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Abstract

For unconstrained optimization, Newton-type methods have good convergence properties, and are
used in practice. The Newton’s method combined with a trust-region method (the TR-Newton
method), the cubic regularization of Newton’s method and the regularized Newton method with
line search methods are such Newton-type methods. The TR-Newton method and the cubic regu-
larization of Newton’s method have to solve nonconvex subproblems at each iteration in order to get
a search direction although these methods converge rapidly with fewer function evaluations. Thus
their total computational times may become large. On the other hand, the regularized Newton
method with line search methods gets its search direction by only solving linear equations. How-
ever, it may evaluate the objective function value many times in a line search step. Therefore, it
is significant to construct a solution method whose behavior is similar to the TR-Newton method,
and whose subproblems can be solved easily.

In this paper, we propose a regularized Newton method without line search. The proposed
method controls a regularized parameter instead of a step size in order to guarantee the global
convergence. We demonstrate that it is closely related to the TR-Newton method when the Hessian
of the objective function is positive definite. Moreover, it does not solve nonconvex problems but
linear equations as subproblems at each iteration. Thus, the proposed algorithm is regarded as a
desired solution method mentioned above. We show that the proposed algorithm has the following
convergence properties. (a) The proposed algorithm has global convergence under appropriate
conditions. (b) It has superlinear rate of convergence under the local error bound condition. (c)
Its global complexity bound, which is the first iteration k such that |V f(zx)|| < ¢, is O(e™?) when
f is nonconvex, O(e_%) when f is convex, and O(¢~') when f is strongly convex. Moreover, we
report numerical results that show that the proposed algorithm is competitive with the existing
Newton-type methods, and hence it is very promising.
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1 Introduction
In this paper, we consider the following unconstrained minimization problem.

s 11

minimize f(z), (1.1)
where f is a twice continuously differentiable function from R™ into R. Many solution methods for
(1.1), such as the steepest descent method and the Newton’s method, have been proposed [1, 2, 11, 14].
Usually, efficiencies of these solution methods are discussed from the following points of view [1, 2, 11, 14].

e Global convergence from an arbitrary initial point to a stationary point of f;

e Rate of convergence, such as the superlinear convergence and the quadratic convergence, in a
neighborhood of a local optimal solution;

e Numerical results for benchmark problems such as CUTEr [7];

e The first iteration .J, satisfying ||V f(2s,)|| <€, or the first iteration Jy satisfying f(xs,) — f* <,
where {z} is a sequence generated by some algorithms, € is a given positive constant and f* is
the optimal value of f.

The last item is important when we solve large-scale problems where an appropriate initial point is
difficult to find and we want to estimate the computational time for a given accuracy of a solution in
advance (3, 12, 13, 16, 17]. In this paper, J, and Jy are referred to as global complexity bounds of the
algorithm. In what follows, we discuss existing algorithms from the above four points of view, and then
we explain a regularized Newton method proposed in this paper.

The steepest descent method is an iterative method which uses —V f(xy) as a search direction. The
steepest descent method has a global convergence and a linear rate of convergence under appropriate
conditions. A convergence of the steepest descent method is generally slow as compared to that of the
Newton-type methods. However, the steepest descent method is suitable for large-scale problems since
it does not need to compute Hessian matrices of f. The global complexity bound of the steepest descent
method is shown to be J, = O(e™2) when f is nonconvex, and J; = O(e~2) when f is convex [11].

The Newton’s method uses Hessian matrices of f, and has a quadratic rate of convergence under
appropriate conditions. Moreover, the Newton’s method combined with a trust-region method [4] has
global convergence. In what follows, we represent the TR-Newton method by the Newton’s method with
a trust-region method. For a current point z; and a current trust-region Ay, the TR-Newton method
adopts a search direction dy(Ay) as

di(Ay) € argmin (f(xk) + V() d+ ;dTvzf(mk)d> .
ldll<Ag

For large-scale problems with sparse Hessian matrices, the TR-Newton method can get a solution effi-
ciently with the use of the sparsity. However, a complexity bound of the TR-Newton method remains
unknown.

Recently, Nesterov and Polyak [13] proposed the cubic regularization of Newton’s method. The cubic
regularization of Newton’s method has a global and quadratic convergence as well as the TR-Newton
method. Moreover, the global complexity bound of the cubic regularization of Newton’s method is
shown to be J; = O(e2) when f is nonconvex, and Jr = O(e~3) when f is convex [12]. More recently,
Cartis, Gould and Toint [3] extended the cubic regularization of Newton’s method, called the adaptive
cubic overestimation method, and they reported that the adaptive cubic overestimation method worked
well as compared to the TR-Newton method in their numerical experiments. The cubic regularization of
Newton’s method uses a global minimizer of a cubic model function as the next iteration point. In order
to get the minimizer, it solves certain nonlinear equations equivalent to minimizing the cubic model
function. Since we do not know a computational complexity to solve the nonlinear equations, we cannot
estimate the total computational complexity of the cubic regularization of Newton’s method even if we
know J, or Jy.



When f is convex, the regularized Newton method [9, 10, 16, 17] is one of the efficient solution
methods for (1.1). For a current point xy, the regularized Newton method adopts a search direction dy,
by

dy, = —(V2f(xx) + pd) TV f (),

where py is a positive parameter. We call uj a regularized parameter. If f is convex, then a matrix
V2f(xy) + pil is positive definite, and hence dj, is a descent direction for f at xj. Therefore, the
regularized Newton method with an appropriate line search method, such as the Armijo’s step size rule,
has a global convergence property. Li, Fukushima, Qi and Yamashita [9] showed that the regularized
Newton method, which sets the regularized parameter pg as px = ||V f(xx)||, has a quadratic rate of
convergence under the assumption that ||V f(x)|| provides a local error bound for (1.1) in a neighbor-
hood of an optimal solution z*. Moreover, Polyak [16] showed that the global complexity bound of
the regularized Newton method, which also sets the regularized parameter ug as up = |V f(x)|], is
Jy = O(e™*). Recently, Ueda and Yamashita [17] extended the regularized Newton method to the un-
constrained nonconvex optimization. The extended regularized Newton method adopts the regularized
parameter [ as

i = ¢ min(0, —Amin (V2 f (1)) + 2l |V £ (z)[|°,

where c1, co and § are given positive constants, and Ayin(V2f(21)) is the minimum eigenvalue of
V2f(x)). Ueda and Yamashita [17] adopted the Armijo’s step size rule as a line search method. They
showed that the extended regularized Newton method has global convergence under appropriate condi-
tions and superlinear convergence under the local error bound condition. Moreover, its global complexity
bound is J, = O(e~?).

