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Framework for Pan-Sharpening
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Abstract— Pan-sharpening is a common postprocessing oper-
ation for captured multispectral satellite imagery, where the
spatial resolution of images gathered in various spectral bands is
enhanced by fusing them with a panchromatic image captured at
a higher resolution. In this paper, pan-sharpening is formulated
as the problem of jointly estimating the high-resolution (HR)
multispectral images to minimize an objective function comprised
of the sum of squared residual errors in physically motivated
observation models of the low-resolution (LR) multispectral and
the HR panchromatic images and a correlation-dependent regu-
larization term. The objective function differs from and improves
upon previously reported model-based optimization approaches
to pan-sharpening in two major aspects: 1) a new regularization
term is introduced and 2) a highpass filter, complementary to the
lowpass filter for the LR spectral observations, is introduced for
the residual error corresponding to the panchromatic observation
model. To obtain pan-sharpened images, an iterative algorithm is
developed to solve the proposed joint minimization. The proposed
algorithm is compared with previously proposed methods both
visually and using established quantitative measures of SNR,
spectral angle mapper, relative dimensionless global error in
synthesis, Q, and Q4 indices. Both the quantitative results and
visual evaluation demonstrate that the proposed joint formulation
provides superior results compared with pre-existing methods.
A software implementation is provided.

Index Terms— Pan-sharpening, satellite imagery, image fusion,
spectral imaging.

I. INTRODUCTION

S
ATELLITE based multi and hyperspectral image capture

systems use on-board imaging sensors that vary in spatial

resolution. Typical sensor configurations capture one panchro-

matic image with high spatial resolution and multiple spectral

images with low spatial resolution. The panchromatic sensor is

sensitive over a wide wavelength range and therefore provides

no spectral resolution whereas each spectral image sensor is

responsive only over a relatively narrow wavelength band that

it resolves spectrally. The spectral sensors are designed with

lower spatial resolution, which allows a better signal to noise
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because of the associated larger physical area over which light

is captured for each pixel in the image sensor. Before they are

used in further analysis, LR spectral images are commonly

post-processed, to obtain versions that match the higher reso-

lution sampling of the panchromatic image [1]. This process,

commonly referred to as pan-sharpening, merges together the

low resolution and spectral information captured in the spectral

channels with HR detail from the panchromatic image.

The goal of pan-sharpening is to estimate images that

would be captured by an ideal system where the spectral

sensors retain their existing spectral sensitivities but have a

higher spatial resolution matching that of the panchromatic

sensor [2]. Techniques for pan-sharpening have been

extensively researched and reported in the literature. Reviews

summarizing the different approaches and comparative

benchmarking data for the prominent methods can be found in

[3]–[9]. Component substitution (CS) and multi-resolution

analysis (MRA) are two of the dominant frameworks for pan-

sharpening. The CS framework is characterized by the use of

per-pixel transformation of the spectral channels to generate

the pan-sharpened images, which is attractive because of its

simplicity. The LR images are spatially interpolated to match

the panchromatic image size and transformed into a “color”

representation where perceptual detail concentrates within a

single channel. This channel is replaced with a HR image

derived from the panchromatic image and the inverse of the

transform is applied to obtain pan-sharpened images. One of

the earliest techniques used an intensity-hue-saturation (IHS)

representation for thee spectral channels with substitution

of the intensity channel. Since then, alternatives that better

preserve spectral accuracy and/or generalize to more than

three channels have been proposed, including the Brovey

transform, principal component replacement, and the Gram-

Schmidt (GS) transform [10] and a generalized IHS (GIHS)

method [11]. Data adaptive versions of the GIHS approach

and of the Gram-Schmidt approach designated GIHSA and

GSA, respectively, are among the most promising current

techniques in the CS framework [12].

Different from the per-pixel channel transformations used

in the CS methodology, MRA based pan-sharpening tech-

niques utilize spatial transformations. The basic methodology

operates as follows. For each spectral channel, first, via a

grayscale transformation (e.g., histogram matching) of the

panchromatic image, a HR image is generated with global

statistics matched to those of the captured LR spectral image.

Next, a spatial multi-resolution transformation is applied to the

synthesized image and the low-frequency subband data in the

multi-resolution decomposition is replaced with information

derived from the captured LR spectral image. Finally, the
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inverse multi-resolution transform recreates a pan-sharpened

image for the channel in consideration. Within the broad MRA

framework a number of different pan-sharpening schemes have

been developed. A large majority of these use multi-scale

wavelet transforms [13], although other MRA decompositions

such as curvelets have also been explored. Recent work on

pan-sharpening has explored hybrid approaches that combine

elements of the CS and MRA frameworks. Several of these

techniques are reviewed in [13] and [9].

While a majority of pan-sharpening methods adopt a CS,

MRA, or a hybrid CS+MRA approach, techniques indepen-

dent of these frameworks have also been proposed. Among

these, most relevant to our discussion are methods that adopt

a model-based optimization (MBO) framework, where pan-

sharpening is posed as an optimization problem minimizing

a cost function based on a model of the imaging sensor or

of the interrelation between the captured LR spectral and HR

panchromatic images [14]–[19]. In this paper, we propose a

new pan-sharpening method in the MBO framework. We pose

the problem of estimating the HR multispectral images, jointly,

as the minimization of an objective function formed as the sum

of three terms. The first two terms form a combined squared

residual error in physically motivated observation models of

the LR multispectral and the HR panchromatic images. The

third term represents a correlation dependent regularization.

We develop an iterative algorithm to solve the minimization

with modest computational complexity. Compared with prior

MBO methods for pan-sharpening, the proposed approach

presents novelty via an objective function that combines:

a) a new regularization term that incorporates high-frequency

detail from the panchromatic image into the estimated HR

spectral image in a correlation weighted fashion, reducing

to constrained least-squares regularization in the absence of

correlation, b) a squared error term corresponding to the

panchromatic observation model that includes a spatial high

pass filter that removes the influence of this term on low

spatial frequencies where the observed multi-spectral images

provide a better model, and c) explicit models for both spatial

blurring and down-sampling the observation model for the

LR spectral image. The first two of these innovations are new

and have not been previously utilized in MBO methods. The

third has previously been used in some [14], [17], [19] MBO

based pan-sharpening methods. Other MBO pan-sharpening

methods [15], [16] have used a simplification in which ver-

sions of the LR images interpolated to the HR sampling grid

are considered the observed LR images. We further highlight

the attributes that distinguish our work from the prior MBO

methods in Section VI after we present details of our method,

using the context we establish in our presentation for better

elaboration. Using approximate frequency-domain analysis we

help develop intuition regarding the utility of, and trade-offs

between, the three individual terms in our proposed objective

function also demonstrate that the algorithm exhibits correct

behavior under idealized conditions. Results benchmarking

and comparing the proposed method against the leading exist-

ing alternatives demonstrate its advantage: it offers superior

performance in both visual comparison and in numerical

metrics used for assessment of quality.

