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The strongly nonlinear long-wave model for large amplitude internal waves in a
two-layer system is regularized to eliminate shear instability due to the wave-induced
velocity jump across the interface. The model is written in terms of the horizontal
velocities evaluated at the top and bottom boundaries instead of the depth-averaged
velocities, and it is shown through local stability analysis that internal solitary waves
are locally stable to perturbations of arbitrary wavelengths if the wave amplitudes
are smaller than a critical value. For a wide range of depth and density ratios
pertinent to oceanic conditions, the critical wave amplitude is close to the maximum
wave amplitude and the regularized model is therefore expected to be applicable to
the strongly nonlinear regime. The regularized model is solved numerically using a
finite-difference method and its numerical solutions support the results of our linear
stability analysis. It is also shown that the solitary wave solution of the regularized
model, found numerically using a time-dependent numerical model, is close to the
solitary wave solution of the original model, confirming that the two models are
asymptotically equivalent.

1. Introduction
Theoretical modelling of large amplitude internal solitary waves observed frequently

in density-stratified coastal oceans is a challenging task. The ratio of wave amplitude
to characteristic vertical length scale such as the thickness of the upper mixed layer
is typically O(1) and most theoretical models developed for weakly nonlinear waves
are often inapplicable, as pointed out, for example, by Helfrich & Melville (2006).
Although the fully nonlinear hydrodynamic equations (the Navier–Stokes equations)
should be solved, they are computationally too expensive to describe the evolution
of such strongly nonlinear long waves over a large area and a reduced model should
therefore be adopted for real applications.

It has been shown that the strongly nonlinear long-wave models (Miyata 1988;
Choi & Camassa 1999) for a two-layer system obtained without the classical small-
amplitude assumption is a good approximation to the Euler equations even for the
strongly nonlinear regime as long as its travelling wave solutions are concerned
(Camassa et al. 2006). The model also shows excellent agreement with laboratory
experiments of Michallet & Barthelemy (1998) and Grue et al. (1999) for the shallow
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and deep water configurations, respectively. The shallow configuration model is
further generalized to a multi-layer system (Choi 2000) including the effects of
bottom topography and the top free surface.

Despite their success in describing travelling solitary wave solutions, the strongly
nonlinear models have not been used much to solve time-dependent internal wave
problems. In particular, a major difficulty in solving numerically the strongly nonlinear
model for the shallow configuration is that, regardless of the wave amplitude, the
model suffers from the local Kelvin–Helmholtz (KH) instability associated with the
velocity discontinuity across the interface, as shown in Jo & Choi (2002). Although no
background shear is present when the interface is flat, a jump in tangential velocity is
induced when the interface is deformed since the model was derived under the inviscid
assumption that requires only continuity of normal velocity. Unlike the classical KH
instability, this velocity jump depends on the interfacial displacement and varies in
space to reach a maximum value at a point where the maximal displacement occurs.
Since this variation is in general slow for internal solitary waves, local stability
analysis under the assumption that the velocity jump is locally constant (true for
short waves that are most unstable) is found to be an effective tool in understanding
the stability characteristics of large amplitude internal solitary waves, as confirmed
with numerical simulations of the strongly nonlinear model in Jo & Choi (2002). We
remark that this instability stems not from the long-wave approximation, but from
the inviscid two-layer assumption. In fact, Grue et al. (1997) observed previously the
KH instability when they solved the Euler equations for a two-layer system.

Considering that finite amplitude internal solitary waves have been observed in
laboratory and field experiments with little sign of instability, the KH instability
present in the strongly nonlinear model for arbitrarily small wave amplitudes should
be unrealistic. In other words, the strongly nonlinear model fails to describe some
physical effects in real experiments where finite amplitude internal solitary waves were
observed.

While a two-layer system is considered to be a good approximation to a density
profile with a thin transition layer where a sharp density variation occurs, the
presence of the thin layer cannot be neglected. In fact, the thin layer is known to have
a stabilizing effect on the shear flow induced by an internal solitary wave (Bogucki &
Garrett 1993), possibly, up to a certain critical wave amplitude. Therefore, the effect
of the thin transition layer needs to be included in the model. Beyond this critical
amplitude, the horizontal velocity changes so rapidly that the Richardson number
becomes locally smaller than 1/4. Then, the resulting shear flow could be unstable
and the KH billows would appear in real experiments. Another physical process
that the strongly nonlinear model fails to describe the suppression of unstable short
wavelength disturbances is viscous dissipation. The viscous effect along with the effect
of the transition layer should be incorporated into the strongly nonlinear model to
contain the unrealistic KH instability, but it is a non-trivial task to model these effects
in a way consistent with the long-wave approximation.