The TR-Newton method and the cubic regularization of Newton’s method have to solve nonconvex
subproblems at each iteration. A number of efficient solution methods for these subproblems have been
proposed. However, a lot of computational complexities may be required to get an exact solution of
the subproblem, and this complexity is unknown. On the other hand, the regularized Newton method
with line search methods can get a search direction by only solving linear equations. However, it may
evaluate the objective function value many times in a line search step. Therefore, it is desirable to
construct a solution method whose behavior is similar to the TR-Newton method, and subproblems
can be solved easily. In this paper, we proposed a regularized Newton method without line search.
In order to guarantee the global convergence, it controls the regularized parameter pi. The proposed
algorithm solves linear equations to get the search direction di(ug). As seen in the next section, the
next iteration point xpi1 = z + di () generated by the proposed algorithm coincides with the next
iteration point xx4+1 = X +d, (Ag) generated by the TR-Newton method with a certain trust-region Ay.
Therefore, we expect that the proposed regularized Newton method behaves as well as the TR-Newton
method. We show that the proposed algorithm has a global convergence property, and a superlinear
convergence property under the local error bound condition. We also give global complexity bounds of
the proposed algorithm. In particular, we show that the global complexity bounds are J, = O(e72) when
f is nonconvex, J, = O(e 3) and J; = O(e~3) when f is convex, and Jy=0(e*) and J; = O(loge™!)
when f is strongly convex.

This paper is organized as follows. In the next section, we propose a regularized Newton’s method
which controls the regularized parameter at each iteration. In Section 3, we show its global convergence.
In Section 4, we establish superlinear convergence under the local error bound condition. In Section 5,
we give the global complexity bounds of the proposed algorithm. Then, numerical results are presented
and discussed in Section 6. Finally Section 7 concludes the paper.

Throughout the paper, we use the following notations. For a vector x € R", ||z|| denotes the
Euclidean norm defined by ||z|| :== VaTz. For a symmetric matrix M € R™*"  we denote the maximum
eigenvalue and the minimum eigenvalue of M as Amax(M) and Apin(M), respectively. Then, || M]]
denotes the ¢o norm of M defined by || M| := \/Amax(MTM). If M is symmetric positive semidefinite
matrix, then | M| = Amax(M). Furthermore, M > (>)0 denotes the positive (semi)definiteness of M,
ie, Amin(M) > (>)0. B(z,r) denotes a closed sphere with center x and radius r, i.e., B(x,r) := {y €
R™ | |ly — || < r}. dist(z,S) denotes the distance between a vector x € R™ and a set S C R”, i.e.,
dist(z, S) := minyeg ||y — z||. For sets S C R™ and S C R™, S; + S> denotes the sum of S; and S,
defined by S; + Sy :={z+y €R" |z € S1,y € Sa}.



2 Proposed algorithm

In this section, we propose a regularized Newton method that controls the regularized parameter at
each iteration. In what follows, x; denotes the k-th iterative point, and g and Hj denotes the gradient
Vf(x1) and the Hessian V2 f(zy), respectively.

For a given positive parameter vy, we consider a regularized parameter p defined by

i, = cAy, + vi |l g’ (2.1)
where ¢ and § are given constants such that ¢ > 1 and § > 0, and Ay, is defined by
A := max(0, —Amin (Hr)).

From the definition of Ay, the matrix Hy+cAgI is positive semidefinite even if f is nonconvex. Therefore,
if ||gx|| # 0, then Hy, + upl = Hy, + cApl + vy ||gr||°T = 0. Thus we can compute a vector dy(v,) defined

by
dk(l/k) = —(Hk + cApl + Vk”gkllél)_lglv (2.2)

The existing regularized Newton method uses a search direction dy(v) with v, fixed to a certain v, and
generates the next iterative point zy11 = zx + tdx(v) by controlling a step size ¢ so that the objective
function value decreases. In this paper, we propose to control v in order to satisfy f(zr+1) < f(xg)
with Ti41 = Tk + dk(l/k)

In order to find an appropriate v, we use the idea of updating trust-region Ay in the TR-Newton
method. Let my : R™ x R — R be a model function of f at z; defined by

1
mg(d,v) = f(z) + g{d + idT(Hk +cApI + 1/||gk||5I)d. (2.3)

Note that dj(vx) is a global minimizer of my(-, vy) if ||gx|| # 0. Let pi : R™ x R — R be the ratio of the
reduction of the objective function value to that of the model function value, i.e.,

f(or) — f(or +d)
fxg) —my(d,v)

If pr(di(vg), vi) is large, i.e., the reduction f(xg) — f(zr + di(vk)) is sufficiently large as compared to
the reduction of the model function, we adopt di(vk) and decrease the parameter v,. On the other
hand, if pg(di(vg), vg) is small, i.e., the reduction f(xp) — f(ag + di(vx)) is not large, we increase vy
and compute dj(vy) once again.

Based on the ideas, we propose the following algorithm. We call the proposed algorithm the adaptive
regularized Newton method, because it uses an adaptive parameter v.

pk(d, V) =

The Adaptive Regularized Newton Method

Step 0 : Choose parameters vg, Vpin, 6, ¢, Y1, Y2, M1, 2 such that
Vg > Umin >0,02>20,c>1, 1<y <7, 0<nm <n <1
Choose a starting point zo. Set k := 0.
Step 1 : If the stopping criterion is satisfied, then terminate. Otherwise, go to Step 2.

Step 2 : Step 2.0 : Set I, :=1 and 7, = vi.
Step 2.1 : Compute

di(m,) = —(Hy, + A + oy, || ge1° 1) ™ gie-



Step 2.2 : Compute

fzr) = fzg + di(,))
fxg) = my(di(m,), o1,)

If pi(di (%), 1,,) < m1, then update 7y, 11 € [y174,, 21, ], set Iy := I + 1, and go
to Step 2.1. Otherwise, go to Step 3.

pr(di (), 1,,) =

Step 3 : If no > pr(di(m1,,), 71,) > 1, then update vi41 € (71, 17, ]-
If Pk(dk(ﬂlk)7 ﬂlk) > N2, then update Vi1 € [Vmin; le}.
Update zy41 = x + di(7y,). Set k:=k + 1, and go to Step 1.

The proposed algorithm is closely related to the TR-Newton method as follows. Consider the case
where Hj is positive definite. Then, since Ay, = 0, the next iteration point xj41 of the proposed
algorithm lies on a trajectory I'y, defined by

Ty = {x ER" |z =a, — (Hy+vI) g, v e (0,00)}.

On the other hand, the next iteration point zx,; of the TR-Newton method lie on a trajectory I
defined by

fk = {l‘GRn

In [4], it is shown that dj(A) € argming g <a (f(zx) + g/ d + 5d" Hid) if and only if there exists Ax(A)
such that

_ _ 1
x =z, + di(A), dp(A) € argmin (f(ack) +gfd+ 2dTde> , Ac (0, oo)} .
ldf<a

(Hy + X (A)1)dr (D) = —gr,
H + )\k(A)I =0
Ak(A) >0,
Ae(A)(ldi(A)]| = A) =0
It then follows from the positive definiteness of Hj, that
Jk(A) _ _nglgk if Hlelng <A,
—(Hy + M(A))7Lgr  otherwise,

where A\ (A) is a positive constant such that ||(Hy + A\x(A)I)"lgx|| = A. Therefore, the trajectory T,
can be written as

Ty ={z eR" |z =z — (Hyp + M(A)) g, [|(Hi + M(A)) il = A, A e (0, H,  grll)}
U {l‘k — lelgk}.