Part of this work has previously been presented in

preliminary form in [20]. The present manuscript improves

and extends the work in [20] via: (a) the addition of a

regularization term to the objective function that is essential

in the presence of noise and model uncertainty, (b) a more

complete presentation of the development and implementation,

(c) approximate analysis of the algorithm in the frequency

domain, and (d) expanded benchmarking of the performance

of both the proposed algorithm and previously proposed

alternatives, and (e) an enhanced and more intuitive notational

convention for the presentation.

The rest of this manuscript is organized as follows.

Section II introduces our joint formulation of the pan-

sharpening problem as a minimization problem. Section III

develops an iterative minimization approach for solving the

minimization in a computationally tractable fashion. Approx-

imate analysis of the proposed method is presented in

Section IV to provide some insight into its operation. Exper-

imental results obtained using the proposed algorithm are

presented in Section V. A discussion of the differences

between the proposed approach and prior MBO methods is

presented in Section VI along with a comparison of the com-

putational complexity of the different methods. Concluding

remarks bring the paper to a close in Section VII.

II. PROPOSED FORMULATION OF PAN-SHARPENING

AS AN OPTIMIZATION PROBLEM

We begin with a physical model for the multispectral

imaging system. A spatio-spectral distribution r(χ, υ; λ) of

light intensity is incident upon the sensor image planes used

for capturing the panchromatic and the spectral images,1 where

the pair (χ, υ) ∈ R
2 represents an orthogonal coordinate

system for the sensor image plane aligned with the sen-

sor sampling grid and λ denotes the wavelength of light.

A panchromatic image is obtained, using a sensor sensitive

to a wide wavelength range and having a sampling interval X

along each dimension, represented as a 2D orthogonal lattice

�
def= {(k1 X, k2 X)|k1, k2 ∈ Z}. The captured panchromatic

image is represented as p[x] = p̄(k1 X, k2 X) + η0[x], x =
(k1 X, k2 X) ∈ �, where

p̄(χ, υ) = H�
0 (χ, υ) ∗

∫

r(χ, υ; λ)τ0(λ)dλ, (1)

with H�
0 (χ, υ) and τ0(λ) representing, respectively, the point

spread function (PSF) and the spectral responsivity of the

panchromatic imager, ∗ representing the convolution opera-

tion, and η0[x] denoting the noise in the observations. Simul-

taneously, K spectral images are also acquired via imagers

sensitive to narrow2 spectral bands on the sparser orthogonal

sampling lattice Ŵ
def= {(k1q X, k2q X)|k1, k2 ∈ Z} having a

spatial-sampling interval q X along each dimension, where

q > 1 so that the spectral channels have a lower resolu-

tion than the panchromatic. These captured spectral images

1Throughout this paper, we assume that the captured images are spatially
registered using suitable techniques.

2Relative, to the panchromatic channel.
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are represented by ci [x] = c̄i (k1q X, k2q X) + ηi [x], x =
(k1q X, k2q X) ∈ Ŵ, for i = 1, 2, . . . , K , where

c̄i (χ, υ) = H
Ŵ
i (χ, υ) ∗

∫

r(χ, υ; λ)τi (λ)dλ, (2)

with HŴ
i (χ, υ) and τi (λ) representing, respectively, the point

spread function (PSF) and the spectral responsivity of the i th

spectral imager, and ηi [x] denoting the noise in the obser-

vations for the i th spectral channel. When the panchromatic

image p and the spectral images {ci}K
i=1 are acquired by the

same satellite, q is typically an integer factor and Ŵ ⊂ �,

which is the situation we focus on in this paper. Generaliza-

tions to rational downsampling factors between � and Ŵ are

straightforward.

The PSF H�
0 (χ, υ) is matched with the dense sampling

lattice � and the PSFs HŴ
i (χ, υ), i = 1, 2, . . . , K are matched

with the sparse sampling lattice Ŵ. Spatial resolution is max-

imized without introducing aliasing in the sampled images

when these PSFs correspond to ideal low pass filters with

a cut-off frequency corresponding to the Nyquist frequency

for the corresponding lattices. Due to practical manufac-

turing and cost constraints actual PSFs deviate from this

ideal behavior. For typical deployed systems, the modulation

transfer function (MTF), which corresponds to the magnitude

of the Fourier transform of the PSF, exhibits both a fall-

off from the maximum within the desired passband as one

approaches the Nyquist frequency and a residual nonzero

response above the Nyquist frequency that contributes to a

(small) amount of aliasing in the captured imagery. Note that

unlike some other imaging scenarios, the noise level usually

varies quite significantly across the different spectral bands

because of the significant differences in the noise sources

and in the native sensitivity of the underlying sensor used

to capture the images. As a result, differences as high as

3-dB are not uncommon for the SNR for the different spectral

bands [21].

Given the observed HR panchromatic image p[x], x ∈ �

and the LR spectral images {ci [x]}K
i=1, x ∈ Ŵ, our objective

is to recover HR spectral images fi [x] def= f (k1 X, k2 X), x =
(k1 X, k2 X) ∈ � for i = 1, 2, . . . , K , where

fi (χ, υ) = H
�
i (χ, υ) ∗

∫

r(χ, υ; λ)τi (λ)dλ. (3)

where H�
i (χ, υ) defines a suitable PSF for the i th spectral

channel matched with the HR sampling lattice �. More than

one reasonable choice exist for H�
i (χ, υ). One reasonable

choice, for instance, is: H�
i (χ, υ) = HŴ

i (χ/q, υ/q) for

i = 1, 2, . . . , K , in which case the PSF for each desired HR

spectral image is defined by scaling the PSF for the actually

captured corresponding spectral image by a factor (1/q) along

each spatial direction, so that the corresponding modulation

transfer function, and effective bandwidth, are scaled by a

factor q , as is desirable when the sampling density is increased

by q (along each dimension). An alternate reasonable choice is

to set, H�
i (χ, υ) = H�

0 (χ, υ) for i = 1, 2, . . . , K , in which

case the PSF for all of the desired HR spectral images is

chosen to match the PSF for the panchromatic channel, which

is natively captured at HR.

Fig. 1. Discrete domain observation model for the LR spectral image ci [x]
in terms of the corresponding HR image fi [x].

