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Abstract

Grammar induction aims to discover syntac-

tic structures from unannotated sentences. In

this paper, we propose a framework in which

the learning process of the grammar model of

one language is influenced by knowledge from

the model of another language. Unlike previ-

ous work on multilingual grammar induction,

our approach does not rely on any external re-

sources, such as parallel corpora, word align-

ments or linguistic phylogenetic trees. We pro-

pose three regularization methods that encour-

age similarity between model parameters, de-

pendency edge scores, and parse trees respec-

tively. We deploy our methods on a state-of-

the-art unsupervised discriminative parser and

evaluate it on both transfer grammar induction

and bilingual grammar induction. Empirical

results on multiple languages show that our

methods outperform strong baselines.

1 Introduction

Syntactic parsing is an important task in natural

language processing. Supervised parsing requires

manual labeling of gold parse trees, which is a

very labor-intensive task. On the other hand, unsu-

pervised parsing (a.k.a. grammar induction) does

not require labeled data and can make use of large

amounts of unlabeled data that are freely available.

However, grammar induction is very challenging

and its accuracy is still far below that of supervised

parsing. To compensate the lack of supervision in

grammar induction, some previous work consid-

ers multilingual grammar induction, i.e., simulta-

neously learning grammars of multiple languages

(Snyder et al., 2009; Berg-Kirkpatrick and Klein,

2010; Liu et al., 2013). Existing multilingual ap-

proaches require external resources such as paral-

lel corpora, word alignments, and linguistic phy-

logenetic trees.

∗ Yong Jiang contributed to this work when at Shang-
haiTech University. Kewei Tu is the corresponding author.

Language German English Spanish French Indonesian

Code DE EN ES FR ID

C-MST 60.2 62.3 68.8 72.3 69.7
D-Tran 59.9 – 65.3 67.8 45.7

∆ -0.3 – -3.5 -4.5 -24.0

Language Italian Japanese Korean Portuguese Swedish

Code IT JA KO PTBR SV

C-MST 64.3 57.5 59.0 68.3 66.2
D-Tran 63.1 54.6 50.0 66.2 67.8

∆ -1.2 -2.9 -9.0 -2.1 +1.6

Table 1: Directed dependency accuracy (DDA) on the

universal treebanks with universal POS tags, on sen-

tences of length ≤ 10. C-MST denotes the original

Convex-MST model. D-Tran denotes direct transfer.

∆ refers to the difference between C-MST and D-Tran.

In this paper, we aim at bilingual grammar in-

duction without external resource. We are moti-

vated by our observation that learning the unsu-

pervised Convex-MST model (Grave and Elhadad,

2015) on the English corpus and then directly ap-

plying it to parse other languages produces sur-

prisingly good results (Table 1). From the table,

we can see that even with this simplistic method

(which we call direct transfer), the dependency

accuracy on each language is often very close to

the accuracy of the model specifically trained on

the corpus of that language. For the Swedish lan-

guage, the accuracy of direct transfer is even bet-

ter than that of the specifically trained model. This

surprising result suggests that grammars of differ-

ent languages, even those from different language

families (e.g., English and Japanese), may have

non-trivial similarity that can be helpful in bilin-

gual grammar induction.

Inspired by this observation, we propose a

regularization-based framework to bilingual gram-

mar induction that encourage knowledge sharing

between models learned on a language pair. We

build our framework on top of Convex-MST, a

state-of-the-art unsupervised dependency parser,
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and propose three regularization terms that en-

courage similarity between model parameters,

edge scores, and parse trees respectively. We test

our methods on ten languages on the tasks of trans-

fer grammar induction and bilingual grammar in-

duction and show that our methods can achieve a

significant boost over strong baselines.

2 Background

2.1 Unsupervised Dependency Parsing

Dependency parsing is the task of mapping an in-

put sentence x = x1, x2, ..., xn of length n to an

output dependency structure y. A dummy root x0
is typically added at the beginning of the sentence

to denote the head of the dependency tree. There

are several approaches to represent the parse tree

y. In transition based dependency parsers, the de-

pendency tree can be regarded as a sequence of

actions. In graph based dependency parsers, the

dependency tree can be represented as a spanning

tree in the graph. In chart based parsers (a.k.a.,

grammar based parsers), the dependency tree is

denoted as a set of grammar rules. In unsuper-

vised graph based dependency parsers, since gold

trees are not available, carefully designed models

and objective functions are required for learning

a dependency parser. Regardless of model archi-

tectures, current unsupervised dependency models

usually use the following form of objective func-

tion,

J(w;X ) =
∑

x∈X

Oy∈Y(x)

(

D(w,x,y) +R(w)
)

where Y is the set of all possible dependency tree,

w is the model parameter, X is the unlabeled

training corpus, D is the measurement between

the parse y and model prediction on sentence x,

R(w) is the regularization term of parameter w,

O ∈ {min,
∑

} is an operator. Table 2 shows

the choices of O, D and R for several widely used

models.