Since A\ (A) decreases monotonically on (0, || H, *gx|)), we have lima . A (A) = oo and Hma g, Ae(A) =

0. Thus the trajectory I'y coincides with the trajectory L\ {zx — Hk_lgk}, and hence for a certain
€ (0,00), there exists A such that dg(v) = di(A). From this fact, we expect that the proposed algo-

rithm behaves as well as the TR-Newton method when Hy, is positive definite. Figure 1 shows the search

(SDM) f the steepest descent method, the search direction déNM)

(RNM)

direction d, of the pure Newton’s method,

the search direction dj, of the regularized Newton method, and the trajectory Fk of the proposed
algorithm. The contour in Figure 1 is that of the quadratic model function f(xx) + gl d + 1dTH kd.
On the other hand, when Hj, is not positive definite, the behavior of the proposed algonthm may be
different from that of the TR-Newton method. For example, consider the case where Hy is not positive
semidefinite and ||gx|| = 0. Then, di(v) of the proposed algorithm is always 0 for any v € (0, 00), while



di(A) of the TR-Newton method is not 0. Therefore, the proposed algorithm do not necessarily have
the same properties as the TR-Newton method.

Y
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» Yk s Yk

Figure 1: Image of relationship among d; and Ty

In the remainder of this section, we show that the proposed algorithm is well-defined when ||gx|| # 0.

Theorem 2.1. If ||gx|| # 0, then the proposed algorithm is well-defined, i.e., the number I, of inner
iterations is finite.

Proof. Since f is twice continuously differentiable, we have from the definition of di (7, ) that

Flaw) = flan + dio(m,)) = —gi dr(@1,) — Olldi(1,)[1%)
= gi (Hy, + e + 2, )| gx|1°1) ™ gi — O(lldu (1, )[1)-
Moreover, from the definitions of d (7, ) and my(di(7,), 71, ), we have
1
Flak) = muldi (7,), 1) = =g di(21,) = 5di(@,) " (Hi + cArl + 21, [|gil| i (71,)
1 _
= 50k (Hi + Al + 21, [|gk 1) i
It then follows from the definitions of dy (7, ) and p(dk (71, ), 71, ) that

(). 1) — SO AT o i D)™ g — O (7))
o LT (Hi+ AT + 71l on P 1)~ g

2
o (|t +eret oo

=2 —

398 (Hy + eI + o, || grl1P )~ gi
—1 2
@) ( (in + iCAkl + ||gk||51) ng )
=92 b

1
172
1
1 17(1 1 -1
51, I (—*HkJrﬂcAkIJngkH‘;I) 9r

13, vy,




From the updating rule of 7;, in Step 2.2, we have 7;, — oo as [ — oco. Then, taking I — oo, the
second term of the right-hand side of (2.4) goes to 0, and hence lim;, o px(dx(7;,) = 2 > 11. Therefore,
the proposed algorithm is well-defined. O]

In Sections 3 — 5, we will show global and superlinear convergence, and give the global complexity
bounds. In the sections, for simplicity, we denote l;, and #;, of the last iteration in the inner loops
of Steps 2.0 — 2.2 at each k as [} and v}, respectively. We also denote di(v}), mi(di(vy),v;) and
pr(di(v),vf) as di, mj, and pj, respectively, i.e.,

di = dp(v}) = —(Hy, + cAp I +vi 1) g, (2.5)
1
miy = my(di (V) v5) = f(ax) + g di + S i (Hy + cAed + v D)dy, (2.6)
flaw) = fle +dj)

pr = pr(di(vy), vy) = (2.7)

flxx) —my

3 Global convergence

In this section, we investigate the global convergence property of the proposed algorithm. To this end,
we need the following assumption.

Assumption 1. There exists a compact set Q C R™ such that {x} C .

Note that Assumption 1 holds if the level set of f at the initial point x( is compact.
First, we show the relationship between ||dy(v)|| and ||g||-

Lemma 3.1. Suppose that ||gx|| # 0. Then, for any v € [Vmin, 00),
g ]I~
d < .
Jax (v < 1221

Proof. We have from (2.2) that
ldi ()| = |(Hi + eArI + vllgi]|° D) " gi
<N\ (Hy + eAr + vl D7 - gl
— A ((Hi + ] + vl |°D) 7 ) g

gl
— 3.1
o (e & AT T 2o D) (8:1)

1-6
ol
v
where the last inequality follows from the facts that Hy +cAgI is positive semidefinite and ||gx|| # 0. O
Since the sequence {z}} is in the compact set © by Assumption 1, there exists U, > 0 such that
gkl < Uy, ¥k = 0. (32)

The next lemma indicates that ||dx(v)]| is bounded above if | g is away from 0.

Lemma 3.2. Suppose that Assumption 1 holds. Suppose also that there exists a constant € > 0 such
that ||gk|| > €. Then, for any v € [Vmin, 00),

lde (V)] < b(e),

U, 1
b(e) := max L
( ) < Vmin Vmineﬁ_1

where




Proof. When ¢ < 1, it follows from Lemma 3.1, (3.2) and v > vy, that

1-6§
ldi(v)]| < V“" : (3.3)
Meanwhile, when ¢ > 1, it follows from Lemma 3.1, ||gx|| > € and v > vipin
1
lde (V)] < P
This completes the proof. O

When ||gi|| > € for all k, we have from Lemma 3.2 that
xp + sdi(v) € Q+ B(0,b(e)), Vse]0,1], Vk>0.

Moreover, since Q1+ B(0, b(¢)) is compact and f is twice continuously differentiable, there exists U (€) >
0 such that

IV2f ()| < Un(e), Yz eQ+ B(0,b(e)). (3.4)
Next, we show that the parameter v in py, is bounded above when ||gx|| > € for all k£ > 0.

Lemma 3.3. Suppose that Assumption 1 holds. Suppose also that there exists a constant € > 0 such
that || grl| > € for all k > 0. Then,

V; < Vmax(f)a

where

U

Vmax (€) := max (Vo, 726?(6)> .
Proof. From Taylor’s theorem, there exists 7 € (0, 1) such that
1
flax + di(v) = f(xr) + gi di(v) + idk(V)Tv2f(xk + 7dy(v))di (v).
It then follows from the definition (2.3) of my(dx(v),v) that
f(@r +di(v) — my(di(v),v)

- %dk(u)T (v2f(xk +7dp(v)) — (Hy + cApl + V||gk||5I))dk(V) (3.5)
= %dk(l/)T<V2f(ack + 7di(v)) — V||gk||6I>dk(1/) — %dk(y)T(Hk + cApI)di(v)
< U (0) ~ vlgel) ()]

< 2 (Une) = ve ) |

where the first inequality follows from Hjy + c¢Ax = 0 and (3.4), and the last inequality follows from
llgx|l > €. Now suppose that v > Ug(€)/€’. Then, we have

[z +di(v)) < my(di(v),v),
and hence

fzr) = flog +di(v)) .
f(@g) —mi(di(v),v) —

Thus, if 7, > Up(€)/€°, then inner loops of Step 2 must terminate. Therefore, v must satisfy

s () ) = - o (5)-)

This completes the proof. O

pr(d(v),v) =




Next, we give a lower bound of the reduction of the model function when ||gx|| > € for all £ > 0.

