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ABSTRACT

In traditional digital image restoration, the blurring process of the
optic is assumed known. Many previous research efforts have been
trying to reconstruct the degraded image or video sequence with
either partially known or totally unknown point spread function
(PSF) of the optical lens, which is commonly called the blind
deconvolution problem. Many methods have been proposed in
the application to image restoration. However, little work has
been done in the super-resolution scenario. In this paper, we pro-
pose a generalized framework of regularized image/video iterative
blind deconvolution / super-resolution (IBD-SR) algorithm, us-
ing some information from the more matured blind deconvolution
techniques from image restoration. The initial estimates for the
image restoration help the iterative image/video super-resolution
algorithm converge faster and be stable. Experimental results are
presented and conclusions are drawn.

1. INTRODUCTION

The goal of super-resolution is to estimate a high-resolution image
from a sequence of low-resolution images while also compensat-
ing for blurring due to the point spread function of the camera lens
and the effect of the finite size of the photo-detectors, as well as ad-
ditive noise introduced by the capturing process. Super-resolution
using multiple frames is possible when there exists subpixel mo-
tion between the captured frames. Thus, each of the frames pro-
vides a unique look into the scene. The problem of super-resolution
is an active research area [1], [2], [3], [4], [5], [6], [7]. In tra-
ditional digital image restoration and super-resolution, the blur-
ring process of the optic is assumed known. Many recent re-
search efforts have been trying to reconstruct the degraded image
or video sequence with either partially known or totally unknown
point spread function (PSF) of the optical lens, which is commonly
called the blind deconvolution problem. A lot of research has been
performed on the blind deconvolution problem for image restora-
tion. In our review of previous work, we focus on the regularized
blind deconvolution methods [8], [9]. There are many advantages
of this class of methods, such as, the fact that no parametric mod-
els for either the image or the PSF are required, the low computa-
tion complexity, and the robustness to noise. In [8], the piecewise
smoothness of both the image and the PSF were adapted in the
regularized cost function. The introduction of these constraints
directly in the iterative procedure provides effective blind restora-
tion quality. An estimation of PSF support was also proposed us-
ing thresholding and pruning. However, this results can not be di-
rectly applied to super-resolution because the additional degrada-

tions may introduce instability to the algorithm. A similar method
was proposed in [9], with Total Variance (TV) norm replacing the
H norm, but the method is limited to uniform blurs that have sharp
edges.

In this paper, we propose a generalized framework of the reg-
ularized iterative blind deconvolution / super-resolution (IBD-SR)
algorithm, using some information from the more matured blind
deconvolution techniques from image restoration. The PSF blur
is jointly estimated along with the update of the high-resolution
image. The initial estimates for blind image restoration make the
algorithm start from a good convergence region. Our algorithm
is shown to be both computational efficient and stable. The rest
of the paper is organized as follows. In section 2, the regularized
super-resolution algorithm is presented with unknown but piece-
wise smooth PSF taken into consideration. The cost function now
has two regularization parameters, one for the high-resolution (HR)
image and one for the PSF. In section 3, the information from the
blind deconvolution techniques in image restoration is used to de-
termine the initial estimates of image/video super-resolution. In
section 4, experimental results are presented and finally conclu-
sions are drawn in section 5.

2. REGULARIZED SIMULTANEOUS BLIND
DECONVOLUTION / SUPER-RESOLUTION TECHNIQUE

2.1. Observation Model

The image degradation process is modeled by motion, linear blur,
subsampling by pixel averaging and an additive Gaussian noise
process [1], [2], [3], [4], [5]. All vectors are ordered lexicograph-
ically. Assume that � low-resolution frames are observed, each of
size ��������� . The desired high-resolution image 	 is of size ��
� � � � � � � � � where

� � and
� � represent the down-sampling fac-

tors in the horizontal and vertical directions, respectively. Thus,
the observed low-resolution images are related to the high resolu-
tion image through motion shift, blurring and subsampling. Let the


th low-resolution frame be denoted as ����
�� ����� ��� ����� ����������� ����� ��� �
for


 
"! �$#%�&�����&� � where '(
)���*�+� . The full set of � observed
low-resolution images can be denoted as

�,
�� � � � � � � � ��������� � �- � � 
.� �%� � �/� ���&����� � - � � � � (1)

The observed low resolution frames are related to the high-
resolution image through the following model:

� ��� 0 
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for � 
"! �$#%�&������� ' and

 
 ! �*#���������� � . The weight

5
��� 06� 387:9 � ;

represents the “contribution” of the � th high-resolution pixel to the� th low resolution observed pixel of the



th frame. The vector9 ��
 � ����� ��� � ��� � �&�����&� ����� � � � , is the
�

registration parameters for
frame



, measured in reference to a fixed high resolution grid. The

term @ ��� 0 represents additive noise samples that are assumed to
be independent and identically distributed (i.i.d.) Gaussian noise
samples with variance � �� . The system can be modeled in matrix
notation as