An alternative approach to remove the unrealistic KH instability in the strongly
nonlinear model for wave amplitudes less than the critical value is to modify the
dispersive behaviour of short waves. Jo & Choi (2008) showed that it is not necessary
to describe the short-wavelength behaviour accurately as long as the solitary wave
solutions are concerned. Jo & Choi (2008) applied a low-pass filter to remove unstable
short waves and successfully simulated the propagation of a single solitary wave
of large amplitude for a long time. This indicates that the solitary wave solution
maintains its shape and speed reasonably well as long as the low-wavenumber modes
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are well-preserved. While a numerical filter is found to be effective to eliminate the
KH instability for the propagation of a single solitary wave, it is less useful for
more general time-dependent problems since the choice of the cutoff wavenumber is
arbitrary.

Recently, Nguyen & Dias (2008) derived a weakly nonlinear internal wave model
valid near a depth ratio for which cubic nonlinearity is important and showed
numerically that their time-dependent model written in terms of the horizontal
velocities at the top and bottom boundaries can be integrated to describe the
propagation and collision of weakly nonlinear internal solitary waves. They proposed
a range of vertical levels to be used for a real linear dispersion relation in the absence
of shear, but presented no analysis in the case when the wave-induced velocity jump
is present. This is a generalization of the idea of Nwogu (1993) who first proposed to
use the horizontal velocity at the vertical level where the difference between the wave
speed of the Boussinesq model for surface waves and that of the Euler equations
is minimized. This idea was also adopted by Bona, Chen & Saut (2002, 2004) to
investigate the well-posedness of the Boussinesq-type equations for weakly nonlinear
surface waves.

In this paper, we propose a regularized strongly nonlinear model that is
asymptotically equivalent to the original model, but has a different dispersive
behaviour for short waves. We show both analytically and numerically that the
unrealistic KH instability is suppressed in the regularized model and large amplitude
internal solitary waves are stable to perturbations of arbitrary wavelengths even in
the presence of shear.

By summarizing briefly the previous results on shear instability of internal solitary
waves in a two-layer system in § 2, we obtain a system of nonlinear evolution equations
written in terms of the horizontal velocities at arbitrary depth levels in § 3. By carrying
out local stability analysis in the presence of a velocity jump across the interface, it is
shown that the top and bottom boundaries are the vertical levels that make the new
system stable in the widest range of physical parameters. The new model is tested
numerically in § 4.

2. Strongly nonlinear model and instability of solitary waves
Large amplitude internal solitary waves in a system of two constant density layers

bounded by two flat rigid boundaries can be described by the following strongly
nonlinear long-wave model (Miyata 1988; Choi & Camassa 1999) written in terms of
the displacement of the interface ζ , the depth-averaged velocities ui and the pressure
P at the interface (i = 1 and 2 represent the upper and lower layers, respectively):

ηi,t + (ηi ui)x = 0, (2.1)

ui,t + ui ui,x + gζx +
Px

ρi

=
1

ηi

(
1

3
ηi

3 Gi

)
x

, (2.2)

where g is the gravitational acceleration, ρi are the fluid densities with ρ1 < ρ2 for
stable stratification and the subscripts x and t represent partial differentiation with
respect to space and time, respectively. The local layer thicknesses ηi are defined by

η1(x, t) = h1 − ζ (x, t), η2(x, t) = h2 + ζ (x, t), (2.3)

and the model includes the nonlinear dispersive effects denoted by Gi

Gi = ui,xt + ui ui,xx − (ui,x)
2. (2.4)
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We remark that the system approximates the Euler equations with errors of O(ε4),
where ε is the long-wave parameter defined by ε = h1/λ, and h2 =O(h1) has been
assumed. The system admits solitary wave solutions that can be found by solving a
single first-order nonlinear ordinary differential equation for ζ reduced from (2.1) and
(2.2), as shown in Choi & Camassa (1999). Unfortunately, when their dynamics are
studied numerically, these solitary waves suffer from the local KH instability due to
a velocity discontinuity across the interface (Jo & Choi 2002). This velocity jump is
induced when the interface is displaced from its equilibrium position, and disappears
when the interface becomes flat. The maximum velocity jump across the interface
occurs at a point of maximal interfacial displacement and is given by

