>
2.7) B B
SEE u|p) ,
where

U=+ u and Dp(u)(Br):<rp]€]Du\p>é

Br
The following is the main technical lemma of this section:

LEMMA 2.3 Let u be as in Theorerd.1and m= 4. Then, given an§ < B < 1,
there exists some< % ande > 0 so that if Hu)(B;) < €, we have

(2.8) (Mpg (W) + Dp, () (Br) < TP (Mpy (1) + D, (u))(Ba),

where p is any fixed number strictly betwe@rand4, and % = % — 3

PrROOF OFLEMMA 2.3: We fixed a balB, sayB = B;, onR™, and som% <
r < 1to be chosen later. L&tdenote the biharmonic map= (kL. ... k") defined
on B, with A%k® = 0 onB; andk® = u® on 9B;, and % = %< on 9B,. Denote
v =u—Kk; thenv satisfies equation (1.3). We then defingi = 1,2,3, to be the
unique function satisfyind?v; = T; on B, andv; = M _— 0 ondB;,; thenv= Zi3:1Vi-
We now apply Lemma 2.2 to each of the functionsand conclude that for any
1< p; <« and any constarg = (ct,...,cX) we have

I03Va[[Les g, + 10%V2llLe2 (8) + 1 OV3|Los 8 )
2.9) < |r<u—Ao>DuD2uuLp3(Br> + [ (u—Ao) DU ozge,
+ [ (u— )DUHLm
We choosep, and ps3 as—2 == + =, == =4 1 == + < and apply Sobolev
embedding to the left-hand S|de of (2 9) to obtaln
1OV]|Ler gy S Il (U—A0) OUT?U|Los (g, + || (U—A0) DU |Lea g,
+ [ (U= Ao) B[ ey B,) -
We observe that by our assumptior W22, we havedu € W9 with 2 = 2 — 1.

Thus, we may apply the Hdélder mequahty to the right-harde sbf (2.10) and
obtain

i

(2.10)

1Vilss ey S (1020112 qg,) + DU e, + 1 Dullage,) )

(2.11)
(Ilu=Aollusim) + llu= Aol ) -
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l_i §_ 1_ 1 _1_1.,1_
where + 1 ¢= oG p1+m

Notlce that |n the special case whan= 4, q = 4, we may apply Sobolev
embedding on the left-hand side of (2.11) to obtaindge s=t,

1
2

P1 Z‘r’
[VllLeo ) + 1BVl Le B,y S
(HDZUHEz(BF) +[|0ulfeg,) + HDU||L4(B,)) [u—Ao|lLro(g,) -

We now choos; to be any number strictly between 2 and 4 so thatpo, p3 > 1,
and choose with  <r < 1 so that

(2.13) </aBrru—Ao\p°>pl"+(/aBTrDu\pl>pll5
(1o Ao|p°> ([ |Du|p1>

We then have for any, 1 < %1, and anyx € By that the biharmonic functiok
satisfies

(2.12)

ou
Ok(x </ u— +/ =
K|S [ Ju=Aol+ |15
1 1
(2.14) < (=) ([ oum)™ ey2a9)
B1 B1
= Mpy (U)(B1) + Dp, (U)(B1),
where we takédg = fg,u. Thus it follows for (2.12) and (2.14) that for amy %1'

M, (U) (Br) + Dp, (u) (Br)
1 1
:<r4/ \u—u\po> p°+<rpl4/ \Du]m) "
B: B:
_4 _ 1-4
=T P[u—Tlro,)+ T Pr|[0ulliep,
_4 _4
ST |u—k(0)||Lroey) +T5 P | OUfl e sy
_4
ST ([IVlILros,) + [[k—k(0)||Lros,))
1-4 1-4
TR | OVl e ey + TP | OK L ey
4
<t <E2<u>+E<u>><Bl>uu—AouLpo<Bl>+rsuBger<x>r
Xe

1-4
ST P gllu—AollLroay) + T ([|u—AollLrosy) + | OUl|Leysy)) -
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Thus, if we choosa sufficiently small and thers small, we may conclude that
whenE(u)(Bs) < g, then

(Mpo (U) (Br) + D, () (Br)) < T° (Mpy () (B1) + Dy, (u)) (Ba),
which finishes the proof of Lemma 2.3. O

PROOF OFTHEOREM 2.1: We claim that we may apply Lemma 2.3 iteratively
to the functionu. That is, ifE(u)(B1) < €, then we have for each

(2.15) (Mpo (W) + Dp, (U)) (Bui) < TP (Mpy (U) + Dpy (1)) (Ba) -
From (2.15) it follows from Morrey’s estimate thats Holder-continuous.