�,
��
	�	 >�� � (3)

In equation (3), the degradation matrix

� 	 
.� � 	 � 
 � � 	 � � ������� � � 	 � - � � (4)

performs the operation of motion, blur and subsampling. There-
fore ��	 for frame



can be written as:

� 	 � ��
���� ���.� � (5)

where � is the ���$����� � subsampling matrix, � � is the � � �
blurring matrix, and ��� is the motion matrix. The PSF of blur-
ring is assumed to be space-invariant, normalized and having non-
negative elements within a 2-D rectangular support � � ��� � . The
lexicographically ordered PSF � � 
 � ����� ��� �&��� ��������� � �&��� � �!�#"�� � ,
 
"! ������� � � , has the following properties:$ � ��� %'&)( �!* 
"! ������� � �:�+� �, , � � , , 
.- � �/�#"3*4 � ����� %+
"! (6)

In this paper, we also assume global translation shift of the motion.
This approximation will lose some generality, but is widely appli-
cable for real data. Under these assumptions, � 	 � � 
0���.�1���
and � � is a Toeplitz matrix formed by � � . Thus, each frame can
be modeled as

� � 
2��	 � � 	 >�� � 
3�4� � � � 	 >5� � � (7)

Also, � ��	 , the 2-D convolution of the PSF and the HR image,
can be written as 67� � , by introducing a � �8� �+� � matrix 6 , whose
columns are formed by circular shifting of vector 	 � . If we further
define �:9 � ��
���� �;6 , Equation (7) can also be expressed as

� � 
3�4�.�<67��� >5� ��
2�:9%� ��� � >�� � � (8)

Due to the existence of additive noise, the deconvolution /
super-resolution problem is a typical ill-posed problem. To over-
come this problem, regularization can be used. We have done some
research in previous work in [3], [4], with the assumption that the
PSF is well known. When the PSF is unknown, we should also
take the piecewise smoothness property of the PSF into consider-
ation, i.e., form the following regularized cost function:

� 7 	 � � � ; 

-2

0 4 �!=
, , � �?>@� 	 � ��	 , , ��A >CB � � � , , D 	 , , � >EB � � � , , D ��� , , � �

(9)
or

� 7 	 � � � ; 

-2

0 4 �!=
, , � �?>@�:9%� ��� � , , � A >CB � � � , , D 	 , , � >CB � � � ,F, D � � ,F, � �

(10)
to minimize, where

D
is a high-pass filter formed by the 2-D

Laplacian kernel. The cost function in Equation (9) or (10) can be

approximately minimized via minimizing the following two func-
tions alternatively, i.e., in a cyclic coordinate-descent optimization
procedure.

� � 7 	 ; 

-2

0 4 �!=
, , � �G>H� 	 � ��	 , , ��A >IB � � � , , D 	 , , � � (11)

and

� � 7 � � ; 

-2

0 4 � =
, , � �G>H�:9%� ��� � , , ��A >IB � � � , , D ��� , , � � (12)

It is difficult to get the minimizer of the high-resolution im-
age 	 directly. To minimize the cost function in (11), an iterative
algorithm can be used:J<<K?L �3 
 J<<K3 >NMPO 3/7 J	 K ; � � 
"! ������� � � � (13)

where the gradient O 3 is

O 3 
RQ � � 7 	 ;
Q < 3 � (14)

In [4], we have shown that a good choice for the regularization
parameter is:

B � � ��

, , � � >H��	 � � 	 , , �

# , , � � , , � > ,F, D 	 , , � � (15)

and M?
 #� 7 7 � � � � ;
7 � � � � ;!S 0@T�U 7 D � D ; > ! ; � (16)

where S 0@T�U 7 � ; is the maximum eigenvalue of a matrix. Due to the
relatively smaller size of the support size � � � � and fewer unknown
components in the PSF, we can solve � � from the cost function
(12) as:

��� 
 7 � �9%� � �:9%� � >VB � � � D � D ;XW � 7 � �9 � � � � ; � (17)

The regularization parameter B � of the PSF is obtained via a trial
and error method.

2.2. Determination of the Initial Estimates in Super-resolution
using Some Information from Image Restoration

It is very important to choose the initial estimates of the proposed
regularization super-resolution techniques. The alternative update
of the high-resolution image and the PSF blur may introduce insta-
bility to the algorithm. It is necessary to run the algorithm in the
region near the optimal solutions. Therefore, we use the more ma-
tured techniques of image restoration, and propose the following
procedure to obtain the good initial estimates of both the high-
resolution image and the PSF blur.