The problem of estimating the HR spectral images

{ fi [x]}K
i=1, x ∈ �, is a special version of the resolution

enhancement/super-resolution problem [22]. Unlike typical

single image super-resolution, however, for pan-sharpening,

the panchromatic image p[x], x ∈ � provides some of the

high frequency spatial information that is missing in the cap-

tured LR spectral imagery. To proceed to formulate the pan-

sharpening problem, we specify the observation model for the

LR observed spectral images in the discrete domain as a low-

pass filter hi [x] on the lattice � followed by downsampling

to the lattice Ŵ, which is illustrated in Fig. 1. Using the

standard stacked notation [23, p. 212], we obtain the operation

in matrix-vector format as

ci = Hi fi + ηi , (4)

where ci and fi are the stacked notation vectors representing

ci [x] and fi [x], respectively, and Hi is the rectangular matrix

representing the low-pass filtering and sub-sampling, having

essentially one row for every q2 columns,3 and ηi represents

the noise in stacked format. If the filter Hi (χ, υ) is an

ideal band-limited filter matched to the Nyquist bandwidth

for the lattice Ŵ, the discrete domain observation model is

exact [24]. Because ideal filters are non-realizable and due to

other limitations, practical systems use non-ideal filters. The

filters hi [x], i = 1, 2, . . . , K can then be optimally designed as

in [25] using knowledge of HŴ
i (χ, υ) provided as part of the

system specifications. For our formulation, analogous to the

filters hi [x], i = 1, 2, . . . , K for the multispectral channels, we

also define a lowpass filter h0[x] on � for the panchromatic

image such that h0[x]∗ p[x] downsampled to Ŵ, approximates

capture of a LR panchromatic image on the lattice Ŵ via a

filter with impulse response HŴ
0 (χ, υ)

def= H�
0 [qχ, qυ].

We now formulate pan-sharpening as the estimation of

{ fi [x]}K
i=1 for x ∈ � by combining the LR and partly

aliased information in {ci [x]}K
i=1, x ∈ Ŵ with the higher

resolution spatial information available in the panchromatic

image p[x], x ∈ �, exploiting, in the process, the spectral cor-

relation between the panchromatic and the spectral channels

due to their overlap. The specification of the spectral sensitiv-

ities of the panchromatic and the individual spectral channels

provides a model for the spectral correlation. Specifically,

we write

τ0(λ) =
K

∑

i=1

ωiτi (λ) + ζ(λ), (5)

where the summation represents the best attainable approxi-

mation to the spectral responsivity τ0(λ) for the panchromatic

3Because our final implementations are all based on discrete filtering
operations, we leave unspecified the sizes of the images and the corresponding
vectors and matrices.
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channel in terms of the spectral responsivities {τi (λ)}K
i=1

for the K spectral channels, treated as a basis, and ζ(λ)

represents the residual error in the approximation. The weights

{ωi }K
i=1 can be obtained from the specification of the spectral

sensitivities via least squares regression. If the specified PSFs

H�
i (χ, υ), i = 1, 2, . . . , K for the desired HR spectral

images are identical to the PSF H�
0 (χ, υ) for the observed

panchromatic image, one can readily see that the spectral

relation in (5) induces a corresponding relation for the (noise-

free) HR images

p̄[x] def= p̄(k1 X, k2 X) =
K

∑

i=1

ωi fi [x] + ζ [x], (6)

where x = (k1 X, k2 X), the image ζ [x] is defined as the

one corresponding to an imager with a virtual spectral sen-

sitivity ζ(λ), PSF H�
0 (χ, υ), and sampling lattice �. For

i = 1, 2, . . . , K , we also denote by κi the projection of the

panchromatic channel spectral sensitivity onto the i th spectral

channel sensitivity, specifically,

κi �
〈τi (λ), τ0(λ)〉

‖τ0(λ)‖ =
∫ ∞
−∞ τ0(λ)τi (λ)dλ
√

∫ ∞
−∞ τ 2

0 (λ)dλ
. (7)

Next, on the lattice �, for i = 0, 1, 2, . . . , K , we define the

complementary high-pass filter for the low pass filter hi [x],
by gi [x] = δ[x]−hi [x], where δ[·] represents the (Kronecker)

delta function. Finally, we formulate pan-sharpening as the

joint optimization:

f̀ = arg min
f̆

J (f̆, c, p),

J �

K
∑

i=1

‖Hi fi − ci‖2 + α

∥

∥

∥

∥

∥

G0

(

K
∑

i=1

ωi fi − p

)∥

∥

∥

∥

∥

2

+
K

∑

i=1

θi ‖Gi (fi − κi p)‖2, (8)

where we use the stacked notation [23, p. 212] to compactly

represent images as the corresponding vectors and the fil-

tering (and downsampling) operations as matrices. We also,

re-use the terms introduced in (4) and add the notation p

to denote the panchromatic image p[x] in stacked form, the

matrix Gi to denote filtering by gi [x] for i = 0, 1, . . . , K ,

and f̆ and c to jointly represent the complete set of HR

and LR spectral images {fi }K
i=1 and {ci }K

i=1, respectively. The

parameters θ1, θ2, . . . , θK are scalar nonnegative regularization

factors for which, suitable values can be determined by cross-

validation [26]. For our immediate discussion, we assume that

the parameter α introduced in (8) is chosen to be α = 1;

subsequently we introduce other values allow us to formu-

late an alternative pan-sharpening approach for benchmarking

purposes. The individual terms in the objective function are

described and motivated next.

The first summation term
∑K

i=1 ‖Hi fi − ci‖2 in the objec-

tive function J represents the data-fidelity requirement for the

K observed spectral channels under the observation model

of Fig 1. The second term

∥

∥

∥G0

(

∑K
i=1 ωi fi − p

)∥

∥

∥

2
(with

α = 1) represents the requirement for consistency of the

K estimated HR images with the spectral correlation model

for the panchromatic image in (6), where this requirement

is imposed only on the high pass filtered components of

the images. The high pass filtering is beneficial because the

residual ζ [x] in (6) is ignored, it is helpful not to include

in the second term lower frequency components that would

erroneously compete with the more accurate low frequency

spectral information included through the first term. This idea,

specifically motivates the use of the complementary filter

g0[x] in the second term in objective function in (8), which

is represented by the matrix G0. The third and final term
∑K

i=1 θi ‖Gi (fi − κi p)‖2 in the objective function J in (8)

represents a regularization term that is required because the

pan-sharpening problem is ill-posed. Specifically, the high

frequency components of the K HR spectral images in f̆ are

under-determined given the observed data because the second

term of the objective function constrains only the sum of the K

highpass filtered HR spectral images. The regularization (third)

term is carefully designed to provide spectral correlation

dependent regularization. When κi = 0, the regularization

term reduces to ‖Gi fi‖2 which is constrained least-squares

regularization (independent of p). For a nonzero value of κi

the regularization is guided by the correlation between Gi fi

and Gi p and incorporates spatial detail from the panchromatic

channel into the spectral channel. A suitable value of the

regularization factors θ1, θ2, . . . , θK can be determined via

cross-validation [26]; a small value is expected to be optimal

to give precedence to the observed data terms. The spatial

detail introduced in the pan-sharpened images via optimization

of (8) is determined by the combination of the second and

third terms. The third term introduces spatial detail but is

constrained by the second term that ensures that high fre-

quency spatial detail in the panchromatic image p[x] must be

appropriately apportioned to the spectral channels and cannot

be excessively re-utilized nor unduly ignored. With these three

terms, the objective function in (8) combines the dual goals

of spectral and spatial consistency with the observed data.