Lemma 3.4. Suppose that Assumption 1 holds. Suppose also that there exists a constant € > 0 such
that ||gkl| > € for all k > 0. Then,

f ) = mi > ple)e?,
where
1
2((1L+ )Un() + vmax ()UF)

p(e) =

Proof. Since Hy + c¢AxI is positive semidefinite and | gx|| # 0, we have

1
)\max(Hk + CAkI + VHng(SI)
B 1
)\max(Hk) + CAk + V,I;k”gk”(s .

Auin ((Hi + AT + vl i) ) =

It then follows from ||gk| > €, (3.2), (3.4) and Lemma 3.3 that

1
(14 ) Un(€) + Vmax (€U

Nuvin ((H -+ A + vl gi|°1) 1) =
Therefore, we have from the definition (2.5) of dj and the definition (2.6) of mj, that
1
Flax) = mi = —gi'dy = 5di" (Hy + eAed + 7 |lgi | T)d,

1 . _
— S9F (Hi+ el + 5 llgel 1) g

1

g i (e + el 1)) o
1

2((1+ Un(©) + vmax(U] ol
1 P
2((1 F U (€) + Vmax (€ )Ué) ’

Y

Y

v

where the second inequality follows from (3.6), and the last inequality follows from ||gx|| > e. O

By using the above lemma and the updating rule of xy, we give a lower bound of the reduction
f(zr) = f(xg+1) when ||gi|| > € for all & > 0.

Lemma 3.5. Suppose that Assumption 1 holds. Suppose also that there exists a constant € > 0 such
that ||gkl| > € for all k > 0. Then,

flak) = f(@re1) = mp(e)e?
Proof. Since p; > 11, we have
Flaw) = feeen) = m(f(@r) —mi) = mp(e)e?,
where the last inequality follows from Lemma 3.4. O
Now, we are at the position to prove the main theorem of this section.

Theorem 3.1. Suppose that Assumption 1 holds. Then,

likminf llgell =0 or gkl =0, for some K > 0.
—00



Proof. Suppose the contrary, i.e., there exists a constant € such that ||gg|| > € for all £ > 0. Then, we
have from Lemma 3.5 that
k—1 k—1
F(@o) = fan) 2 S () — Fapn)) 2 3 mple)e® = mple)ek.

J J=0

Taking k — oo, the right-hand side of the inequality goes to infinity, and hence limy_ o, f(xg) = —0c0.
This contradicts Assumption 1 and the continuity of f. Hence, we have liminfy_, o ||gx|| = 0 or ||gx|| =0
for some K > 0.

Remark 3.1. Note that we can prove limg_, ||gx|| = 0 in a way similar to the proof of [17, Theorem
3.1] by replacing the statement “If ny > pr(di(Dy,,),71,) > m, then update vgy1 € [0, ). If
pk(di(D1,.),71,) > 12, then update viy1 € [Vimin, 71, .7 in Step 3 with “If pr(di(D1,,),71,) > n1, then
update vi1 = vy.” Howewver, this modification may increase the number of inner iterations.

Remark 3.2. The TR-Newton method has a global convergence property to a second-order critical
point [4]. However, since di(7;,) = 0 when ||gx]| = 0, the proposed algorithm may not converge to a
second-order critical point.

4 Local convergence

In this section, we show that the proposed algorithm converges superlinearly when ||V f(z)|| provides a
local error bound (see Assumption 2 (d) below). Note that the local error bound condition holds if the
second-order sufficient optimality condition holds at z*. But the converse is not true. Thus the local
error bound condition is weaker than the second-order sufficient optimality condition. In order to prove
the superlinear convergence, we use techniques similar to [17] where the regularized Newton method
with Armijo’s step size rule is shown to have a superlinear rate of convergence under the local error
bound condition.
First, we make the following assumptions.

Assumption 2.

(a) 0<d<1.

(b) There exists a local optimal solution x* of the problem (1.1).

(c) V2f is local Lipschitz continuous, i.e., there exist constants by € (0,1) and Ly > 0 such that

IV2f(z) = V2f (W)l < Ll —yll, Yo,y € Bz, by).

(d) ||V f(z)]| provides a local error bound for the problem (1.1) on B(x*,by), i.e., there exists a constant
k1 > 0 such that

kadist(z, X*) < [|[Vf(x)|l, Va € B(z*, b1),
where X* is the local optimal solution set of (1.1).
Note that under Assumption 2 (c), the following inequality holds.

IV2f(y)(x —y) — (V) = V) < %EHllx —yll*, Va,y € Bz*,by). (4.1)
Moreover, since f is twice continuously differentiable, there exists a positive constant Eg such that
IVf(z) = VW) < Lylle —yll, Va,y € B(z™,by). (4.2)
In what follows, Ty denotes an arbitrary vector such that
lxx — Zi|| = dist(zg, X*), T € X™.

Since we consider the case where f is not necessarily convex, it is not always true that Ax = 0.
Therefore, we now investigate the relationship between Ay and dist(zx, X*). To this end, we need the
following property on a singular matrix.



Lemma 4.1. Suppose that M € R™*" is singular, then ||I — M| > 1.
Proof. It directly follows from [8, Corollary 5.6.16]. O
By using Lemma 4.1, we show the following key lemma for superlinear convergence.
Lemma 4.2. Suppose that Assumption 2 holds. If ), € B(x*,b1/2), then
Ay, < Lydist(zy, X*).

Proof. When Hj, = 0, we have Ay, = 0. Thus the desired inequality holds. Next, we assume Apin(Hy) <

0. Let j\g) be the i-th largest eigenvalue of V2 f(Zy). Since 7 € X*, we have 5\53) > 0. Moreover, since
V2f(zy) is a real symmetric matrix, V2 f(Z;) can be diagonalized by some orthogonal matrix Qy, i.e.,

QTV f(21,)Qx = diag(A"),

where diag(j\g)) denotes the diagonal matrix whose (,¢) element is S\I(Ci). Then, we obtain

Numin(Hi)T = QF HiQx = Aumin(Hi)T = QF (V2 (@x) + (Hi = V2 (1)) ) Qu
= Amin (Hi)T = diag(N) = QY (Hy = V*f(21))Qs-

Since QngQk has the eigenvalue Apin(Hg), the matrix Apin(Hg)I — Q{Hka is singular. Thus
)\min(Hk)I—diag(;\,(f))—Q{(Hk —V2f(Z1))Qx is also singular. On the other hand, )\min(Hk)I—diag(S\,(f))
is nonsingular because Amin (Hx) < 0 and ;\,(j) > 0.