To establish the iteration argument, it suffices to showEad (B;) < € when-
everE(u)(B1) < e wherer =t/ forall j =1,2,.... Since in the casm= 4,

) = ( [, \DZurZ)i (/L \Dur“)‘l‘,

it is clearE(u)(B;) < € wheneverE(u)(B;1) < €. This establishes (2.15) and hence
the theorem. O

3 Monotonicity Formula for Stationary Biharmonic Maps

In this section we will derive the monotonicity formula frothe stationary
assumption of a biharmonic map. We begin with a lemma.

LEMMA 3.1 If u is a stationary biharmonic map orpB then when we write X%
ina%, we have

(3.1) JRYES édo: [ x(au) -+ miau?)dx.
0B, By
PROOF Fix € > 0 and lety; be a cutoff function defined of®d,r]| such that
We(s) =1for0<s<r—g, Pe(s) =1— # forr —e < s<r. Consider the
one-parameter (it) family of diffeomorphismspe(t) : By — By with ¢ (0)(X) = x

and
d

ot de(t)(X) = We(|x])X(x) for all x € By .
t=0
The stationary assumption implies

d _
ot /Bzr AU (e (t) (X)d (g (1) (%)

_ / WeX (|AU[2) -+ div(eX)|Aul?dx
Bor

0

_ /B (WeX (JAU[2) + e(dliv X)| AU + (D - X) | AUf2) dx.

Lete tend to zero and we get (3.1). O



10 S.-Y. A. CHANG, L. WANG, AND P. C. YANG

Remark. In the proof of the above lemma, we need to justify that thenter

JR

makes sense for stationary harmonic functions for almostyav This can be
done using the method of the difference quotient. We als@rkmmat here is the
only place where we used the fact thats stationary. In the proof of the next
proposition, we will encounter terms such(asi) that can also be justified by the
same method.

ProPOSITION3.2 (Monotonicity Formula)For a stationary biharmonic map u
By — N, we have

1 2 1 2
(3.2) rm—“/s, |Aul| dX_W/Bp |Aul“dx=P+R forO<p<r,

where

P_4 <<u£+w>2+<m—2><mui>2>
BB, \  [XM? |x|m

: ) )2 2
R:Z/ (_*“f“'uz(*“') ol >do
0B,

‘X’m—3 ’X‘m—l ’X‘m—3
XUl - (xu)?  |Oul?
) — 2 2 do.
/asp< 3 T Sl

Thus P is a positive term and R is a boundary term.

PrROOFE We first remark that in the computation below, every ternt ties
subindices, k, and/ is summed over these indices, but we will skip the summation
sign for simplicity. We begin with

d [ |Auj?dx
m-3 9 JB _ 246 — (11— 2
P r/aar |Au|“do — (m—4) /Br |Au|“dv

:/ |Au|2x-5do—(m—4)/ AU dx
Br
—/ (|Aul?) +4/Auj?)dx  (by Lemma 3.1)

—/ i(Au) + 4/Auf?)dx
[ 20UikAu
0B, r
+/ (4|Au]? — 2|Aul? — 2x; Uik (Au))dx

Br

_ [ 2XXeUikAu — 2 XUi (A |
0B, r

do
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+/ (2]Auf? 4 2(Au)kuk)dx  (by equation (1.1))
B

2 X Uik AU — 2XiXicUi (AU + 2X4 U Au

— do.
0B, r
Hence
1
P /|Au|2 2/ (I+ 11 +111)dx
where
X Xk (AU) Uik X XUi (AU)k XU Au
| = 20T = ATV and = S
|X|m72 ’ |X|m72 ) |X|m72
After several integrations by parts, we can rewrite
X XkXeUeUik — XjUgUig
Idx:/ — do
/Br\Bp 9B, < |x|m-1 |X|m3>
X XkXeUgUik — XjUgUip
3.3 —/ — do
(3:3) asp< N |x|m3>
/ <XiUZUik‘ (M— 2)XX4X¢ Uy Ui +XiXkUZkUiZ> q
B\B, \ |X|M2 x| |x|m=2
/ ”dX:_< XXX Uk | >qu><zuiufkd0>
B/\Bp oB, |x|m-1 oB, |x|m-1
XeUilik ~ XUiAu
3.4 + / <—+—
G4 e, P72 2
(2 — m)XXieXeUiUgk | XiXicUi Uk
e e )¢