First, we reuse the cost function (11) in an image restoration
case: � 7 	%� ; 
 ,F, Y�Z 7 � � ; >N� ��	 � , , � >IB � ,F, D 	%� , , � � (18)

where
Y�Z 7 � ; is an interpolation function, such as bilinear or bicu-

bic interpolation function. The 	 � is the motion-shifted version
of the high-resolution 	 for channel (low-resolution image)



, i.e.,

	%��
.�.��	 . This modification makes the motion estimation is not
necessary in the minimization of cost function (18). Each channel
can estimate its own estimation pair, ��� and 	 � . After interpola-
tion,

Y�Z 7 � � ; has the same size of 	 , i.e., � � ! . Compared to the
cost function (11), we also drop the summation of � frames and
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change the degradation matrix from �:	 � � to � � in (18). These
changes are made based on: (1) only frame



is needed in the cost

function; (2) the subsampling operation � is dropped due to inter-
polation; (3) the subpixel motion ��� is included in 	 � , a motion-
shifted version of 	 .

Similar reusage of Equations (15)-(17) can be made for the
image restoration.

These changes make the initial estimates of both the high-
resolution image and the PSF blur much easier and fast. Any
optimization technique can be used for cost function (18). The


motion-shifted versions of the high-resolution image, 	 � , can
be used to estimate the motion vectors between low-resolution
frames. The initial estimate of high-resolution image 	 , can be
set to the high-resolution reconstruction from the reference frame
(with motion vector � ( � ( � ), or fused from the



motion-shifted so-

lutions 	%� after motion compensation. If some other prior infor-
mation is available, the above procedure can be even faster. For
example, if we know the PSF blur is Gaussian type with Gaussian
variance � �� as the parameter, we can run the trial and error method
of � �� for (11) and choose the solution with best visual reconstruc-
tion.

A better interpolation function
Y�Z 7 � ; from multiple frames may

be helpful, but bilinear or bicubic interpolation of a single frame



usually is enough to obtain fairly good initial estimates.

3. EXPERIMENTAL RESULTS

A number of experiments were conducted, some of which are pre-
sented here. To test the performance of our algorithms, we first
use the # ��� � # ��� “Cameraman” test image for a synthetic test.
The PSF is a Gaussian PSF with support size ! � � ! � and stan-
dard deviation �,
 ! � � . Three cases, Case I-III, as listed in Table
1, are tested. The global shift 9 � � belongs to the vectors gener-
ated from the given Cartesian product listed in the table. The first
low-resolution frame is selected as the reference frame. The ini-
tial estimates of the high-resolution image 	 and PSF blur are ob-
tained using the techniques developed in previous section. The
coordinate-descent method is then applied to get a more enhanced
HR image 	 and a better estimated PSF blur �?� . The alternate up-
dating of the PSF and the HR image can continue until either PSF
blur � � or the HR image 	 converges.

The PSNR of the reconstructed images for “Cameraman” us-
ing three methods (Bilinear interpolation (BI), MAP based super-
resolution with known PSF and Gaussian-Markov Random Field
(GMRF) as the image prior [3], [4], and the proposed method)
are listed in Table 2. Here, PSNR ��� is ! (	��

� ��� ����� "��������� and

PSNR � ��� is ! (���

� ��� �������� �"! , where MSE stands for the mean
squared error between the original HR / PSF and the estimated HR
/ PSF. The reconstructed “Cameraman” image from bilinear inter-
polation, GMRF with the PSF known [4], the proposed method in
case II are shown in Figs. 2, 3, and 4, respectively. The original
PSF and reconstructed PSF are listed in Figs. 5 and 6. From the
results, we can see that our algorithm not only stabilizes the de-
convolution procedure, but generates good reconstruction results.

4. CONCLUSION

We propose a regularized iterative image/video blind deconvolu-
tion algorithm using two regularization parameters, one for the HR
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Fig. 1. Original Cameraman image.
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Fig. 2. Bilinear interpolation of the first low-resolution frame of
Cameraman.

Reconstruction of Cameraman image using exact know PSF, PSNR=24.9504dB
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Fig. 3. Reconstruction of Cameraman image using exactly known
PSF.
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Table 1. Three cases of synthetic test for “Cameraman”.� � � � � � 9 � � 
�� � ��� � � � ��� �*� � ��
Case I 1 1 = ( A � = ( A

1
Case II 2 4 = ( � ! A � = ( � ! A

1
Case III 4 16 = ( � ! �*#���� A � = ( � ! �$#%��� A

1

Table 2. Results of “Cameraman” using the three methods.
PSNR BI GMRF Proposed: Proposed:
(dB) PSNR ��� PSNR � ���

Case I 23.1319 24.9287 24.7959 61.6270
Case II 22.5218 24.9504 24.6947 60.1632
Case III 21.2616 24.0632 23.9731 44.6216

image and one for the PSF. we also propose a generalized frame-
work to use some information from the more matured blind decon-
volution techniques from image restoration. The initial estimates
from blind image restoration help the super-resolution algorithm
converge faster and be stable.
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Fig. 4. Reconstruction of Cameraman image using unknown PSF.
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