Now let

=1 s _ _
M i= (Ain ()T = ding(\))  (Auin(Hi)T = diag(A) = QF (Hy = V2f(21))Qx ).
Then, M is singular. It then follows from Lemma 4.1 that

1

IN

I = M|

7 (1 - (Amin(Hk)I - diag(j\g))ylc_?f(]{k - vgf(x’“))ék) H

= || (e (1)1 — ding(3)) ™ QT (H — V2 (20) @

< | ()1 - aies3)) ™| 101 (1 - v @00

PN B
o [T e ) I A ) (43)
We consider ||(Amin(Hg)I — diag(j\g)))_lﬂ and ||Hy — V2 f(Zy)|| separately. Since Apin(Hg) < 0 and
5\,(;) > 0, we have

H (Amm(Hk)I - diag(xfjb) o o

= max ‘/\min(Hk) — S\S)

1<i<n
_ 1
ming<j<p [Amin (Hk) — 5‘1(:)
«_ 1
- |/1\min(Hk)|
- (4.4)
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Next, we consider |[Hy — V2 f(Zy)|. Since 2 € B(z*,b1/2), we have
12k — 2| < 17 — apll + llon — 27 < ll2” — x|l + [lon — 27| < by,
and hence Ty, € B(z*,by). It then follows from Assumption 2 (c) that
|Hy — V2f(@1)|| < Lyllzr — 21| = Ludist(zg, X*). (4.5)

Therefore, we have from (4.3) — (4.5) that

< Lydist(xy, X*)

S
which is the desired inequality. O

Next, we show that ||dx(v)|| = O(dist(zg, X™)).
Lemma 4.3. Suppose that Assumption 2 holds. If ) € B(x*,b1/2), then
ldi(v)|| < kodist(xg, X*), Vv € [Vmin, ),

where

Ko = QViz/ﬁ + max <1 11)
Proof. First note that V f(Zx) = 0. From the definition (2.2) of di(v) we have
lldr ()l
= ||(Hy + cApI + vl|gwl|°T) ™" gr|
H(Hk + el + v’ T)” (gk — V(@) — Hy(xr — Tn) + Hi (2 — fk)) H
< [+ e + vllgnl 1) (g = VA () — Hiwn — ) )|| + [[(Hi + AR + vllgn|1° 1) Hyan — 74)|
< H( K+ AT + v\ gell° D) 7| Mgk — V£ (Zk) — Hi(wk — 23) || + || (Hy + cArd + vl|gel|°T) ™ H || lox — 2|

< 7H|\$k — 2| ||(Hy + cAxI + vl|gll° D) | + llzn — Zull || (Hr + cArd + v|gi]|°T) " Hy |

L
= %diSt(mk,X*)z | (Hi + eI+ vllgel|°1) || + dist(zr, X*) ||(Hg + cArd + v|lgrl®1) " Hi ),
(4.6)

where the last inequality follows from (4.9). First, we consider ||(Hy + cAxl + v||gx||°1)71|. Since
xk € B(x*,b1/2), we have T € B(x*,by). Tt follows from Hy + cAg = 0, v > i, and Assumption 2
(d) that

1 + AT + vllgell D™ | = A (i + eAiT + vge D7)

1

 Amin(Hy + cApI + v]|gi°T)
1

~ vllgell®

1
= Vmink{dist(zg, X*)0

(4.7)
Next, we consider ||(Hy + cAxl + v||gx||°T) " Hyl|. Let )\,(:) be the i-th largest eigenvalue of Hy. Then,
the eigenvalues of (Hy + cApI + v||gr||°T) "' Hy are given by
ALY
N+ e+ g

1<1<n
Now we consider two cases: (a) )\,(f) >0 and (b) )\g) < 0.

11



Case (a): This case implies that

i

- <1
A+ e+ vlgel?

Case (b): In this case, since —Ap = Apin(Hg) < )\,(f) < 0, we have )\,(:) — Amin(Hx) > 0 and |)\,(€i)| <
[Amin (Hg)|. Therefore, we have

w

@

A+ e+ vl | = Auin(HR) = (€ = DAnin(Hi) + vilgil)?
|/\min(Hk)|

< —
A = Ain (Hr) + (¢ = 1) Auin(Hie)| + vl gull®
1
< .
“c—1
Thus we have
‘Al(f) 1 ,
@ <max (1, , 1<i<mn,
A + e+ vlgil] el
and hence
1
| (Hi + eArT + vl|ge]|°T) " H|| < max <1, c—l) : (4.8)

From (4.6) — (4.8), we have

L 1
llde(v)|| < 7H5dist(xk,X*)2_6 + max (1, cl> dist(zg, X*)

2Vmin'%1

Ly 1 : .
(W + max (1, C—]_)) dlst(xk,X ),

which is the desired inequality. O

IN

From the above lemma, we can show that the next iteration point xy1 = xx + di(v) € B(x*,by) if
x, is sufficiently close to z*.

Lemma 4.4. Suppose that Assumption 2 holds. Let by :=b1/(ka + 1). If x, € B(x*,ba), then
zp +dp(v) € B(x",b1), YV € [Vmin, ).
Proof. Since by < by /2, we have ), € B(x*,b1/2). Therefore, we obtain

lzk + die(v) — || < [|zg — 2™ + [|[de (V)]
< lzk — x*|| + kodist(zg, X™)
<z — 2| + r2llzre — 27|
< (kg + 1)bg = by,

where the second inequality follows from Lemma 4.3. O

12



From Lemma 4.4 and the convexity of the set B(z*,b1), we have
xp + sdi(v) € B(z*,b1), VYs€[0,1], YV € [Vmin,0)
if 2, € B(x*,b3). It then follows from Assumption 2 (c) that
V2 f(x + sdi(v)) — Hi|| < Lg|di(v)||, Vs €[0,1], Yv € [Vmin,00). (4.9)
Now, we show that [} = 1 and v} < vj_; if x;, is sufficiently close to x*.

Lemma 4.5. Suppose that Assumption 2 holds. Let

5N\ To%
VUmin R
bs := min | b minvl .
m i, ()

If x, € B(x*,b3), then I} =1 and v{ < v{_,. In particular, if xo,z1,...,x5 € B(x*,bs), then v < vg.

Proof. Since cAp > 0, we have from (3.5) that

Flan + du(0)) = ma(dy(0),v) < 5d)" (V3 o+ 7)) — He = wlgnll D (v)

< %(Ilvzf(fck +7(v)d () = Hill = vilgel*)llde ()| (4.10)

< %(EHHdk(V)II — vlgell’) ldi ()]

1 (Ly|de(v)|| > 5 2
<-|—F———-v di(v)|“.
< 2( A lgx1I°lldx ()]

where the third inequality follows from (4.9). It then follows from Assumption 2 (d), Lemma 4.3 and
UV > Upin that

1 (Lyko .. vl
ot ) = mu () < 3 (2o, XV <)l L)
1
1 EHK *11—
< 3 (P a0 — i) D )
2 K
<0,

where the second inequality follows from v > vy, and the last inequality follows from xy € B(z*, bs).
Therefore, we have p(di(v),v) > 1, and hence I} = 1 and v; < v;{_;. The second part of the Lemma
directly follows from the updating rule of v. O

Next, we show that dist(x, X*) converges to 0 superlinearly, as long as {zj} lies in a neighborhood

of x*.
Lemma 4.6. Suppose that Assumption 2 holds. If xg, 1, ..., Tk, Tpr1 € B(x*,b3), then
dist(zg41,X") = O (dist(:z:k,X*)H‘S) .

Therefore, there exists a positive constant by such that

1
dist(xg, X*) < by = dist(zg41, X¥) < §dist(xk,X*).