2 2
L max=[ L / D4l g
Br\B, a8, XM a8, XM~

Oul2 (M= 2)XXUgu ugu
+/ <_! \_2 ( )Xkéké_xkf_ézk>dx
B\Bp \ [X|™ |x|m |x|m

Combining the terms in (3. 3) (3.4), and (3.5), we find

e gk e
:2/ (_KUM (xui) > 2/ < XiUpUig (>qui)2>
oB \ [X™2 0 xm o, \ 3 T

XUl | 206Ui)® | (u)Au  |Ouf?
BB, L [X[™2 XMz |xm2 |x|m2
(m—2)(xiui)?

+ —]x\m } dx.

(3.5)

(3.6)
42

11
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After integrating by parts and using the identity

(3.7) |0u|? Xilitie o 1 |0uf?
' B [X|™2 B [X|M2 2 Jog, X3
we find
1
= /\Au\z X— m_4/ |Aul? dx
BP
Xl (xiu)? \DUI2>
_2 / - 42 2 do
. o (s 252
: xulie o (xu)?  |Ouf?
-2 — 2 -2 d
/68p< \X!’“‘3+ Xt~ “lx3 ) 0
. )2 — (X U; 2
4 ((w ”}2” 4 (M=2)(xu) )dx'
BBy \  [X™ x|
This finishes the proof of Proposition 3.2. O

Remark. If we use the formula

d fdc:}/ xfido+ =1 [ tdo,
dr Jog, r Jog, rJos

we may rewrite our monotonicity formula as

_ 2 - 2) i
. 4/ Ayl dx+ <—rm5 /aBr|Du| > 4f Sy do.

which is a monotonically increasing functionrinActually,

_p— (U +%Ui0)% | (Mm—2)(xu;)?
o(r)—a(p)=P=4 Br\Bp< X2 + w >

One also observes that(r) — o(p) = 0 when and only whemi(x) = u(rﬁ) for
x € Br\Bo.

4 Regularity Result for Stationary Biharmonic Maps

In this section, we will establish the following regularitgsult for stationary
biharmonic maps:

THEOREM4.1 A stationary biharmonic map from an m-dimensional Euclidea
disk (m > 5) to the sphereSX is Holder-continuous except on a set (ofi — 4)—
dimensional Hausdorff measure zero.

As in the proof of the corresponding result for stationargnianic maps in [2],
our proof below is patterned after the proof in Section 2 ef tase for the four-
dimensional argument. In the case when the dimension of dheaoh manifold
m > 5, the exponents resulting from the Sobolev inequalities1(?and (2.12) do
not match, so we will show instead that the BMO norm of the magagis when
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the energy is small. In fact, we have to show the decay of theimavery scale.
The monotonicity formula makes the control in every scalespue.

An added difficulty in the proof is how to handle the extra tdRrfwhich may
not be positive) in the monotonicity formula of Propositid2. We will show that
the size oRis small compared to the size of the energy t&ms defined in (2.7).
We start with some technical lemmas.

Throughout this section we assumis a stationary biharmonic map defined on
the diskB, on R™.

LEMMA 4.2 For each r< 1, denote &(u)(B;) = (r* fg, |0?u|?dx)
al0<p<r,

E3(u)(Bp) < E3(U)(Br)
%
+c{<r4][ ]D2u12d0> <r2][ ]Du\zdcr)
0B, 0By
+r2][ |Oul®do
0B,
2 2
+c[<p4][ |D2u|2d0> (pz][ |Du|2d0>
0B, 3B,

vof |Du|2do}
9B,

where c is a universal constant depending only on dimension m

Y 2. We have for

1
2

(4.1)