Note that by setting the parameter α = 0 we can elimi-

nate the second term in our objective function in (8). With

this setting, we can readily see that the optimization of (8)

separates into K individual optimizations and corresponds

to a per-channel formulation of pan-sharpening that retains

all other aspects of our proposed framework. This highlights

the versatility of the proposed framework and also allows

us to evaluate the benefit of the proposed joint formulation

by comparing pan-sharpened images obtained for the joint

(α = 1) and the per-channel (α = 0) scenarios. Other variants

are also possible by varying the correlation terms κi and

the highpass filter G0 in the third term and second terms,

respectively, of the objective function. These variants allow us

to estimate the usefulness of the different components used in

our objective function and will be explored for this purpose

in Section V.

III. ITERATIVE MINIMIZATION ALGORITHM

The objective function in (8) is readily seen to be con-

vex (in fact, quadratic) in the optimization variables in f̆ .
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∇
f̆
J �

(

∂J /∂f1 ∂J /∂f2 · · · ∂J /∂fK

)T

= 2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

HT
1 (H1f1 − c1) + α1GT

0 G0(
∑K

i=1 ωi fi − p) + θ1GT
1 G1 (f1 − κ1p)

HT
2 (H2f2 − c2) + α2GT

0 G0(
∑K

i=1 ωi fi − p) + θ2GT
2 G2 (f2 − κ2p)

...

HT
K (HK fK − cK ) + αK GT

0 G0(
∑K

i=1 ωi fi − p) + θK GT
K GK (fK − κK p)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (9)

The optimal estimate can therefore be obtained as the solution

to the system of equations ∇
f̆
J = 0, where the gradient

∇
f̆
J of our objective function in (8) is obtained, via relatively

straightforward algebra, as (9), shown at the top of this page,

where we introduce αi � αωi to allow for more compact

representation of the equations. Although, these equations

are linear, the number of variables in f̆ , i.e., the number

of spectral channels times the number of pixels in each

HR spectral image, and corresponding sizes of the matrices

involved are too large to allow for a direct solution using

our spatial domain matrix representation.4 Unlike the typical

image restoration setting, a closed form solution can also not

be obtained by transforming to the frequency domain because

of the downsampling operation in the operators Hi .

We therefore develop a gradient-descent [27] based iterative

algorithm for optimization along with an efficient filter based

implementation. From (9), it follows that the gradient descent

iteration with a numerical step size �T can be written in per-

channel (although still coupled) form as

f
(n+1)
i

= f
(n)
i −�T

⎛

⎝HT
i

(

Hi f
(n)
i −ci

)

+αi G
T
0 G0

⎛

⎝

K
∑

j=1

ω j f
(n)
j − p

⎞

⎠

+ θi G
T
i Gi

(

f
(n)
i − κi p

)

⎞

⎠ , (10)

where ·T denotes matrix transpose, and the superscript ·(n)

denotes the iteration index.

The sizes or the matrices and vectors involved do not

allow for a literal implementation of the iteration in (10).

Instead, a memory and computation efficient implementation

is obtained by realizing the required iterations via filtering

and down/up sampling stages. The filtering equivalents corre-

sponding to Gi and the filtering and downsampling interpre-

tation for Hi have already been discussed. The operation GT
i

is a convolution matrix corresponding to the space-reversed

PSF gi [−x]. If gi is quad-symmetric (gi [x] = gi [−x]), then

GT
i = Gi . The matrix HT

i represents up-sampling from Ŵ to �

followed by convolution with the space reversal filter hi [−x].
The block diagram for the practical implementation of the

update step in (10) for the i th spectral channel image is shown

in Fig. 2. The algorithm is initialized by setting f
(0)
i to the

4For imagery from the IKONOS satellite imaging system, a typical set of
four spectral images, represented at the panchromatic resolution at typically
captured image sizes, has over 400 million pixels in aggregate.

image obtained by interpolation of ci for i = 1, 2 . . . , N ,

specifically bicubic interpolation in our implementation.

Because the objective function in (8) is convex, the itera-

tions defined by (10) are guaranteed to converge to the (global)

minimum provided the step size �T is chosen suitably.

Specifically, a line search procedure [27] for the step size

�T ensures monotonic convergence in our problem setting.

We can also adopt the standard convergence criterion used in

iterative optimization to terminate the iterations when both

the change in images from one iteration to the next and

the improvement in the objective function are smaller than

pre-determined thresholds. In practice, however, these mea-

sures are unnecessary because the bicubic interpolation pro-

vides a good initial starting point. In our implementation,

we therefore eliminate the per-iteration computational cost

for estimating step size and testing for convergence by using

a constant iteration count Nmax and a fixed schedule for

the step size �T . Specifically, we use a fixed step size

�T = �T0 for an initially determined number N0 of iterations

and then geometrically scale the step size for iterations N0 +1

through Nmax, i.e., use a step size �T = γ n−N0 �T0 for

iteration n when n > N0. The values �T0, Nmax, N0, and γ

are empirically determined as described in Section V and in

the Supplementary data (Section S.VI).

IV. APPROXIMATE FREQUENCY DOMAIN ANALYSIS

The behavior of the proposed algorithm can be approxi-

mately analyzed by considering the solution for the system

∇
f̆
J = 0 in the frequency domain using the expression

for the gradient in (9). Specifically, denoting by [u, v] the

two orthogonal frequency variables associated with the two

spatial dimensions in x, we can consider the discrete-space

frequency region [0, 0.5] × [0, 0.5] associated with the fine

lattice �, where a discrete frequency values of 0 and 0.5 cor-

respond to continuous space frequency values of 0 and 1/(2X),

respectively, and intermediate frequency values scale linearly

to cover this range. To understand the behavior of the proposed

algorithm, we note that the low pass filters hi [x] have a unity

response in the low frequency domain [0, 1/(2q) − B] ×
[0, 1/(2q) − B] and near zero response in the high frequency

region [1/(2q)+ B, 0.5]× [1/(2q)+ B, 0.5] where 2B repre-

sents the transition band for these filters. The complementary

high-pass filters gi [x] exhibit the opposite behavior.