U2 − U1 =
ca(h1 + h2)

(h1 − a)(h2 + a)
, (2.5)

where U1 and U2 are the horizontal velocities in the upper and lower layers, and a is
the wave amplitude that is, for example, negative for a solitary wave of depression.
The wave speed c is given by

c2

c0
2

=
(h1 − a)(h2 + a)

h1h2 − (c0
2/g)a

, c0
2 =

gh1h2(ρ2 − ρ1)

ρ1h2 + ρ2h1

, (2.6)

where c0 is the linear long-wave speed. By assuming that the velocity jump varies
slowly in space and can be considered locally constant, it can be shown (Jo & Choi
2002) that the solitary wave of amplitude a is stable only if

(U2 − U1)
2 �

g(ρ2 − ρ1)[ρ1(h2 + a) θ1 + ρ2(h1 − a) θ2]

ρ1ρ2 θ1θ2

, (2.7)

where U2 − U1 is given by (2.5) and θi are defined by

θ1 = 1 + 1
3
k2(h1 − a)2, θ2 = 1 + 1

3
k2(h2 + a)2. (2.8)

From (2.5) and (2.7), for any fixed wave amplitude, it is always possible to find a
critical wavenumber kcr beyond which the solitary wave is unstable to short-wave
disturbances of k > kcr , as shown in figure 4(b) in Jo & Choi (2002). Unless these
unstable short waves are contained, the long-wave model given by (2.1) and (2.2) is
ill-posed and has limited applicability.

3. Derivation of a regularized model
Under the long-wave approximation, the horizontal velocities ui(x, z, t) can be

expressed (Whitham 1974, § 13.11) as

ui(x, z, t) = u
(0)
i (x, t) − 1

2
(z ∓ hi)

2u
(0)
i,xx + O(ε4), (3.1)

where the minus and plus signs are chosen for i = 1 and 2, respectively. From the
definition of the depth-mean horizontal velocities

u1(x, t) =
1

η1

∫ h1

ζ

u1(x, z, t) dz, u2(x, t) =
1

η2

∫ ζ

−h2

u2(x, z, t) dz, (3.2)

ui can be written as

ui(x, t) = u
(0)
i (x, t) − 1

6
ηi

2u
(0)
i,xx + O(ε4), (3.3)
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where ηi is defined in (2.3). On the other hand, from (3.1), the horizontal velocities
evaluated at fixed vertical levels (z = ẑ1 and z = − ẑ2), ûi are given by

ûi(x, t) = u
(0)
i (x, t) − 1

2
Hi

2u
(0)
i,xx + O(ε4), (3.4)

where

Hi = hi − ẑi , û1(x, t) = u1(x, z = ẑ1, t), û2(x, t) = u2(x, z = −ẑ2, t), (3.5)

with 0 � ẑi � hi . Then, the depth-mean velocities ui are related to ûi by the following
relation:

ui = ûi − 1
6
ηi

2 ûi,xx + 1
2
Hi

2 ûi,xx + O(ε4). (3.6)

By substituting (3.6) for ui into (2.1) and (2.2) and neglecting terms of O(ε4) or higher,
(2.1) and (2.2) yield a new system of nonlinear evolution equations for ηi , ûi and P :

ηi,t +
[
ηi

(
ûi − 1

6
ηi

2 ûi,xx + 1
2
Hi

2 ûi,xx

)]
x

= 0, (3.7)

ûi,t + ûi ûi,x + gζx +
Px

ρi

=

[
1

2
ηi

2
(
ûi,xt + ûi ûi,xx − û2

i,x

)]
x

− 1

2
Hi

2(ûi,xt + ûi ûi,xx)x, (3.8)

where we have used ηit = − (ηiûi)x +O(ε2) to find the right-hand side of (3.8). Notice
that the system given by (3.7) and (3.8) has an error of O(ε4) and is, therefore,
asymptotically equivalent to the original system (2.1) and (2.2).