PROOF We first observe that if we denot&(u) = (r* fg, (Au)zdx)l/z, then

(4.1) with E; replaced byE, is a direct consequence of the monotonicity formula
in Proposition 3.2. To compai&, with E,, we apply the Bochner identity

1
§A|DU|2 = (Uik)z + (Au)iui
and integrate over balB, on both sides to obtain
(4.2) / |0%u)?dx = / (Au)2+}/ uikuixk—}/ (Au)U;X; .
B, B, r JoB, r JoB,
Thus
3
43)  E2(U)(B) < B2(U)(B:) +¢ <r4][ |D2u|2do> <r2][ |Du|2d0>
0B, 0By
Also, applying (4.3) td,, we obtain (4.1). O

i
2

Definition. Fixing 0<r <1,if 1/21 <r < 1/2% for somek, we denoteg* = 1/2X.
We saydB; is agood sliceif it satisfies both

@.2) r Jog, |0%Ul?do < 8 [, [0?ul?dx
' r Jog, |0uldo < 8 [, |Ouldx.
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We remark that such a good slice always exists fok &l0.

LEMMA 4.3 There exists some constant ¢ such that for all good sb&gs 0B,
p <r < 3, forall n > 0,n sufficiently small, we have

(4.5) E(u)(Bp) < cE(u)(By) +nE(u)(Bp:) +CyM(u)(By:) ,
where G = cn~Gt™, M(u) = My(u), and E(u) and M (u) are defined as ii2.7).

PROOF. We first observe that by an interpolating inequality of Lreiberg
[10], we have

(4.6) D2(u)(Br) S E2(u)(Br)Mi™*(u)(Br) + M (u)(Br),

where] — 2 =a(3 — 2) + (1-a) (thusa= £, 3 < a< 1). By combining (4.6)
and (4.1), we obtain that for all good sliceg whereO<p <r,

E2(u)(Bp) < EZ(U)(By) +CE(U)(Br-)
+CE;"8(u) (B )M1~(u) (By+)
+ CEZ*(U) (Bp )M~ (u) By ) + CME(u) (Bpy )
+ CE5(u) By )M1(u) (Byy ).

4.7)

We now apply the inequality?y* 2 < anx+ (1— a)C_nyfor allx,y>0 0<a<1,
whereC, = n~#1-3 = n=1+m2)_ Wwe similarly applyx}+3yl—2 < 158 (nx)2 +
123(Cpy)? with ¢y = n=C+M to (4.7), withx = Ex(u)(By+ ),y = M1 (u)(By: ). We
obtain

E2(u)(Bp) < cE(u)(r") +cnE(u)(By+) +cCyM(u)(By- ) -

We now observe that we can estimBigu)(B,) via Sobolev embedding and (4.6).
Thus, we obtain (4.5) after adjusting the constgnt O

As an immediate corollary of Lemma 4.3, we have the following

COROLLARY 4.4 Suppose u is a stationary biharmonic map an Bhen there is
a constant c such that for all < 4p < r < 1 andn sufficiently small, we have

(48)  E(U)(By) < CE(U)(Bar-) + NE(U) (Bap:) + CyM(U) (Bapy).

PROOF Given anyp andr with 4p <r < 3, sayz—+ < p < %, we may choose
p1 With % < p1 < 5= a good slice, and; a good slice similarly chosen with
5 <rj <rsothatp; <ry. We then apply (4.7) tp1,r; and observe that; = 2p*,
ri = 2r*. Equation (4.8) then follows. O

The following lemma is the version of Lemma 2.3 for> 5:
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LEMMA 4.5 There exists some< z and ¢ a dimensional constant so that for all
r<1,

(Mpo(U) + Dp(W)) (Brr) < et~ "EZ(U) (Br)Ms(U) (Br)
(4.9) + ¢t P Dg(u) (By )M () (By)
+T(Ms(u) +Dp(u)) (Br),

1 1_1 3 1_
Where— i—m, g——p—i-m—l, T

chosen constant bigger thdn

Nl

1 1_1_1 i -
1 % =3 m and pis asuitably

ol

_|_

PrROOE We choos%1 < r < 1 with dB; a good slice and run through exactly
the same argument (and same notation) as in the proof of Leki3naNe obtain
for any p= p1 > 1 suitably chosen,