13



Proof. We have from Assumption 2 (d) that
: . 1
dist (@1, X7) < gkl

1 Ly
< —||Hpd: =2 1dr))?
< m” k k+gkll+2mll il

1 I_/H
_ = A d* * 6d* d* 2
o [eArds; + villgell*di ]| + 2y 1|

CAk
K1

IN

1]l + ﬁllgkllélle\l + EilleIIQ
K1 2%1

CAk " 1%} 5 * IJH 112
—||d — d —||d 4.11
< S+ 2 oI + ol (4.11)

N

where the second inequality follows from (4.9), the first equality follows from the definition (2.5) of dj,
and the last inequality follows from Lemma 4.5. From (4.2), we have

lgrll® = llgr — VF(@)II° < Lydist(ax, X*)°. (4.12)

Therefore, we obtain from (4.11), (4.12), Lemma 4.2 and Lemma 4.3 that

L voka L 2T,
dist(xgy1, X*) < e 2 dist (zy,, X*)* + wdist(xk,X*)H‘s + Mdist(;m,X*f
K1 K1 2K1
ko(2¢Ly + 2v0 L8 + koL
< 2L 5 09 2 H)dist(a:k,X*)H‘s.
K1

O

Lemma 4.6 shows that {dist(x, X*)} converges to 0 superlinearly if x, € B(z*,b3) for all k. Now
we give a sufficient condition for z; € B(x*, b3) for all k.

Lemma 4.7. Suppose that Assumption 2 holds. Let by := min(bs, bs) and bg :=
B(z*,bs), then xy, € B(z*,bs) for all k.

1
mbs, If xro €

Proof. We prove the lemma by induction. First we consider the case where kK = 0. Since bg < b5 <
by < by < b1/2, we have zg € B(x*,b;/2). Therefore, from Lemma 4.3, we obtain

[z1 — 2" = |lzo + dg — 27|
< lzo — ™| + [1d5 |
< |lxo — =¥ + Kadist(xg, X™)
< (1+ k2)llwo — =7l
< (14 k2)bs
1+ Ko

<
T 14 2ke

bs < bs,

which shows that x; € B(z*,b5). Next, we consider the case where k& > 1. Suppose that z; €
B(z*,b5), j=1,...,k. Tt follows from Lemma 4.6 that

_ 1 i} 1\’ . 1\’ § 1\’
dist(z;, X*) < gdist(zj—1, X7) < - < (5 ) dist(zo, X) < {5 | llzo—2"[<(5) be.

Therefore,

1N\
lldj]l < radist(a;, X™) < (2) Fabe. (4.13)

14



Thus we obtain

k
s — 2% < flwo — 2*[| + > lld5 || < (1+ 2k2)bg = bs,
§=0
which shows that zx11 € B(x*,bs). This completes the proof. O

By using Lemmas 4.6 and 4.7, we give the rate of convergence.

Theorem 4.1. Suppose that Assumption 2 holds. Let {xy} be a sequence generated by the proposed
algorithm with o € B(x*,bg). Then, {dist(xg, X*)} converges to 0 at the rate of 14+ 8. Moreover, {xy}
converges to a local optimal solution & € B(x™*,bs).

Proof. The first part of the theorem directly follows from Lemmas 4.6 and 4.7. Therefore, we only
show the second part. For all integers p > ¢ > 0, we obtain

p—1 p—1 1\7 < 71\? 1\ 9!
oyl < 161 < mate 3 (3) < mate 32 (5) <t (5)

where the second inequality follows from (4.13). Thus, {z\} is a Cauchy sequence, and hence it converges.
O

Remark 4.1. Note that in a way similar to the proof of [9, Theorem 8.2], we can prove that {xy}
converges to & at the rate of 1+ 9.

Remark 4.2. We get a rapid convergence if we take a larger 6. However, we cannot guarantee the
quadratic convergence since 6 must be less than 1. Note that when the second-order sufficient condition
holds at x*, we can prove that the proposed algorithm with § = 1 has quadratic convergence.

5 Global complexity bound

In this section, we estimate the global complexity bound of the proposed algorithm. We consider three
cases (a) f is nonconvex, (b) f is convex and (c) f is strongly convex.

5.1 Nonconvex case

In this subsection, we consider the case where f is nonconvex. Throughout this subsection, we need the
following assumptions in addition to Assumption 1.

Assumption 3.
(a) 6 <1/2.

(b) Let by := U;"S/Vmin. V2f is Lipschitz continuous on Q + B(0,by), i.e., there exists Ly > 0 such
that

IV2f(z) = V2f W)l < Lrllz —yll, Yo,y € @+ B(0,br).
Under Assumption 1, the inequality (3.2) holds. Moreover, there exists fn such that
f(@K) > fmin, YE2>0.
From Assumptions 1 and 3 (a), the inequality (3.3) holds. Therefore, we have

xp + sdp(v) € Q+ B(0,b7), Vse[0,1], Yve[0,00), VE>0. (5.1)

15



It then follows from Assumption 3 (b) that
V2 f (2 + sde(v)) — Hy|| < Llldi(v)|l, Vs €[0,1], Vve[0,00), Vk>0. (5.2)

Moreover, since 2 4+ B(0, b7) is compact and f is twice continuously differentiable, there exists Ug > 0
such that

IV2f(z)|| < Un, Vze Q4 B(0,by). (5.3)

The next lemma indicates that the parameter v} is bounded above by some positive constant inde-
pendent of k.

Lemma 5.1. Suppose that Assumptions 1 and 3 hold. Then,
Ve < Vmax,

where

Vmax = IMax <I/0,’}/2\/LHU;_25> .

Proof. From the inequalities (4.10) of Lemma 4.5 and (5.2), we have

e+ daw) — (e ),9) < 5Ll )] - el )de ) 1P 5.4
1-06
<5 (P2 o) e
1

IA

5 (LaUg ™ = v2) [lge [ lldk ()],

where the first inequality follows from (5.2), the second inequality follows from Lemma 3.1, and the last

inequality follows from (3.2). Now we suppose that v > /L HU;_25. Then, we have

f(@e + di(v)) < mu(di(v),v),
and hence

fow) — [ + di(v))
f(xr) — mi(d(v),v)

Therefore, from the updating rule of 7}, , v; must satisfy

v < max (u,jl, (\/LHU;Q‘S) 'yg) < --- < max (1/0, (\/LHU;%) 'yg> .

This completes the proof. O]

pr(dy(v),v) = =L

From the above lemma, we show that the number [} of inner iterations at the k-th iteration is
bounded above by some positive constant independent of k.

Theorem 5.1. Suppose that Assumptions 1 and 3 hold. Then, for all k,

l]t < lmaxv

I = {mgw (I”/mf”‘) + 1} .
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Proof. We have from Lemma 5.1 that vpin < 75, < Vmax. From the updating rule of v, we have
Uj,4+1 > 71, , and hence we obtain the desired inequality. O

Next, we give a lower bound of the reduction of the model function.

Lemma 5.2. Suppose that Assumptions 1 and 3 hold. Then,

flzk) —mi > pallgell?,

where

1
2((1+ ) Up + vmaxU?)

g

p1 =

Proof. It directly follows from (5.3), Lemma 5.1 and the inequality (3.7) of Lemma 3.4. O
By using this lemma, we give a lower bound of the reduction f(zx) — f(zg+1).