2.2 Graph based Dependency Parsing

In this paper, we focus on graph based dependency

parsers, though we believe that our approaches

can be generalized to other types of parsers. Pre-

vious work on unsupervised graph based depen-

dency parsing utilizes the autoencoder structure

(Cai et al., 2017) or the discriminative clustering

techniques (Grave and Elhadad, 2015).

Following (McDonald et al., 2005), we can use

a discriminative model for dependency parsing

with first order factorization such that the score of

a dependency tree y is the sum of the scores of

its dependency edges. The score of an edge from

word h to word m , sw(x, h,m), can be computed

as the inner product of a feature vector f(x, h,m)
and a parameter vector w. The optimal depen-

dency tree for sentence x be discovered in polyno-

mial time (Eisner, 1996; McDonald et al., 2005).

3 Bilingual Knowledge Sharing

Given non-parallel corpora of two languages Xs

and Xt, our goal is to learn two models with pa-

rameters ws and wt for the two languages. The

simplest learning objective function is,

J(ws,wt;Xs,Xt) = J(ws;Xs) + J(wt;Xt)

which contains no interaction between the two

models.

As suggested by our empirical observation in

Table 1, the model of one language may provide

a useful inductive bias in learning the model of

another language. Note that given a sentence, a

graph-based dependency parser has three levels of

representations: the model parameters, the scores

of dependency edges computed from the param-

eters, and the parse tree computed from the edge

scores. Therefore, we propose three different reg-

ularization terms to effectively encourage similar-

ity of the two models. An example is shown in

Figure 1.

Regularization of Weight Parameters (W-Reg)

Motivated by the approach of Berg-Kirkpatrick

and Klein (2010), we encourage the similarity be-

tween the two weight parameters ws and wt mea-

sured by l2 norm distance:

J(ws,wt;Xs,Xt) =

J(ws;Xs) + J(wt;Xt) + λ||ws −wt||
2
2

in which λ is a hyper-parameter.

Regularization on Edge Scores (E-Reg) Di-

rectly encouraging weight similarity might result

in an inductive bias that is too strong, because the

difference between the two languages (e.g., differ-

ent word orders) may lead to different meanings of

each feature dimension. Therefore, we propose to

encourage similarity between the scores computed

by the two models for each dependency edge of
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Parsers O D R

DMV (Klein and Manning, 2004)
∑

negative log likelihood -

Convex-MST (Grave and Elhadad, 2015) min ℓ2 distance ℓ2 norm

LC-DMV (Noji et al., 2016)
∑

negative log likelihood ℓ2 norm

NDMV (Jiang et al., 2016)
∑

,min negative log likelihood -

CRFAE (Cai et al., 2017) min negative conditional log likelihood ℓ1 norm

D-NDMV (Han et al., 2019)
∑

,min negative (conditional) log likelihood -

Table 2: Notations of several widely used models.

each sentence, which can be seen as a soft version

of weight regularization.

J(ws,wt;Xs,Xt) = J(ws;Xs) + J(wt;Xt)+

λ
∑

x∈X ′

∑

(h,m)∈G(x)

||sws
(x, h,m)− swt

(x, h,m)||22

where X ′ = Xs∪Xt. G(x) is the weighted depen-

dency graph of sentence x.

Regularization on Parse Trees (T-Reg) An-

other alternative is to encourage similarity be-

tween the parse trees predicted by the two mod-

els. Motivated by the idea of knowledge distilla-

tion (Kim and Rush, 2016), in the learning objec-

tive of each model, we add a fourth term to en-

courage the parse tree to be close to the prediction

of the other model. Below we show the objective

function for ws.

J ′(ws,wt;Xs) =
∑

x∈Xs

Oy∈Y(x)

(

D(ws,x,y)

+ λD(wt,x,y)
︸ ︷︷ ︸

T-Reg term

+R(ws)
)

J ′(wt,ws;Xt) =
∑

x∈Xt

Oy∈Y(x)

(

D(wt,x,y)

+ λD(ws,x,y)
︸ ︷︷ ︸

T-Reg term

+R(wt)
)

J(ws,wt;Xs,Xt) =

J ′(ws,wt;Xs) + J ′(wt,ws;Xt)

We apply these regularization method to the

Convex-MST model (Grave and Elhadad, 2015).