1DVlIee@e) S (I10°Ullizge,) + 1 0ullLas,)) lu—Aollis,)

2.11)
+ |1 0ul|a) U —Aollte,) »

1_1_1 1_1 1
where:= =2 m,g_—p =

pis chosen witht < 1 lp <1< 3—i<2-3 thenm>5implies that such
1 < p < mexists withs, t > 1. We now apply Sobolev embedding to the left-hand
side of (2.11) and obtain fo& r_ln 1 and any constar,

-1, 1= %Jr — 3, andAg is any constant. Thus, if

3
m
m <

[IVI|Lro g,y + 1OV Lp(ey) S

/N

152022 g, + 1Bl ) lu—Aollusa,
+1|0ullLage,) llu—AollLy(s,) -

(4.10)

We now choose < %; then for allx € B; anddB; a good slice that the biharmonic
functionk satisfies

(4.11)

9
|Dk(x)|§/aB |u—Ao|+/aB j

Thus, we have from (4.10) and (4.11)

dx < Mi(u)(By) +D1(u)(By) forall x| <T.

(4.12)  Mp,(u)(Br) + Dp(u)(Br)

1

() (ef )

ST (Vllrocey) + [k —K(O)|Lrogsy))

3z

<1

=iE

_p—m
+1 7 (10|l + 10K Leey))
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ST REA(U)(By)lu—Aollusie) +T ™ (Datl) (Bu)llu—Aollue,

+T TR sup|Ok(x)| + T T sup|Uk(x)|
xeB; XeB;

ST RE2(u)(B1)Ms(u) (Br) + T Dg(u) (B My (u) (Ba)
+T(M(u)(B1) + D1(u))(B1).

We observe that every term scales in an invariant way in j4th2refore we
may rewrite (4.12) in the form of (4.9). This finishes the grobLemma 4.5. O
COROLLARY 4.6 Letr andt be as in Lemmd.5. Then

(Mpo () +Dp(u)) (Brr) <

G (R ER) + EW)B) +1) (Me(u) + Dy(w) (Br).

Our next observation is that by our choices mf p, s, t, andg, we have
l<p<g<m l<pp<t<s<m, and%) >1- %; thusM¢ (u)(Br) < Dq(Br) <
E(u)(By). Taking this together with the trivial estimate that|, < 1, which im-
plies Mg(u)(By) < 2 for all r < 1, we obtain directly from (4.12) the following
estimate:

COROLLARY 4.7 Letr, T be as in Lemm4.5;then
gy MBS o FEX)(B) ot (Mau) + Da(u) (Br)
' < et PE2(U)(B,) + cTE () (By).

We now combine estimate (4.14) with the monotonicity foran{4.5) to derive
the following estimate:

LEMMA 4.8 For € and pg sufficiently small, there exists some constant C so that if
E(u)(B1) <&, then

(4.15) E(u)(B) <CE(u)(B1) forall balls BC By, C By.

PrROOF. For simplicity we now writeE (u)(Bp) = E(p) andM1(u)(Bp) = M(p).
We notice that from (4.8) and (4.14) we have

(4.16) V2p<r<1i, E(p*) <cE(2r*) +nE(2p") +CyM(2p"),

1 m
(4.17) Vi< 7 1<l M) < et PEZ(r) + cTE(r).

We will now apply (4.16) and (4.17) to establish (4.15). Tathis, we fixtg = 2~¢
(¢ large to be chosen later) and consiger= rgk for eachp = px. We estimate
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E(p) by applying (4.16) as
E(pk) < cE(1) +CqM(20) +nE(2py)

< cE(1) +CyM(2p;) + n(cE(1) +nE(4py)) +ChM(4py)

(4.18)
= ¢(1+n)E(1) +CyM(2p5) +CynM(4p;) + n°E(4p;)

c

mE(1) +M+n?E(p;_;) (inductively),

<

where
k 2t i (j+1 )
M* =C, M2 py).
2,

We claim that there exists some< 1 so that following estimates hold for &> 1:
Gy

C
(ak MK < -1 <blT6 +Clo+ 2n”> E(pk-1)

Bk E(Q) < T E(@(1+5+-+89,

whereb = ¢(12)} P E(1) and we sep;, aspj, = 1.
We establish (@)and (b) inductively. When k= 1.