3.1. Linear dispersion relation in the absence of a velocity jump

When linearized about ηi = hi and ûi = 0, the new system (3.7) and (3.8) becomes

∓ζt + hiûi,x + αi hi
3 ûi,xxx = 0, (3.9)

ûi,t + αihi
2ûi,xxt + g ζx +

Px

ρi

=
1

3
hi

2 ûi,xxt , (3.10)

where the minus (or plus) sign is taken for i = 1 (or i = 2), and αi is defined as

αi =
1

2

(
ẑi

hi

− 1

)2

− 1

6
. (3.11)

Notice that αi decreases monotonically as ẑi/hi increases from 0 to 1 (equivalently,
the vertical levels of choice move from the undisturbed interface with ẑi = 0 to the
rigid boundaries with ẑi = hi) so that

− 1
6

� αi � 1
3
. (3.12)

For example, αi = − 1/6 if we choose the horizontal velocities at the upper and
lower rigid boundaries (ẑi = hi). It is interesting to notice that, when αi = 0 with
ẑi/hi = (3 −

√
3)/3 � 0.4227, (3.9) and (3.10) become identical to the linearized system

of the original model (2.1) and (2.2) although the nonlinear solutions of the two
models should be different.

The choice of αi can be made with various considerations. For example, as Nwogu
(1993) suggested for surface gravity waves, it can be chosen to minimize the error of
the linear dispersion relation of the long-wave model (3.9) and (3.10) from that of
the full linear theory for a two-layer flow given (Lamb 1945, § 231) by

ω2 =
gk(ρ2 − ρ1)

ρ1 coth(kh1) + ρ2 coth(kh2)
, (3.13)
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where ω and k are the wave frequency and the wavenumber, respectively. Although
the long-wave models describe poorly the linear dispersive behaviour of short waves,
it is not so essential for large amplitude internal solitary waves to tune αi to match
the dispersion relation with that of the Euler equations since significant wave energy
is contained in low-wavenumber modes, as demonstrated by comparing the solitary
wave solutions of the model with the numerical solutions of the Euler equations
(Camassa et al. 2006).

Another important consideration in choosing αi is that the wave frequency ω must
be real for all k, with any choice of physical parameters ρi and hi , in the absence
of any background shear (or velocity jump), as suggested by Nguyen & Dias (2008).
We remark that both the original long-wave model (2.1) and (2.2) and the Euler
equations have this property. By assuming (ζ, ui, P ) ∼ exp[i(kx − ωt)], the linear
dispersion relation for (3.9) and (3.10) can be obtained as

ω2 =
g(ρ2 − ρ1)k

2h1h2β1β2

ρ1h2β2γ1 + ρ2h1β1γ2

, (3.14)

where βi and γi are defined by

βi = 1 − αik
2h2

i , γi = 1 −
(
αi − 1

3

)
k2h2

i . (3.15)

For the wave frequency ω to be purely real for all k, the right-hand side of (3.14)
has to be always positive. Notice that γi > 0 for all k since αi � 1/3, as shown in
(3.12). Then, the right-hand side of (3.14) is always positive if βi are positive for all
k, which is satisfied when αi � 0. If at least one of αi is positive, it can be shown that
the positiveness of the right-hand side of (3.14) is not guaranteed for some physical
parameters. Therefore, an admissible range of αi for the wave frequency to be real in
the absence of velocity shear for all k with any choice of any physical parameters is
−1/6 � αi � 0, which means that the vertical levels ẑi must lie between (3 −

√
3)hi/3

and hi . This is consistent with the conclusion of Nguyen & Dias (2008) for their
weakly nonlinear system. Furthermore, they chose αi = − 1/6 for their numerical
studies of the propagation and collision of solitary waves, but no explanation was
given for this choice. In the following section, local stability analysis based on the
new model given by (3.7) and (3.8) is presented to determine αi , which stabilizes the
model in the presence of shear, and the detailed local stability characteristics of large
amplitude internal solitary waves of the regularized model are described.