Our three objective functions can be optimized

with coordinate descent in a similar way to

Convex-MST. In each iteration, we first fix parse

I eat sushi with Mary

y

s(eat → with) = wT f(eat → with)

Figure 1: Three levels of representations of the parser:

the parameter w, the edge score s, and the parse y.

y for each training sentence and update parameters

ws and wt by stochastic gradient descent; then we

fix ws and wt and update y of each sentence by

the Frank-Wolfe algorithm.

While our three methods are applicable to any

pair of languages, intuitively one may use weight

regularization only for similar languages, and use

edge regularization and tree regularization for an

arbitrary language pair.

4 Experiments

To enable direct comparison with the Convex-

MST model, we use the dataset used in their pa-

per (Grave and Elhadad, 2015), the universal tree-

banks version 2.01, introduced by McDonald et al.

(2013). The dataset contains ten different lan-

guages, which belong to five diverse families. In

additional, we test our methods on twelve lan-

guages from the more recent UD Treebank 1.42,

which is also used in previous grammar induction

work (Jiang et al., 2017; Li et al., 2019). Follow-

ing previous work, we train all the models on the

gold POS tags of sentences no longer than ten. We

tune hyper-parameters on the development dataset

and report the DDA on sentences no longer than

ten and all the sentences in the test dataset. As our

goal is to investigate the benefits of our regulariza-

tion methods, the two hyper-parameters µ and β

1https://github.com/ryanmcd/

uni-dep-tb. The version is not consistent with re-
cent releases of UD Treebanks.

2http://universaldependencies.org/

https://github.com/ryanmcd/uni-dep-tb
https://github.com/ryanmcd/uni-dep-tb
http://universaldependencies.org/
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CODE C-MST D-TRAN W-REG E-REG T-REG

DE 60.2 -0.3 -0.2 +0.2 -0.2
ES 68.8 -3.5 -3.5 +0.8 +0.3
FR 72.3 -4.5 -3.8 +0.3 +0.3
ID 69.7 -24.0 -21.4 -0.6 -1.2
IT 64.3 -1.2 -0.4 +0.3 +1.2
JA 57.5 -2.9 -3.4 +0.9 +2.3
KO 59.0 -9.0 -9.5 +1.3 +1.9

PTBR 68.3 -2.1 -2.1 +0.2 +0.3
SV 66.2 +1.6 +1.6 +2.7 +2.6

Avg 65.14 -5.10 -4.74 +0.68 +0.83

Avg-All 56.16 -4.63 -4.29 +0.47 +0.56

UD 1.4∗ 52.83 -0.30 -1.92 +1.06 +1.37

Table 3: Transfer grammar induction from English to

the other languages. We show accuracies on the test

sentences of length ≤ 10 (except the Avg-All row

which shows the average accuracies on all the sen-

tences). *: for the UD 1.4 dataset we show the average

results.

of Convex-MST are tuned on the English develop-

ment dataset and then fixed (µ = 0.1, β = 0.001)

while λ is selected from {10, 5, 1, 5e − 1, 1e −
1, 5e− 2, 1e− 2, 5e− 3, 1e− 3, 1e− 4} for each

language pair.