In the low-frequency region, i.e., [u, v] ∈ [0, 1/(2q)− B]×
[0, 1/(2q)− B], the second and third terms in the summations

representing the gradients in (9) are zero because G i [u, v] ≈ 0

in these regions for all i = 0, 1, . . . , K . In this region of
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Fig. 2. Practical implementation of (10) for updating the i th spectral channel image in an iteration of the proposed pan-sharpening method.

frequency space, therefore the solution is determined entirely

by the first data term. Using the fact that Hi [u, v] ≈ 1 in these

regions of frequency space, we can see that

F̀i [u, v] ≈ ci [qu, qv]. (11)

Thus, in this low-frequency region, the estimated HR spec-

tral images are completely consistent with the observed LR

spectral images, as is desirable.

In the high-frequency region, i.e., [u, v] ∈ [1/(2q) +
B, 0.5] × [1/(2q) + B, 0.5], the first term in the summations

representing the gradients in (9) are zero because Hi [u, v] ≈ 0

in these regions for all i = 0, 1, . . . , K . In this region of

frequency space, therefore the solution is determined entirely

by the second and third terms. Using the fact that G i [u, v] = 1

in these regions of frequency space for all i = 1, 2, . . . , K ,

we can see that the estimated images satisfy the system of

equations

αi

⎛

⎝

K
∑

j=1

ω j F̀ j [u, v]− P[u, v]

⎞

⎠+θi

(

F̀i [u, v]−κi P[u, v]
)

≈0,

(12)

for i = 1, 2, . . . , K .

For the per-channel formulation for pan-sharpening in our

framework (α = 0), (12) reduces to F̀i [u, v] = κi P[u, v],
i.e., the high frequency components of individual channels are

determined purely by the correlations between panchromatic

image and the individual spectral images. On the other hand,

for our proposed joint formulation (α = 1) under the typical

situation where θi << 1, ∀i , we see that resulting solution

obtains the high-frequency components of the spectral images

based on the correlations between the panchromatic image and

the individual spectral images, while strongly enforcing con-

sistency between the spectral and panchromatic components

implied by (5). It is instructive to consider a few special cases

for the joint scenario (α = 1):

• When ωi = 0, i.e., the i th channel makes no contribution

to the panchromatic image, the first term drops out and

we have F̀i [u, v] = κi P[u, v], the image is determined

purely by the correlation between the spectral and the

panchromatic channels.

• If κi = 0 then (it can be readily seen that) we also have

ωi = 0 and in this case we have F̀i [u, v] = 0, i.e., a

smooth estimate is favored when no correlated data is

available for the high frequencies.

• When the sensitivities corresponding to the K spectral

images are orthogonal (i.e., non-overlapping) and the

panchromatic channel sensitivity τ0(λ) is a weighted sum

of some selection of these, say,

τ0(λ) =
∑

j∈S
w jτ j (λ)

Then the solution to (12) reduces to

F̀i [u, v] =

⎧

⎪

⎨

⎪

⎩

0 j �∈ S
√

(wi ‖τi (λ)‖)2

∑

j∈S(w j ‖τ j (λ)‖)2 ‖τi (λ)‖ P[u, v] j ∈ S.

(13)

That is, the energy in P[u, v] is allocated in an “energy

proportional” fashion to the spectral bands that form the

panchromatic band and other spectral bands have their

high frequency components set to zero.

• A special case of the above arises when the K spectral

bands are unit-energy equi-bandwidth splits of a spec-

trally flat panchromatic channel, we have ωi = 1 and

κi = 1/
√

K for i = 1, 2, . . . , K . The solution to (12) then

reduces to F̀i [u, v] = (1/
√

K )P[u, v], i.e., the “detail

information” contained in the high frequency components

in p[x] is apportioned equally in energy among the

estimated spectral channels.

In the transition region where the one of the orthogonal

spatial frequency components lies in [1/(2q)−B, 1/(2q)+B],
all three of the terms contribute to the estimates and we

cannot readily obtain an expression for the estimates but from

continuity arguments can see that the solution tends to the low

and high frequency estimates at the appropriate boundaries and

intermediate behavior can be expected in between.

We note that our analysis excludes consideration of any

aliasing in the process of downsampling from � to Ŵ.

If the discrete filters hi [x] are designed based on known

specifications of the continuous time spatial filters HŴ
i (χ, υ)



2602 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 6, JUNE 2014

and H�
i (χ, υ), the aliasing can partly be comprehended and

exploited in the pan-sharpening process as has been demon-

strated for the related upsampling problem in [28].

V. RESULTS

To evaluate our proposed pan-sharpening method, we use

imagery from the IKONOS multispectral imaging satel-

lite [29], for which details of the system specifications,

including the spectral responsivities and point-spread function

characteristics are publicly available [21] along with a number

of image datasets [30] comprised of coarsely registered pan

and multispectral images at their native capture resolutions.

Together these data provide an ideal test set for evaluating

our proposed algorithm and for benchmarking its performance

against previously proposed pan-sharpening alternatives. The

IKONOS satellite has five imaging channels: a panchromatic

channel p[x] with a nominal ground resolution of X = 1m

along each dimension and spanning the spectral range5 from

525.8 through 928.5 nm and K = 4 multispectral bands

with a nominal ground resolution of 4X = 4m along each

dimension (i.e., q = 4) and having spectral bandwidths

for the channels as follows [21]: (a) MS-1 (Blue) c1[x],
444.7–516.0 nm, (b) MS-2 (Green) c2[x], 506.4–595.0 nm,

(c) MS-3 (Red) c3[x], 631.9–697.7 nm, and (d) MS-4 (VNIR)

c4[x], 757.3–852.7 nm. Plots of the normalized spectral sen-

sitivities are included in the Supplementary data (Fig. S.1).

For processing and computation, the 11 bit pixel data was

converted to a floating point values by a linear mapping with

the digital value of 2047 represented as 1.0. Output images

were linearly mapped to an 8 bit 0 to 255 scale to facilitate

viewing and comparison on common 8 bit display systems.

For computing numerical benchmarks for comparing different

methods, required “ground truth” was generated in the usual

manner [1], [16], [31] by lowpass filtering and downsampling

the panchromatic and the spectral data by a factor of 4 along

each dimension using the system MTF parameters. The spec-

tral images generated from this procedure are then used as the

LR spectral observations and the original captured spectral

images serve as HR ground truth data. Accordingly, the sim-

ulations use H�
i (χ, υ) = HŴ

i (χ/q, υ/q) for i = 1, 2, . . . , 4

for our spectral channels. For our algorithmic implementation

(shown in Fig. 2), we realize the filters hi [x], i = 1, 2, . . . , 4 as

zero-phase finite-impulse-response (FIR) designed according

to the specifications for the IKONOS system [21] via the

optimization methodology proposed in [25]. Additional detail,

including frequency responses for these filters, is provided in

the Supplementary data accompanying this paper (Table S.I

and Fig. S.2).