3.2. Local stability analysis in the presence of velocity discontinuity

To investigate the local stability characteristics of internal solitary waves, the new
system (3.7) and (3.8) has to be linearized about η1 = h1 − a, η2 = h2 + a and ûi = Ui ,
where a and Ui are the local-wave amplitude and the induced velocity by a solitary
wave, respectively, that are assumed to be constant. We first consider the case of
Ui �= 0, but a =0. The result can be easily extended to the case of a �= 0 by replacing
h1, h2, ẑ1 and ẑ2 by

h1 → h1 − a, h2 → h2 + a, ẑ1 → ẑ1 − a, ẑ2 → ẑ2 + a. (3.16)

By substituting into (3.7) and (3.8) ηi = hi +ζ ′, ûi = Ui +û′
i and P = P ′ and assuming

the prime variables are small, the system linearized about ui = Ui , ηi = hi and P = 0
is given, after dropping the primes, by

∓(ζi,t + Uiζi,x) + hiûi,x + αi hi
3 ûi,xxx = 0, (3.17)

(ûi,t + Uiûi,x) + αihi
2(ûi,xxt + Uiûi,xxx) + g ζx +

Px

ρi

=
1

3
hi

2 (ûi,xxt + Uiûi,xxx). (3.18)
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By substituting the travelling wave solutions of (ζ, ui, P ) ∼ exp[i(kx − ωt)] into
(3.17) and (3.18), the linear dispersion relation between ω and k can be obtained by
solving the following quadratic equation:

(ρ1h2β2γ1 + ρ2h1β1γ2) ω2 − 2k(ρ1h2β2γ1U1 + ρ2h1β1γ2U2) ω

+ k2
(
ρ1h2β2γ1U1

2 + ρ2h1β1γ2U2
2
)

− (ρ2 − ρ1)gk2h1h2β1β2 = 0, (3.19)

where βi and γi are defined in (3.15). For ω to be real for all possible ranges of
physical parameters ρi and hi , the discriminant of (3.19) has to be non-negative

� = −ρ1ρ2h1h2γ1γ2β1β2(U2 − U1)
2 + g(ρ2 − ρ1)h1h2β1β2(ρ1h2β2γ1 + ρ2h1β1γ2) � 0.

(3.20)

Since αi lies in −1/6 � αi � 0 from our consideration for real wave frequency in the
absence of velocity shear, both βi and γi are positive and, therefore, the stability
condition of � � 0 can be written as

(U2 − U1)
2 �

g(ρ2 − ρ1)(ρ2h1β1γ2 + ρ1h2β2γ1)

ρ1ρ2γ1γ2

= g(ρ2 − ρ1)

(
h1

ρ1

β1

γ1

+
h2

ρ2

β2

γ2

)
. (3.21)

For αi = 0, we have βi = 1 and γi = 1+(1/3)k2hi
2; then, inequality in (3.21) reduces to

the stability criterion of the original model given by (2.7) when h1 and h2 are replaced
by h1 − a and h2 + a, respectively, as explained in (3.16).

We remark that, for fixed αi (� 0) and given physical parameters (ρi , hi), the right-
hand side of (3.21) is a function of wavenumber k; more specifically, it depends on
fi(k) ≡ βi(k)/γi(k). Since fi(k) decreases monotonically from a maximum value of 1
at k =0 to a minimum value of αi/(αi − 1/3) as k → ∞, the right-hand side of (3.21)
becomes smaller as k increases and the stability condition becomes most stringent
for short waves. For stability for all k, the minimum of the right-hand side of (3.21)
that occurs as k → ∞ has to be greater than (U2 − U1)

2. Therefore, the best possible
scenario for stability is to choose αi such that the minimum of fi(k) is as large as
possible. This can be achieved when αi is chosen to be

αi = − 1
6
, (3.22)

with ẑi = hi from (3.11) since the minimum of fi(k) which is αi/(αi − 1/3) decreases
monotonically for −1/6 � αi � 0. This implies that the model should be written in
terms of the horizontal velocities at the top and bottom rigid boundaries for stability.
It should be pointed out that the system is always unstable for αi = 0 corresponding
to the original model (2.1) and (2.2) since the minimum value of fi is 0 and the
stability condition (3.21) becomes (U2 − U1)

2 � 0, which does not hold.
For αi = − 1/6, the minimum value of fi is 1/3 and the stability condition (3.21)

becomes

(U2 − U1)
2 �

g(ρ2 − ρ1) (ρ2h1 + ρ1h2)

3 ρ1ρ2

. (3.23)

If this inequality holds for a given velocity jump U2 − U1, the system written in
terms of the velocities at the top and bottom boundaries is stable to perturbations of
arbitrary wavenumbers k.