Lemma 5.3. Suppose that Assumptions 1 and 8 hold. Then,
far) = f(@ren) = mp gl
Proof. In a way similar to the proof of Lemma 3.5, we obtain the desired inequality. O
Now, we obtain the following global complexity bound Jj,.

Theorem 5.2. Suppose that Assumptions 1 and 8 hold. Let {xy} be a sequence generated by the
proposed algorithm. Let J, be the first iteration such that |g,|| < €. Then,

f(IO) - fmin 672.

Jg <
g mp1

Proof. It follows from Lemma 5.3 that

k-1 k—1 2
F(@0) = funin = f(20) = F(xx) = Y (f(2;) = Flwj0) = mpr Y Igill* = kmps ( min Igjl) -

° ‘ 0<j<k—1
j=0 j=0

Then, we have

i g < (10000 S

0<s<k—1 kmp:
and hence
g > 1@0) = fmin
mp1
implies ming<;<x—1[|g;]| < €. This completes the proof. O

The above global complexity bound is same as that of the steepest descent method. On the other
hand, it can be reduced under the following additional assumption on the minimum eigenvalue of Hy.

Assumption 4. There exist positive constants 6 and ks such that
Ag < rallgill?,  VE>o0.
Before we show the reduced complexity bound, we give sufficient conditions for Assumption 4.
Proposition 5.1.

(a) Suppose that f is convex. Then, Assumption 4 holds for any & and k3.
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(b) Suppose that Assumption 3 holds. Suppose also that f is analytic and V?f(z) = 0 for any x such
that V f(z) = 0. Then, Assumption 4 holds.

Proof. The statement (a) directly follows from the fact that Ay, = 0,Vk > 0 when f is convex.
Next, we show (b). Let X; := {z € R" | |[Vf(2)|| = 0} and X5 := {x € R" | |V f(2)|| =0, V2f(z) =
0}. In a way similar to the proof of Lemma 4.2, we can show that there exists ¢; > 0 such that

Ak S CldiSt({L‘k, X2)7

when Assumption 3 holds. Moreover, it is shown in [15] that there exist c; > 0 and & > 0 such that

dist(z, X1) < eo|Vf(2)]]°, Vz e Q,
when f is analytic. It then follows from X; = X5 that
Ak < crcallgill’,

and hence Assumption 4 holds. O]

Remark 5.1. If f is quasi-convex, then V2f(x) = 0 for any x such that Vf(x) = 0 [5]. Thus, an
analytic quasi-conver function satisfies the assumptions of Proposition 5.1 (b).

Now we show that the global complexity bound J, is reduced to O(e_f%) under Assumption 4. To
this end, we need the following assumption on 4.

Assumption 5. § <.
First, we give the relationship between ||dj|| and | gkl
Lemma 5.4. Suppose that Assumptions 1 and 8 hold. Then,
1

(1 + C)UH + Vmang ”gk”

151l =

Proof. From the definition (2.5) of d}, we have
g6 = (Hy, + Al + villge|l° Ddy. (5:5)
It then follows from (3.2), (5.3) and Lemma 5.1 that

lgill = ||(Hi + cAl + v} ||gil|°T)dy |
< |[Hi + eArd + villgel*TI| - || di |
< (UH +cUpy + Vmang)HdZH'

This completes the proof. O
Next, we show the following key lemma for the desired global complexity bound Jj.

Lemma 5.5. Suppose that Assumptions 1, 8, 4 and 5 hold. Then,

g1l < roa maxc (JlgilI°lldi I, 1d511%)

where

5 1
Ky = ct@gUg*é + Vmax + iLH.
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Proof. From (5.1) and Assumption 3 (b), we have

I~ (s — 90l < 22,
and hence

lgkarll < I1Ekds + gl + 22 i (56)
Moreover, we have from the definition (2.5) of dj that

Hydy; + gr = —cArdy, — vil|gell°dj.-

It then follows from (5.6) that

% LH *
oo | < 1 + gl + 22

IN

L
* * ) * H *
cAe il +vilgel’lldill + < Iexll®

IA

5 L
4 8 H
cria|lgell* 1Al + vimaxll e 1° 1]l + = ]I

5 L
5—5 6 * 6 * H *
= criallge°llgwll° Nk | + vimas g1 I ill + =~ ldi |1

IN

5 L
6—4 3 8 H
criaUy~°llgil|” i | + vanallgn | k]| + = Iz 1

IN

5 Lu T
(craU3? + v+ 5 ) o (o P31 1)

where the third inequality follows from Assumption 4 and Lemma 5.1, and the fourth inequality follows
from (3.2). O

By using Lemmas 5.4 and 5.5, we give a lower bound of the reduction of the model function.

Lemma 5.6. Suppose that Assumptions 1, 8, 4 and 5 hold. Then,

.
f(xr) —mg > pallgrt1 ] 72,

i

where

1
1—-96
Vmin Vmin Vin

20 5\’ 2-5 2-35-52
2K 264((1+c)Un + Vmang) 9 2= [7 20 F0)(1-5)
4 g

P2 = min

Proof. We have from the equality (5.5) of Lemma 5.4 and Hy + c¢Axl »= 0 that

* [ 7% * 1 * * *
fla) —mp(dy) = —gf dy — idkT(Hk + AT + vil|gnl|°T)d;,

1 * * %

= idkT(Hk + eApI + v ||ge||°T)d;, (5.7)
1 * *

> §l/k||gk||5||dk”2
1 £

> ~Vrminllgx %1 di |1 (5.8)

-2

In what follows, we consider two cases: (i) ||di|? < |lgx|°||d; || and (ii) ||} |1? > [Igx]/® |l L |-
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Case (i):

In this case, we have from Lemma 5.5 that

lgrs1ll < mallgrell*lldill, (5.9)

and hence
* 1 -0
il > —llgrl ™ llgn+1ll-
R4

It then follows from (5.8) that
1 1 2
) = mi > gl (el ol
K4

Vmin -5 2
_ 5.10
22 gkl llgrsall” (5.10)

where the last inequality follows from Lemma 5.1.
On the other hand, we have from (5.8), (5.9) and Lemma 5.4 that

Vmin

2/14

V

far) =mi = =Ildi |l - [|gr

Vmin

>
N 2H4((1 + C)UH + Vmang

)Hgk\l Ngrtall- (5.11)

Now we consider two cases: (a) ||gr+1ll = [[gx[* and (b) [lgr+1] < llgrl|*, where o is an
arbitrary positive constant.