4.1 Experiments on Transfer Grammar

Induction

In transfer grammar induction, we train the first

model on the first language independent of the sec-

ond language; then, with the first model fixed, we

optimize our knowledge sharing objective with re-

spect to the second model; finally, we evaluate the

second model on the test set of the second lan-

guage. In this way, we want to test whether our

methods can transfer useful linguistic knowledge

from the first language to the second language. We

report the results of transfer grammar induction

from English to the other nine languages in Table

3. Our edge regularization and tree regularization

methods outperform the Convex-MST baseline in

almost all the cases. The weight regularization

method achieves worse results than Convex-MST

except for the Swedish language, which demon-

strates that directly regularizing weight parameters

may not work well in the transfer grammar induc-

tion task. For the Swedish language, although di-

rect transfer already achieves better performance

than Convex-MST, our regularization methods can

further boost the performance by a large mar-

gin. The Indonesian language is the only language

for which transfer grammar induction provides no

benefit, possibly because of its significant syntac-

tic difference from the English language. Our ad-

ditional experimental results on UD treebank 1.4

PAIR CODE BASE COMB W-REG E-REG T-REG

EN-DE
EN 62.3 +0 +0.5 +0.1 +0.2
DE 60.2 +0.1 -0.8 +0.5 +0.4

EN-ES
EN 62.3 +0.2 +0.7 +0.4 +0.7
ES 68.8 -1.8 +1.4 +1.1 +0.8

EN-FR
EN 62.3 +0.4 +0.5 +0.1 +0.1
FR 72.3 -3.6 -0.6 +1.4 +1.4

EN-ID
EN 62.3 +0.7 +1.3 +0.1 +0.7
ID 69.7 -19.2 -2.1 +0.5 +0.9

EN-IT
EN 62.3 +0.7 +0.1 +0.6 +1.0
IT 64.3 +0.7 +1.8 +0.4 +0.8

EN-JA
EN 62.3 +1.0 +0.9 -0.1 -0.2
JA 57.5 -4.3 -0.2 +2.7 +2.4

EN-KO
EN 62.3 +0.3 +1.4 +0.5 +1.1
KO 59.0 -3.8 +0.1 +1.0 +0.4

EN-PTBR
EN 62.3 +1.0 +0.8 +0.6 +0.7

PT-BR 68.3 -0.9 +1.4 +1.4 +1.2

EN-SV
EN 62.3 -0.5 -0.9 +0.1 +0.1
SV 66.2 +1.7 +1.9 +1.0 +1.1

Avg
EN 62.30 +0.42 +0.58 +0.23 +0.49

Other 65.14 -3.46 +0.32 +1.11 +1.04

Avg-All
EN 52.10 -0.48 -0.40 +0.11 +0.42

Other 56.16 -3.05 +0.64 +1.55 +1.21

UD 1.4∗ EN 53.50 -0.76 -0.09 + 0 +0.71
Other 52.83 -0.09 +0.58 +1.92 +1.52

Table 4: Results of bilingual grammar induction on

test sentences no longer than 10 (except the Avg-All

row which shows the average accuracies on all the sen-

tences). BASE refers to the individually trained base-

line. COMB refers to learning a single model from the

combined training set of the two languages. *: for the

UD 1.4 dataset we show the average results.

show a similar trend.

We perform transfer grammar induction from

English to Swedish with different values of λ and

show the results in Figure 2. We can see that the

impact of different hyper-parameter values on the

accuracy generally follows the same tendency for

our three methods.

4.2 Experiments on Bilingual Grammar

Induction

In bilingual grammar induction, we jointly train

two models on two languages. In our experiments,

we pair English with each of the other nine lan-

guages. The results are reported in Table 4. It

can be seen that in most cases joint training leads

to better accuracies than the individually trained

models as well as the single model learned from

the combined training set. By comparing table 4

with table 3, we can also see that bilingual joint

training leads to better accuracies than transfer

grammar induction, which shows the benefit of

training two models simultaneously rather than se-

quentially. Again, our additional experimental re-

sults on UD treebank 1.4 show a similar trend.
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Figure 2: Transfer grammar induction on the SV lan-

guage with different hyper-parameter values for the

three regularization methods

5 Related Work

Our work is related to many previous work.

Unsupervised Transfer Learning There has

been previous work aiming at solving an unsu-

pervised learning task of a target domain with the

help of knowledge learned from a source domain

(Dai et al., 2008; Wang et al., 2008; Pan and Yang,

2010). There is no labeled data in both the source

and the target domains during training. Our trans-

fer grammar induction setting can be seen as an

instance of unsupervised transfer learning.

Cross-lingual Supervised Dependency Parsing

This task focuses on learning a parser with unla-

beled training data and additional labeled training

data of a second language (McDonald et al., 2011;

Naseem et al., 2012; Guo et al., 2015). The main

difference between our approach and theirs is that

our approach is fully unsupervised. and do not uti-

lize external information like word alignments or

cross-lingual word embeddings.

Other Approaches to Multilingual Grammar

Induction To the best of our knowledge, this

task is first proposed by Kuhn (2004). They as-

sume that the syntax trees induced from paral-

lel sentences share structured regularities and uti-

lize the word alignments to guide parsing. From

then on, many approaches are proposed on both

constituency grammar induction and dependency

grammar induction (Snyder et al., 2009; Berg-

Kirkpatrick and Klein, 2010). We differ from

these approaches in that we do not make use of

any external rules or knowledge.

6 Conclusion

In this paper, we propose three regularization-

based knowledge sharing methods to bilingual

grammar induction problems. We test our meth-

ods on transfer grammar induction and bilingual

grammar induction and show that our methods

achieve better performance than the baselines. In

future work, we plan to investigate the effective-

ness of our approach in other types of induction

tasks.
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