To include the effect of large amplitude interfacial displacement on the local
thicknesses, we apply the transformation (3.16) to the right-hand side of (3.23) and,
after substituting the expression for U2 − U1 given by (2.5), we get the following
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Figure 1. (a) Local stability characteristics of internal solitary waves: For h (= h2/h1) and
ρ (= ρ2/ρ1 > 1) inside the shaded region, the solitary waves are stable for |a| � |amax | while
they are stable for |a| � |acr | < |amax | elsewhere. The solid and dashed lines represent h+ and
h−, respectively, that are the roots of the quadratic equation of (3.26), and amax and acr are
given by the equality of (3.24) and (3.25). (b) Critical wave amplitude acr for ρ = 1.003. Solid
line: acr ; dashed line: amax . Notice that acr = amax for h− � h � h+, where h− � 0.2686 and
h+ � 3.7404; otherwise, |acr | < |amax |.

stability criterion for wave amplitude a:

3ρ1ρ2(h1 + h2)
2a2 � (h1 − a)(h2 + a)[ρ1(h2 + a) + ρ2(h1 − a)]2, (3.24)

and the equality of (3.24) yields the critical wave amplitude acr . Then, the solitary
wave is expected to become locally unstable to short waves when |a| > |acr |.

The solitary wave solutions of the original model (also the Euler equations) are
known to exist up to the maximum wave amplitude amax (Choi & Camassa 1999)
given by

amax =
h1

√
ρ2/ρ1 − h2√
ρ2/ρ1 + 1

. (3.25)

In order to find a domain of physical parameters (density and depth ratios) for which
the internal solitary waves are stable for all possible wave amplitudes, we substitute
(3.25) into (3.24) to have

(3 − √
ρ )h2 − 8

√
ρ h + 3ρ − √

ρ � 0, (3.26)

where ρ and h are the density and depth ratios, respectively, defined by ρ = ρ2/ρ1 > 1
and h = h2/h1. From (3.26), we can see that the maximum amplitude wave is
stable if

h− � h � h+ for 1 < ρ < 9, h− � h < ∞ for ρ � 9, (3.27)

where h± are the roots of the quadratic equation for h in (3.26). For example,
h− = 2 −

√
3 � 0.2679 and h+ =2 +

√
3 � 3.7321 in the limit of ρ = 1; h− → 1 and

h+ → ∞ as ρ → 9. As shown in figure 1(a), when the depth and density ratios h and ρ

satisfy the condition given by (3.27), the solitary waves are stable for 0 < |a| � |amax |;
otherwise, the solitary waves are stable only for 0 < |a| � |acr | < |amax |. In figure 1(b),
for a small density ratio of ρ = 1.003 relevant for oceanic applications, the critical
wave amplitude is found to be the same as or close to amax for all ranges of h.
Compared with the original model given by (2.1) and (2.2) for which solitary waves
of any amplitude are unstable to short waves, the regularized model improves greatly
the stability characteristics of large amplitude internal solitary waves.
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4. Numerical solutions of the regularized model
When we choose ẑi = hi corresponding to αi = − 1/6, the system given by (3.7) and

(3.8) reduces, with Hi = 0, to

ηi,t +
[
ηi

(
ûi − 1

6
ηi

2 ûi,xx

)]
x

= 0, (4.1)

ûi,t +

(
1

2
û2

i + gζ +
P

ρi

)
x

=

[
1

2
ηi

2
(
ûi,xt + ûi ûi,xx − û2

i,x

)]
x

. (4.2)

This is the regularized strongly nonlinear model for large amplitude internal solitary
waves in a system of two layers bounded by the top and bottom rigid boundaries.
This system is written in a conserved form and has two obvious conservation laws

d

dt

∫ ∞

−∞
ζ dx = 0,

d

dt

∫ ∞

−∞
ûi dx = 0. (4.3)

Since the system given by (4.1) and (4.2) has two degrees of freedom corresponding
to the internal waves travelling to the right and to the left, respectively, as shown in
(3.14), it is more convenient for numerical computations to solve (4.1) for i = 1 for ζ

and the following system for û1 and û2:[
η1

(
û1 − 1

6
η1

2 û1,xx

)]
x
+

[
η2

(
û2 − 1

6
η2

2 û2,xx

)]
x

= 0, (4.4)