(a) Estimate oM': For each O< j < 2/— 1, we apply (4.17) tM(21*'p?) to
obtain
M (2 p1) < o2 "2py)" PEA(1) +c2 PpiE().
Notice
1§ <dpy <21t%p; <2"py <219 foro<j<i-1
and

5 <4p; <21"2p <2%Mpy <2 fore<j<20-1.

Thus, denoting = c(t2)(* $)E(1), we have
-1 20-1
Mt <c, Z)ql(b+2cro)E(1)+cn Y nl(b+20)E(1)
(4.19) 1= 1=t
gcnﬁ(mzcrﬁzcnf)lz(l).
(b) Thus, if we choosé; so that
(4.20) Cq(b+2ct9+2cn") < &y,

thenM?® < ﬁélE(l). It then follows from (4.18) that iB; <, E(p3) <
= (1+3)E(D).
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For general k.We assumega); and(b); for j <k—1.

(a) Estimate oMX:
20-1

M =Cqy 3 nIM(2*p)).
j=0

We now estimateM (2/+1p;) by (4.17) with 2+1p; = Tjp; ;. Thusf; =
22 andt3 < 213 <1 <23 =1pfor0< j</—1,andt3 <213 < i; <
22013 =1for¢ < j <2¢—1. Hence, for 0< j < ¢ — 1 we have:

. 1= £ ~ *
M(2705) <t "E(pi_y) + CTE(Piy)

< c(13)* PE2(p{_1) +CToE(pf_1) (for p<m)

_m 2
< [C(T(Z))l PE(1)(1+5+ -~-+6"*1)—C +cto| E(pf_4)

1-n
(by (b)i-1)

2c 1
g(m————+aQEmpﬂ

Similarly, for¢ < j < 2¢—1 we have
M(211p) < c(13)" PE?(pi;_4) + CE(pi_1)

2 1
<(b—-———_ Y.
< <b1—n l_5+c> E(Pk-1)

Thus, we have

-1
MK=Cy 3 niM(2+p))
j=0

C 2c 1
(4.21) < ©n :
<1on\PToq1=s ") By

C, 2c 1 .
+1_nn <b1—n1—6+c> E(pr_1)-

(b) For fixedn < 1, choose sufficiently large so that botty = 2=¢ andn’ are
sufficiently small; then choosesufficiently small so that = c(t3)* "™ PE(1)
with E(1) < € small. Thus,

_ Gy 1 ¢
6_max<l_n <4bcl—r] +Ctg+Cn >61> <1.

Then, inductively we obtain from (4.20) that
M* < 8E (pk_1)
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SOpEWLE 3T (by (B

< 12_—an(1)(6+ o8,
By (4.18) we have thus establishedb)
We now remark that once (bholds for allk, we haveE (p) < ﬁlééE(l)

for all p < 13. From this it follows also tha (u)(B) < CE(1) for all B C B,
and for constan€ wherepg = 13 by some simple covering argument. We
have thus finished the proof of the lemma.

O

ProOF OFTHEOREM4.1: We follow the same line of proof as theorem 2.5 in
[2]. For e > 0 sufficiently small, withE (u)(B1) < €, we have from Lemma 4.3

E(u)(B) <CE(u)(By) <Ce forall BC By,.
Thus, it follows from (4.13) that there exists some: 1 with

SUp (Mp, (1) +Dp(1) (B) < (Cp™ 7+ Cp) (Ms(u) + Dp(u)) (By).

If we apply the John-Nirenberg [8] inequality, we then caiid that there exists
some universal constaM such that

[[Ullemos(B,) + Dy (U)(Bp) <

(4.22) Lo
M(Cp™ Pe+Cp) (||ullamos(e,) + Dp:(U)(B)) ,

where

1

S

oo = sup int ( f ju=cP)”.
Blcpconst \ /B!