Required parameters for our pan-sharpening algorithm are

obtained as follows. Using the publicly available specification

data for the spectral sensitivities with least squares regression,

we obtain the weights6 ω1 = 0.04, ω2 = 0.18, ω3 = 0.21,

and ω4 = 0.34. From the same data, we have κ1 = 0.039,

5Stated spectral bandwidths correspond to full-width at half-max.
6Although these weights are obtained purely from the spectral responsivity

data for the sensors, they are close in values to those obtained in [12] by
regression over a set of sample images.

κ2 = 0.091, κ3 = 0.092, and κ4 = 0.152. Through empirical

observation of the convergence behavior of the algorithm, the

parameter values for the gradient descent iterations were set

to an initial step size of �T0 = 4, a maximum iteration count

of Nmax = 50, with a geometric reduction in the step size

by a factor γ = 0.95 for iterations greater than N0 = 20.

With these parameters, the iterations exhibited reasonably fast

and almost monotone convergence, as is illustrated in in the

Supplementary data (Section S.VI).

We compare the performance of the proposed (Prop)

algorithm against: (a) bicubic interpolation (BC), (b) promi-

nent pan-sharpening approaches in the CS and MRA

frameworks, and (c) a recently proposed alternative MBO

technique for pan-sharpening. Specifically, the bench-

marked methods include: generalized IHS (GIHS) [11],

Gram-Schmidt7 (GS) [10], multiscale wavelets (MSW) [2],

with 3 levels8 for the wavelet decomposition (MSW3), GIHS

adaptive (GIHSA) [12], GS adaptive (GSA) [12], and a

recently reported alternative MBO approach that uses a total

variation regularizer (MBTV) [19]. We note that [19] also

includes a number of comparisons of the MBTV approach

against other MBO methods and therefore also allows indirect

comparison of our proposed approach against several other

MBO methods. To highlight the contribution of the individual

elements introduced in our framework, we also include four

additional variants in our proposed framework as follows:

Prop-PC-the per-channel variant obtained by setting α = 0;

Prop-AP-the variant in which the second (joint) term in the

objective function is not subject to the highpass filtering,

i.e., G0 is set to the all pass identity operator I in the

second term; Prop-CLS-the variant with κi = 0 in which the

regularization reduces to a constrained least squares (CLS)

regularizer instead of the correlation dependent regularization;

and Prop-NR-the variant with no regularization [20] obtained

by setting θ1 = θ2 = θ3 = θ4 = 0.

Because there is currently no single consensus metric for

the evaluation of pan-sharpening [32], we consider multiple

metrics for the assessment of pan-sharpened images. Specif-

ically, for each of the pan-sharpening methods, we evaluate

the fidelity of the estimated HR spectral images { f̂i [x]}K
i=1

to the original images { fi [x]}K
i=1 by computing the following

metrics:
• Per-spectral channel SNR defined (in dB) as [33, p. 129]

SN Ri = 10 log10

(

∑

x

(

fi [x] − f̄i

)2

∑

x

(

di [x] − d̄i

)2

)

(14)

where di [x] � fi [x] − f̂i [x] represents the difference

(image) between the original and the estimated images

and f̄i (d̄i ) denotes the spatial average of fi [x] (di [x]).

7We use the second GS variant described in [10], for which, the low-
resolution panchromatic image used for computing the Gram-Schmidt trans-
formation matrix is obtained by spatially degrading the high resolution
panchromatic image based on the ratio between the resolutions. The first
GS variant, which typically performs worse than second, uses a panchromatic
image formed as a linear combination of the spectral images, with weights
determined by regression.

8The multiscale wavelet technique was also tested with 4 levels of decom-
position but performed worse than the reported 3 level case.
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• The spectral angle mapper distortion (SAM) [31] defined

as the spatial average of the absolute angular differ-

ence ��[x] between the K -vectors v[x] = [ f1[x],
f2[x], . . . , fK [x]]T and v̂[x]=

[

f̂1[x], f̂2[x],. . . , f̂K [x]
]T

corresponding to the true and the estimated values for the

pixel x, where ��[x] is computed as

��[x] � arccos

(

vT [x]v̂[x]
√

v[x]T v[x]
√

v̂T [x]v̂[x]

)

. (15)

• The relative dimensionless global error in synthesis

(ERGAS) [1], [34], [35], which can be expressed as

ERGAS � 100
1

q

√

√

√

√

√

√

1

K

K
∑

i=1

⎛

⎜

⎝

∑

x

(

fi [x] − f̂i [x]
)2

(∑

x fi [x]
)2

⎞

⎟

⎠
.

(16)

• The average Qavg of the per channel universal image

quality index [36], defined for the i th channel as [36]

Qi �
4σ

fi f̂i
µ( fi )µ( f̂i )

(σ 2
fi

+ σ 2

f̂i
)(µ2( fi ) + µ2( f̂i ))

, (17)

where σab denotes the covariance between images a

and b, σ 2
a the variance of image a, and µ(a) the mean of

image a, each of the terms being estimated over a sliding

window of size W ×W , which we indicated by a subscript

as Q
avg
W for our metric.

• The extension Q4
W of the universal image quality index

(UQUI) [37] that aims to estimate jointly the quality of

four band imagery using a quaternion representation to

jointly represent the 4 spectral bands, where W indicates

the window size, as before.

The SNR and individual channel Qi measures are extensively

used in the signal and image processing communities as

mean-squared-error based and visual measures of quality,

respectively. The SAM and ERGAS measures are commonly

utilized in the remote sensing community. The SAM measure

is motivated by the need to maintain the relative magnitudes

of the spectral bands, which is important for identifying

material characteristics, and ERGAS is considered as a global

measure of the quality of the pan-sharpened image set with

values below 3 being commonly considered acceptable [1].

The joint Q4
W measure comprehends correlation between the

four channels while still allowing for a visually meaningful

measure and has therefore also been adopted in the remote

sensing community [37]. Larger values indicate better perfor-

mance (↑) for SNR, Q
avg
W , and Q4

W with the maximum value

of 1 representing the ideal performance for Q
avg
W , and Q4

W .

Smaller values indicate better performance (↓) for SAM and

ERGAS, with 0 being the ideal value.