ρ1

[
û1,t −

(
1
2
η1

2û1,xt

)
x

]
− ρ2

[
û2t −

(
1
2
η2

2û2,xt

)
x

]
= (ρ2 − ρ1)gζx

+ ρ2

[
1
2
û2

2 − 1
2
η2

2
(
û2û2,xx − û2

2,x

)]
x

− ρ1

[
1
2
û2

1 − 1
2
η1

2
(
û1û1,xx − û2

1,x

)]
x
, (4.5)

where the first and second equations are obtained by adding (4.1) for i = 1 and 2
to eliminate ζt and subtracting (4.2) multiplied by ρi for i = 1 and 2 to eliminate P ,
respectively. The system given by (4.4) and (4.5) is then solved numerically using the
second-order central difference method in both space and time with the solitary wave
solutions of the original system (2.1) and (2.2) as initial conditions.

After solving (4.1) for i =1 for ζ (n+1) at the new time level n + 1, we discretize the
coupled equations (4.4) and (4.5) to find the following linear system for û

(n+1)
1 and

û
(n+1)
2 : (

A B
C D

) (
û

(n+1)
1

û
(n+1)
2

)
=

(
b

(n)
1

b
(n)
2

)
, (4.6)

where tridiagonal matrices A, B, C and D represent the discretized differential
operators on the left-hand side of (4.4) and (4.5), and b

(n)
1 and b

(n)
2 denote the

remaining parts of (4.4) and (4.5) that depend on ζ , û1 and û2 at the old time levels,
n and n − 1.

In our computations, we set h1 = 1 and g = 1 to fix length and time scales, and the
length of the computational domain is L = 200. Typically, we choose �t = 0.1 and
�x = 200/1024 ≈ 0.1953 for time step and grid size, respectively. Since the initial
condition that is the solitary wave solution of the original model (2.1) and (2.2) is
expected to be close to, but not the exact solution of the regularized model (4.1)
and (4.2), small amplitude disturbances are always generated and propagate towards
one of the boundaries of the computational domain when the system is solved in a
reference frame moving with the solitary wave speed. For example, for the right-going
solitary wave, while the zero boundary condition is used at x =L/2, a radiation
boundary condition is imposed at x = − L/2 by discretizing the following linearized
Korteweg–de Vries equation in the reference frame moving with the solitary wave
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Figure 2. (a) Numerical solution of the regularized model (4.1) and (4.2) for
0 � t(g/h1)

1/2 � 2 × 104, initialized with a solitary wave solution of the original long-wave
model (2.1) and (2.2) for a/h1 = 0.8 (a/amax � 0.8), h2/h1 = 3 and ρ2/ρ1 = 1.003.
(b) Comparison between the numerical solution of the regularized model (solid line) at
t(g/h1)

1/2 = 2 × 104 with the original solitary wave solution (dashed line).

speed c (> 0):

ζt − (c + c0)ζx − c2ζxxx = 0, c2 =
c0

6

ρ1h
2
1h2 + ρ2h1h

2
2

ρ1h2 + ρ2h1

, (4.7)

where c0 (> 0) is defined in (2.6).
Figure 2 shows the numerical solution of the regularized model initialized with a

single solitary wave solution of the original model (2.1) and (2.2) whose initial wave
amplitude is a/h1, about 80 % of the maximum amplitude amax � −0.9985. After small
amplitude waves are shed and left the computational domain, the numerical solution
reaches almost a steady state in a reference frame moving with the solitary wave
speed c � 0.054. Although the existence of solitary wave solutions of the regularized
model is unknown, the computed wave profile at t = 2 × 104 (or, equivalently, after the
solitary wave travels about 5.45 times the computational domain) can be considered
as an approximate solitary wave solution of the regularized model. It is interesting
to notice that the numerical solution is very close to the solitary wave solution of
the original model, as can be seen in figure 2(b). This implies that the regularized
model is expected to serve as a model for large amplitude internal solitary waves as
effectively as the original model. Since the density and depth ratios (ρ2/ρ1 = 1.003
and h2/h1 = 3) satisfy the condition given by (3.27), the solitary wave solution of
the maximum amplitude which is a front solution should be stable. As shown in
figure 3, the front remains to be stable, except for small amplitude waves shedding
during the initial adjustment period, and stays close to the initial condition. On
the other hand, for h2/h1 = 5, the critical wave amplitude is found, from (3.24), to
be acr � − 1.724, which is less than the maximum wave amplitude amax � − 1.998.
As demonstrated in figure 4(a), when the wave amplitude (a = − 1.65) is less than
the critical amplitude, the numerical solution of the regularized model initialized
with a solitary wave solution of the original model shows no sign of instability up
to t = 1.6 × 104 (or, equivalently, after the solitary wave travels about 5.33 times
the computational domain). Notice that the solitary wave experiences slightly larger
deformation from the initial profile than that for h2/h1 = 3 since the amplitude tested
here is much larger. When |a| > |acr |, the KH instability appears quickly near the