Now, for anyf3 < 1 there is @ = pg small such thaMCpg < p—;, and there small
such thaMCpg ™ Pe < pf/2. Accordingly, we have

(4.23) [[UllBMOs(Byy) + Dipu (U)(Bpg) < ob (lullemos(By) + Dp.(U)(B1)) -
An iteration of (4.23) leads to
K
||u||BMOS(Bp(|§) +Dp, (U)(Bye) < PoB (|lullemox(By) + Dpy (U)(B1)) ,
foreachk =1,2,.... The above inequality proves that

(4.24) |lullmos(e,) -+ Dy (W) (Br) < CrP (||ullgmoys,) + Dp, (U)(B1))

forall0<r <1

It follows from (4.24) and the standard covering argumer.(eas in Evans
[3]) that the singularity set of the stationary map is a sefmof- 4)-Hausdorff
dimension zero. We have thus finished the proof of Theorem 4.1 O
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Remark.We remark that we actually have proved that forfaH 1,

[[UllBMOS(Bpy) + Do (U)(Bpg) < CcpP

whenever the energy is small near the center of the ball. éleeproved a Holder
regularity for any exponerfi < 1. Actually, one has for anp; < 4 and any expo-
nentf < 1, there exists some consta@hsuch that

D, (U) (Bpy (X)) < Cpj

holds for anyx in the regular set afl for somepg sufficiently small. Thus it follows
from the Sobolev embedding and Hélder inequality that

u() —u(y)| <Clx—y[?
wheny is sufficiently close to.

5 Further Smoothness

In this section we show that the solution is actually smoaitedt is continuous.
We remark that, according to the classical regularity thdabsuffices to prove that
the solution igC%® for somea > 0.

In the previous section we showed theat Holder-continuous with any expo-
nentp < 1, that is,

(5.1) Ju(x) — u(y)| <Clx—yP
and
(5-2) Dpl(u)(Bpo) SCPB,

when the center of the ball,, is in the regular set af for somep; < 4. Actually,
(5.2) implies (5.1).

THEOREMb.1 If u is a Holder-continuous biharmonic map satisfyifgl) and
(5.2)in By, then u is locally smooth.

We remark that one can modify the proof of Theorem 5.1 givéovbé&o prove
that any continuous biharmonic map is in fact smooth. Busfomlicity, we will
prove the result only in the setting of Theorem 5.1.

THEOREMb.2 If the biharmonic map is Holder-continuous as
5.3 rz][ Oul? + [Ju—u(x)||2 <cr®®
(5.3) B,(x)‘ %+ [[u=UX)[[E= g, ) <

for all 0 < r < p and for some x R™, then

(5.4) p'f PR <cp®.
Bp(X)
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PROOF Letn(x) be a cutoff function iB, = By (x) such that 6<n < 1,|0n| <
%, |02n| < % with n = 1in B, > andn = 0 neardBy,. Multiplying the biharmonic

map equation (1.1) by*(u— u(x)) and integrating by parts, we have that for any
£ <1,

~ [ n*u=u)hu
Bo

= [ An*u—u()u

< [ néfu—u6l 0%+ n*(u— u())0(Cu )

(5.5)
S / pPn4|0%u)? + n?n20u+2(0n?) (u— u(x)) || Ou = D2y

P

< <28/B n4|D2u|2> +Cspm_4+4B+CeHDU||ﬁ4(Bp)
(]

< <2s / n4|D2u|2> Cp™ 4 Gy DUl
P

where we have takep to be sufficiently small. Now we apply the Gagliardo and
Nirenberg inequality [10] and we have

|0Us gy <€ [ 1B =09 B, +CP™ =) e,

(5.6) P

ngZB/ |D2u[2 4 Cpm-4+48.
Bp

On the other hand, we have the following standard treatnmenhé left-hand side
of the above inequality:

[ an*u—u(9)au
_ [ n*(@02 -+ 4n*(0n?) Dudu+ (An) (u—u(x))Au
= /B :n4(AU)2+4n2AU(Dn2)Du
(5.7) +2n%Au(u—u(x)(An*+4|0n )
>3 J, (8w~ [ (10300 + Co- - )

1
> E/ IN2Au[2 — C(p™ 2 p™4+28)
BP

> :_L/ mzAu\z—Cpm“‘*zB,
2 B,
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whereas,
(5.8)

[ In2u= [ in?au—uo))?
BP BP
1

= [AMN?(u—u(x)|? — 2C|(On?)0uf? - C[(An?) (u— u(x))|?