Table I compares the quantitative performance of the dif-

ferent algorithms using the different quality measures, where

the best score for each measure is shown in bold. Results

are shown individually for the four image sets available in

the GeoEye dataset [30]. Because the measures vary signif-

icantly over the different images, we do not present average

performance over the images. From the numerical measures

we see that the proposed technique (Prop) outperforms the

other techniques, offering either the best or close to the best

performance with respect to almost all of the measures and for

each of the image sets. The variant Prop-CLS in the proposed

framework that uses a constrained least squares regularizer

instead of the correlation dependent regularizer, offers the next

best performance. Among the methods that are not variants

of the proposed framework, GS, GSA, and GIHSA perform

very close to each other and rank next after Prop-CLS. The

results also highlight that the different components intro-

duced in our framework are essential. The Prop-PC, Prop-NR,

Prop-AP, and Prop-CLS variants that drop, respectively, the

second “joint” data term, the third regularization term, the

high pass filtering for the second term, and the correlation

dependence for the regularization, each perform worse than

the full proposed scheme (Prop). In particular, Prop-PC and

Prop-AP exhibit severe degradation in performance compared

with Prop whereas Prop-CLS suffers only a small degradation

in performance and the non-regularized Prop-NR scheme

performs well over the first couple of datasets but does

quite poorly on the third and fourth datasets. The MBTV

approach which is also an MBO method but uses a total

variation regularizer, offers performance that is better than

several of the alternative methods but not competitive with

the proposed technique. Reasons for this have already elabo-

rated in the context of the variants of the proposed method:

specifically the two key innovations introduced in the objective

function for the proposed method are absent in the MBTV

approach.

Next we present images that allow visual evaluation and

assessment of the proposed algorithm against the other meth-

ods benchmarked in Table I. In our comparisons, we also

include images on the fine lattice � obtained via bicubic

interpolation (BC), in order to represent the baseline upon

which pan-sharpening seeks to improve, and the panchromatic

image (PAN) used in the pan-sharpening process. To allow

detail in the images to be seen, we show a small corresponding

region of the images obtained by each of the alternative

techniques. The images corresponding to the R, G, B bands

are combined as a single three-channel color image to allow

compact presentation and also easy visualization of changes

in relative magnitudes of the R, G and B channels, which

are manifested as color shifts in the composite color images.

Sample results for one dataset are shown in Fig. 3 for the

pan-sharpening performed with the actual (non-simulated)

recorded dataset. Fig. 3 includes the bicubic interpolated (BC),

the original panchromatic image (PAN), and pan-sharpened

images for the proposed method (Prop), for the CS methods

GS, GIHSA, and for the MBTV MBO method. Results for

additional pan-sharpening methods, for the NIR channel, for

other datasets, and for the simulation scenario are presented

separately in the Supplementary data accompanying this paper.

For all these cases, the regularization parameters were set

to θ1 = 0.05, θ2 = 0.1, θ3 = 0.1, θ4 = 0.16 to adapt to

the varying SNR seen across channels. IMPORTANT: The

images are best viewed in their native TIFF format versions

submitted as supplementary material with the paper, where
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TABLE I

QUANTITATIVE PERFORMANCE MEASURES OF DIFFERENT PAN-SHARPENING METHODS FOR THE IKONOS SAMPLE DATA SETS

“CHINA-SICHUAN xxxxx_0000000.2000xxxx” OBTAINED FROM GEOEYE [30]. FOR THE PROPOSED METHOD

THE REGULARIZATION PARAMETERS WERE SET TO θ1 = 0.04, θ2 = 0.1, θ3 = 0.15, θ4 = 0.04 BASED ON

CROSS-VALIDATION [26]. THE METRICS ARE COMPUTED OVER THE IRREGULAR

SHAPED SUPPORT FOR VALID DATA IN THE IMAGE FILES

differences can be studied by viewing in a 1 : 1 scaling with

a suitable image viewer. Images in electronic PDF versions of

the paper, may be subject to compression or post-processing in

the publication process which may mask actual differences or

introduce spurious variations. Each figures’ caption identifies

the corresponding TIFF file.

From the images in Fig. 3 the HR capabilities of the

IKONOS panchromatic imager are apparent; the panchromatic

images show significant spatial detail and a number of features

such as roads, buildings, etc can be readily resolved. By com-

paring the pan-sharpened images against the low-resolution

BC version, we see that all of the pan-sharpening methods

considered here offer a significant improvement over the low-

resolution captured MS image by incorporating detail from the

panchromatic image. The multi-resolution pan-sharpened mul-

tispectral images obtained with the proposed method (Prop)

exhibit improved spatial detail compared with the CS methods

(GS), (GIHSA)—an effect that is best seen by viewing the

image in its entirety. By focusing on smaller regions within

the pan-sharpened images obtained by the methods, we can see

that the proposed method (Prop) also exhibits improvements

over the MBTV method. While the MBTV method preserves

edges in the images well, it over-smooths the non-edge regions

giving the corresponding pan-sharpened image in Fig. 3

a posterized appearance in which the regions bounded by

edges appear artificially uniform in appearance. We observe

that the pan-sharpened image obtained with the MSW3 method

appears sharper than the proposed method (Prop) but upon

closer examination reveals spatio-chromatic artifacts around

strong color edges. These artifacts are not seen in the

images obtained with the proposed method. For the images

in Fig. 3 these artifacts are most apparent around the colored

rooftops of the buildings in the scene (see Fig. S.4 in the

Supplementary Materials). The artifacts in the wavelet-based
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Fig. 3. Sample pan-sharpening result for a portion of the China-Sichuan 58208_0000000.20001108 dataset (See FullResCompare1_58208_MS.tif).
The R, G, and B spectral channels presented as a three channel image. Images are identified by the labels (placed below). See text for additional details.
The corresponding NIR channel results can be found in the supplementary materials Fig. S.5 (File FullResCompare1_58208_NIR.tif).

pan-sharpening technique arise because the near-perfect recon-

struction filterbanks [38] used in the wavelet based scheme

are designed with matched forward and inverse transforms

where aliasing introduced in the forward transform is canceled

by the inverse transform. This alias cancellation property is,

however, rendered ineffective in the wavelet pan-sharpening

scheme by the substitution of the higher order bands in the

spectral images from the panchromatic channel (whereas, the

lower order subbands are retained from the spectral channel).

The spatio-spectral model in the proposed method, on the other

hand, better represents the relation between the HR and the

LR images.

VI. DISCUSSION

The pan-sharpening method proposed in this paper is moti-

vated and formulated based on explicit physically-motivated

sensor models for the panchromatic and spectral channels.

This is also the case for previously proposed techniques
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in the MBO framework but clearly distinct from methods

in the CS and MRA frameworks where the sensor models

are implicit rather than explicit. Compared with previously

proposed techniques in the MBO framework [14]–[16], [19]

the proposed formulation also presents several novelties and

key differences, that we outline next.