A regularized internal wave model 83

–100 –50 0 50 100
0

4000

8000

12 000

16 000

0

0.5

1.0
(a) (b)

x

–ζ

ζ

t

–10 –8 –6 –4 –2 0 2 4 6 8 10
–1.0

–0.8

–0.6

–0.4

–0.2

0

x

Figure 3. (a) Numerical solution of the regularized model (4.1) and (4.2) initialized with the
front solution of the original long-wave model (2.1) and (2.2) for a/h1 � 0.9985 (a/amax = 1),
h2/h1 = 3 and ρ2/ρ1 = 1.003. (b) Comparison between the numerical solution of the regularized
model (solid line) at t(g/h1)

1/2 = 2 × 104 with the original front solution (dashed line).
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Figure 4. (a) Numerical solution of the regularized model (4.1) and (4.2) for
0 � t(g/h1)

1/2 � 1.6 × 104, initialized with a solitary wave solution of the original long-wave
model (2.1) and (2.2) for a/h1 � 1.65 (a/amax � 0.826, a/acr � 0.957), h2/h1 = 5 and
ρ2/ρ1 = 1.003. (b) Numerical solution for a/h1 � 1.9 (a/amax � 0.951, a/acr � 1.102). Since
|a| > |acr |, the KH Instability appears near the location of the maximal displacement (or
maximal shear), approximately, at t(g/h1)

1/2 = 236.

location of the maximal displacement where the maximum shear is induced, as shown
in figure 4(b).

5. Concluding remarks
It is shown that, when the strongly nonlinear model for large amplitude internal

solitary waves in a system of two layers of constant densities is written in terms of the
horizontal velocities at the top and bottom boundaries, it suppresses unstable short
waves excited by the KH instability mechanism in the original model. The critical
wave amplitude below which internal solitary waves are stable is found to be close
to the maximum wave amplitude for a wide range of parameters relevant for real
applications in the ocean. The regularized model is then solved numerically using a
finite-difference method and it is demonstrated that the regularized model stabilizes
large amplitude internal solitary waves.

It is of interest to find how close the critical wave amplitude from our analysis
of the regularized model is to the critical value measured in real experiments where
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the two-layer approximation is almost valid. In principle, the regularized model
should be used for solitary waves whose wave amplitudes are smaller than the
experimentally measured critical wave amplitude. Although the KH instability is
often observed locally near the crest of a large amplitude internal solitary wave, the
unstable disturbances whose group velocity is smaller than the solitary wave speed
often propagate away from the crest without destroying the solitary wave profile
completely. Therefore, the regularized model might serve as an effective tool to study
internal solitary waves even when their amplitudes are greater than the measured
critical value.

It might not be so crucial to model the viscous effect on short waves accurately
as far as the long-wave dynamics is concerned, but it is still instructive to examine
the role of viscosity in containing unstable short waves in a two-layer system. For
example, for a system of two immiscible fluids where the stabilizing effect of a thin
transition layer is absent, our local stability analysis indicates that arbitrarily small
amplitude interfacial solitary waves of the original inviscid system are unstable, which
is unphysical. Therefore, viscosity should play a role in the determination of the onset
of instability for such system.

It should be pointed out that our local stability analysis for uniform background
shear provides an approximate estimate of the true stability criterion for internal
solitary waves in a two-layer system. Although this approximate criterion is sufficient
to derive a regularized model, a more comprehensive linear stability analysis for non-
uniform background shear across the deformed interface is required to fully describe
the stability characteristics of large amplitude internal solitary waves. Furthermore,
the long-term evolution of unstable solitary waves leading to the KH billows cannot
be addressed by the long-wave model, and the fully nonlinear hydrodynamic equations
must be solved.
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