1
> 7 [ n*I0u —ol(0n?) 0u - CI0* 2P u— u(
P
> }/ 4| 02u[2 — CpM™ 2 — Cp™ 4+2B.
4 /B,

Combining the inequalities (5.5) with (5.8), we have

[ < [t
Bo/2 Bp

(5.9 < <8 ] A(n4(u—u(x))Au> +Cpm_4+2B

< <(16€+sz£5)/ \Dzu\2> L Cp™ 4B,
BP
Then an iteration process in [4, p. 86] shows that if
o(8) <eo(p) +CpP for0<p<Awithe <27,
then

a(p) <CpP forall0< p <A.

Taking e andp < pg small so that 16+ Cp(z)B is small, it follows from the
iteration process above that

(5.10) / I02u[2 < Cp™ 4428

Bp2
The theorem follows. O
COROLLARY 5.3 Under the condition of the above theorem, we have

(5.11) / |Oul* < CpM—4+48.
Bo

PrRoOF The proof follows from the Gagliardo-Nirenberg inequali5.6) as in
the proof of the above theorem. O

TheCY® regularity foru is a corollary of the following Campanato space esti-
mates:
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THEOREM5.4 Assumey > 0 is a noninteger and p- 1. Suppose u is a weak
solution of

n X
Nu=f+ 99
51 0%

with conditions that

1
][ |f|<Cr* and <][ \gi\p> "<cr-l,
B Br

Then, uis @1V} at x, the center of the balls;Bn the WA1 norm, wherey] denotes
the integer part andy} denotes the fractional part of i.e., there is a polynomial
of order[y] such that

][ lu—P|+r|0(u—P)[+r20%u—P)| +r3 0% (u—P)| < Cr,
=
where C depends on the estimates on; fagd|ufysz.

The above theorem can be proved using an argument similaatottheorem
2.2in [4, p. 84]; we will skip the proof here.

THEOREMbS.5 Let u be a biharmonic map that is Holder-continuous with expo
nent3 < B < 1in the following fashion

1
2
(5.12) r4][ 02U+ <r4][ \Du]“) <Cr® foranyxeB;, 0<r<1.
Br (x) Br (x) 2

Then, u is %1 in By, in the sense that for eacheB;, there is a linear
function L such that

(5.13)
][ lU—L|+r|0(U=L)|+r4 0% +r30%| <Cr® forall0<r < 1.
Br (X)

PROOF. Sinceuis a biharmonic map, applying equation (1.1), we write
A?u= D?ux O%u+ O(Oux 0%u) = f 4 Og.
From (5.12) we see immediately that

3

2
][|f°‘|§CrZB*4 and <][ |g°‘|%> <Cr#-3,
By Br

Thus, we may apply Theorem 5.4 wijh= 2B and conclude thaiisCY%#-1, O
Our next step is to show that a@}® solution isC2°.

LEMMA 5.6 If a function is &% in W31 in the sense that for any x there is a linear
function L, then for any B=B,(x), 0 <r <1,

(5.14) ][ U= L|+r|0(U=L)|+r2 02| +r3| 0% < Cri+e
By
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Then, uis &% inW?22 j.e.,

(5.15) ][ r4| 022 < Cr e
Br
PROOF First, we have that is in the classicaC'®-space by the Morrey em-

bedding theorem. Then we can apply the Gagliardo-Nirenbmguality of the
form that

|22 < Crt0u- Ll f, 10%]+Cr0(u L)l
Br Br
and thus (5.15) follows directly from (5.14). O

PROOF OFTHEOREM5.1: We will establish Theorem 5.1 in several steps. As-
sume thatu is a biharmonic map satisfying both conditions (5.1) an@)(Svith
some% < B. Then, from Theorem 5.5 we conclude tias in C-® for a = 2 — 1.
Lemma 5.6 then asserts thats alsoC1?*-1 in the W22 sense, as in (5.15). We
may then apply Theorems 5.4 and 5.5 again to obtainufgtn fact inCl48-{48}
and hence it2*-2. Thus,u is smooth by the classical regularity theory. [

Remark.We remark that our scheme above actually indicates that aribar-
monic map satisfies conditions (5.1) and (5.2) for s@ne0, then we may iter-
ate to conclude that it satisfies (5.1) and (5.2) fr Zhus, we may iterate the
above scheme finite many times to prove that any biharmongthvet is Holder-
continuous is in fact smooth.
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