• Variational pan-sharpening formulations are proposed

in [14] and [19] that also use an objective function that

is the sum of three parts, where the first term in (8)

forms one of the three parts. The second term in (8)

differs from its corresponding term in [14] and [19] in

that the proposed term in (8) involves the spatial filter

G0 and therefore impacts only the higher spatial fre-

quency components, wheres the corresponding terms in

[14] and [19] do not include a spatial filter and therefore

impact all spatial frequency components. As already

noted, the spatial filtering via G0 is desirable because

it limits the impact of the second term to higher spatial

frequencies and removes the influence of this term on

low spatial frequencies where the observed multi-spectral

images provide a better model than can be obtained by

modeling the pan-chromatic channel as a linear com-

bination of the spectral channels. Also, instead of the

correlation based regularization term in (8), [14] uses

an alternative regularization that is motivated by the

underlying morphological assumption that the geometry,

i.e., the edges, of the spectral channels are contained

within the panchromatic image. The approach in [19]

uses a total variation regularization term that encourages

images that are piece-wise smooth between edges. Com-

pared with these methods the proposed correlation-based

regularization has the advantageous characteristic that the

significance of the regularization term varies both based

on spatial frequency because of the spatial filters Gi ,

i = 1, 2, 3, 4 and based on the correlation of a given

channel with the panchromatic image. The regularization

reduces to a constrained least squares regularizer when

the spectral channel is uncorrelated with the pan (See

Section IV).

• An alternative MBO pan-sharpening approach is pro-

posed in [15], by defining a Markov random field (MRF)

inspired energy functional that is minimized subject to

the constraints of the simple observation model in which

pixels in captured LR images are assumed to be spatial

averages of corresponding q × q pixel regions in the HR

image. The spatial neighborhood weights for the MRF are

computed from the panchromatic image to transfer edge

information from the panchromatic image to the pan-

sharpened images. Compared with [15], the formulation

we propose in this paper uses a more refined and broadly

accepted spatial model for the captured LR spectral

images. The spatial regularization via the third term in (8)

in our formulation inherently avoids conflict with the first

observation model term whereas this is required as an

explicit constraint in [15]. Also, [15] has no equivalent

of the second term in (8).

• Another MBO pan-sharpening approach is proposed

in [16], where the problem is formulated as a regularized

constrained least squares restoration. Interpolated ver-

sions of the captured LR spectral images are treated as

observed data and the standard linear spatially-invariant

blur plus additive noise model used in image restoration

is used to represent these images as degraded versions of

the true HR spectral images. The observed panchromatic

image is also modeled as a linear combination of the

HR spectral images, after removal of the mean from

all images. The restoration of the HR panchromatic

image is then posed as the minimization of an objective

function that additively combines the squared-errors in

these two observation models with a constrained least

squares regularization term. A discrete-sine transform

(DST) is used to diagonalize the resulting system of

equations and to obtain a closed form solution which is

made computationally feasible using a block-based imple-

mentation. The method proposed in this paper, differs

from [16] in several aspects. The observation model for

the LR spectral channels explicitly incorporates down-

sampling (see next point, for additional elaboration). The

second term in (8) corresponding to the square error

for the observation model of the panchromatic image

incorporates the high-pass spatial filter G0 and thereby

avoids competition at low-spatial frequencies with the

more accurate observation model for the spectral chan-

nels. The correlation-weighted regularization represented

in the third term also serves to bring in spatial detail

from the panchromatic channel instead of the constrained

least squares regularizer that serves purely as a smoothing

prior.

• The proposed approach also differs from the prior model

based formulations in how the filters Hi , i = 1, 2, . . . , K

are determined. Specifically, these are non-square

matrices estimated using the methodology described

in [25] based on knowledge of the analog PSF for

the desired HR and the captured LR spectral images

and the spatial down-sampling factor q . The filters Hi ,

i = 1, 2, . . . , K model potential aliasing in the process

of mapping fi [x], x ∈ � to ci [x], x ∈ Ŵ in the

observation model, which, in turn, allows for the aliasing

to be partly resolved via the high frequency information

contributed by the panchromatic image instead of being

treated as noise in the data fidelity term. The utility of this

approach has been demonstrated for the closely related

image upsampling problem in [28]. In particular, this

advantage cannot be realized with approaches that treat

the spectral images interpolated up to the panchromatic

resolution as the observed data [16] or use a simplistic

model of the spatial relation between the images [15].

A comparison of the results for the proposed method (Prop)

against those for the CS and MRA methods and for the

other variants in our framework provides insight into the

contributions of the different components in our formulation.

The GS, GSA, and GIHSA methods that represent the state

of the art in CS-based pan-sharpening methods, improve

upon prior CS methods by better accounting for correlations

between the spectral channels and the panchromatic channel.

The proposed technique also accounts for the correlations
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between the spectral channels via the joint second term in (8)

but improves upon the CS techniques, because of the more

comprehensive spatial model in addition to the spectral model.

Compared with the MSW3 MRA technique, the proposed

method offers an improvement because the latter uses only an

implicit spatial model and a rather simple spectral correlation

model. The fact that the variants Prop-PC, Prop-AP, Prop-NR,

and Prop-CLS do not perform as well as the complete pro-

posed method (Prop) highlights the fact that each of the

ingredients in the proposed method provides a benefit. The

relative performance of the methods indicates, in particular,

that the regularization term and the high pass filter for the joint

second term in (8) both make a significant contribution to the

improved performance of the proposed method. Introduction

of correlation dependence in the regularization, provides a

small benefit.

Methods in the CS and MRA frameworks have an advantage

of much lower computational complexity compared with meth-

ods in the MBO framework in general and with the proposed

method in particular. However, the much higher computational

complexity of the proposed method is less of a concern

for common situations where the pan-sharpened images are

generated once and utilized many times over. In these settings,

improving the quality of the pan-sharpened images is the

predominant consideration over-riding the computational cost.

Furthermore, parallel processing could be utilized to signifi-

cantly reduce computation times. Although, the development

of a parallel algorithm is beyond the scope of the present paper,

we particularly note that the spatial filtering and re-sampling

operations used in our iterations are inherent in common image

processing tasks for which significant acceleration has been

demonstrated using parallel processing, particularly, graphics

processing units (GPUs).

VII. CONCLUSION

A new model-based optimization approach is proposed

that jointly determines pan-sharpened HR spectral images

to minimize an objective function that combines squared

residual error in physically motivated observation models of

the LR multispectral and the HR panchromatic images and a

regularization term. A computationally tractable iterative algo-

rithm is introduced for solving the resulting optimization. The

method is benchmarked against the commonly employed prior

pan-sharpening methods. Numerical performance metrics and

visual comparison validate that the method offers improved

quality of pan-sharpened images, although at the cost of

significant computational cost. A MATLAB™implementation

of the proposed pan-sharpening method is provided.9
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