Case (a): This case implies that

_ _ 4
gkl > gl

It then follows from (5.10) that

* Vmin _3
flar) —my, > WH%HH2 o (5.12)
1
Case (b): In this case, we have
1
lgell = llgrrall=-
It then follows from (5.11) that
Fa) —mi > o lgrsa 5. (5.13)
~ 2k4((1 4 )Un + VimaxUQ)

Since « is an arbitrary positive constant, we choose « := 1+ ¢, which minimizes max(2 —
2.1+ L), Then, we have

It then follows from (5.12) and (5.13) that

Vmi Vmi 244
- S . min min == 5.14
o =i min (. 5 o (5.14)
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Case (ii): In this case, we have from Lemma 5.5 that

grrall < ralldi . (5.15)
It then follows from Lemma 3.1 that
* K4 H4
lgrrall < malldi)l* < WHQ Rl 207 < 5 lgel P09
k mm
Thus we have
P V2. B
ol > () (5.16)

From (5.8), (5.15) and (5.16), we have

. 2 2(1—-9)
Vmin Vi 1452
) —my > — [ un 2(1-93)
f ) k_wm<m) g
1

yIs
¢H9k+1|‘ 1+5 2(1+5)(1 5)
2% 2(1 5)

Since § € (0, 3], we have

_ _ 82
2-36-8° _
20 +0)(1-0) =

Moreover, from (3.2), we have

lgr+1ll < Uy
Thus we obtain
=
| 2508 248
flazg) —mp > ———"0———||gry1 || 75 (5.17)

3(1=8) 772(116)(1—9)
2k, Uy

Therefore, we obtain from (5.14) and (5.17) that

1
1-6
Vmin Vmin me

246
i1 7H .
268 B+ OUn + vV 5 i | 1)

f(zr) — mj > min

This completes the proof. O

By using the above lemma, we give a lower bound of the reduction f(zy) — f(g+1)-

Lemma 5.7. Suppose that Assumptions 1, 3, 4 and 5 hold. Then,
245
f(@r) = f(@rg1) = mp2l|gea 759
Proof. In a way similar to the proof of Lemma 3.5, we obtain the desired inequality. O

Finally, by using this lemma, we obtain the desired global complexity bound J,.

Theorem 5.3. Suppose that Assumptions 1, 3, 4 and 5 hold. Let {x} be a sequence generated by the
proposed algorithm. Let J, be the first iteration such that |g,|| < e. Then,

F(@0) = fumin 328 |
mp2

Proof. It directly follows from the proof of Theorem 5.2. O

Jy <

Remark 5.2. Under Assumption 4, the global complexity bound O(e~ 1+<>) of the proposed algorithm is
better than O(e~2) of the steepest descent method.
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5.2 Convex case

In this subsection, we consider the case where f is convex. We need the following assumptions instead
of Assumption 3.

Assumption 6.

(a) 6 <1/2.

(b) V2f is Lipschitz continuous on Q + B(0,by) with modulus Ly .
(¢) f is convex.

From Proposition 5.1 (a), Assumption 4 holds for any 6. Moreover, under Assumptions 1 and 6,
Lemma 5.1, Theorems 5.1 and 5.3 hold. Thus we can directly get the following global complexity bound
Jg.

Theorem 5.4. Suppose that Assumptions 1 and 6 hold. Let {xy} be a sequence generated by the
proposed algorithm. Let J, be the first iteration such that ||g;,|| < €. Then,

f(I()) - fmin e_m

Jg < =+ 4+ 1.
mp2

In particular, if 6 = 1/2, then

f(.’t()) - fmin _5

Jg < € 3+ 1.
mp2

In what follows, we discuss the global complexity bound J;. From Assumption 1 and Theorem 3.1,
there exists a solution x* of (1.1). Moreover, there exists U, > 0 such that

lxg — || < U., Vk>0. (5.18)
First, we give the following technical lemma.

Lemma 5.8. Let 3, v and u be positive parameters such that 0 < <1, v >0 and u > 0. Then,

1 !
(1+7a)’ >1+ %a, Va € [0,ul. (5.19)

Proof. Let h(t) := (1 +~t)”. Since 0 < 3 <1 and v > 0, we have

a2 B(1=pB)y
@h“—‘iuﬂt)w <0, Vtel0,00)

Therefore, h(t) is concave on [0, u]. Let o € [0,u]. Then, a/u € [0,1]. It then follows from the concavity

of h that
@ o
o @
> _ =
> Zhu) + (1= ) (o)
1 -1
=1+ 7( + ’Y’U/) «,
U
which is the desired inequality. O

By using Lemma 5.8, we obtain the global complexity bound J;. Note that the proof technique is
similar to [13, Theorem 6] where the global complexity bound J; of the cubic regularization of Newton’s
method is given.
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Theorem 5.5. Suppose that Assumptions 1 and 6 hold. Let {xy} be a sequence generated by the
proposed algorithm. Let Jy be the first iteration such that f(xj,) — f(z*) < €. Then,

Jp=0(e ),
In particular, if § = 1/2, then

Jr=0 (6_%> .
Proof. Since f is convex, we have from (5.18) that

Farer) = f(#7) < gy (a1 — 27) < Usllgra |-

It then follows from Lemma 5.7 that

Fle) = fa) = 2B (fan) - f@)
U+

245
Denoting ay, := f(zy) — f(2*), B:=1/(1 + ) and v := mp2/Uz "°, we obtain

1+8
Q> Qg1 + 70

Then, we have
1

1 1

1>
T B = B
oy

I B8 1+
Ot1 Oy (kg + o 7)P

. O‘f+1(1 + '7a£+1)6 - a£+1
- O‘Zil(l + ’YO‘QH)B

_ (4a,)’ -1

- a£+1(1 + 70‘54—1)’3'

Since afﬂ < ag and § < 1, substituting v := ag and o := afﬂ into (5.19) of Lemma 5.8 yields

(5.20)

(1+~ad)f —1
1+a—gaf+1 < (1+'yoz£+1)ﬁ < (14~ad)?.
0

It then follows from (5.20) that

1 1 (14+~a))P -1

O‘f+1 B af %’G(ng)ﬁ
1 1+~aP)P —1

>+ %(/{ +1)
Qg ap (14 yap)P

(1+7a§)ﬂ+ ((1+7a€)5 - 1) (k+1)

b

ag(1+yag)?

and hence

@l

ag (1 +yag)?
(1 +'ya€)f3 + ((1 Jr’yag)ﬁ — 1) k

IN

A

Therefore, f(zx) — f(z*) = ai < ¢, provided that
ag (1 +7ag) e ? — (1 +yag)”
(1+~ap)8 -1
This completes the proof. O

k >
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Remark 5.3. The global complexity bounds J, = O(E_%) and Jy = 0(6_14%5) become better as we
take a larger 6. However, we need 6 < 1/2 for Lemma 5.1 and Theorem 5.1. Thus, the upper bounds of
Jg and Jy are O(e™3) and O(e™ %), respectively.

5.3 Strongly convex case

In this subsection, we show that the global complexity bound of the proposed algorithm is J, = O(e‘ﬁ)
when f is strongly convex. Moreover, we show that a sequence { f(x)— f(2*)} globally linearly converges
to 0 as well as the steepest descent method [11] and the cubic regularization of Newton’s method [13].

From Remarks 4.2 and 5.3, we expect that the proposed algorithm behaves well as we take a larger
d. Therefore, it is worth considering the case where 6 > 1/2. When § > 1/2, Lemma 5.1 and Theorem
5.1 do not always hold. However, when f is strongly convex, we can relax the assumption § < 1/2 to
0 <1, and prove properties similar to Lemma 5.1 and Theorem 5.1.

Now, we formally state assumptions used in this subsection.

Assumption 7.

(a) 6 < 1.

(b) V2f is Lipschitz continuous on Q + B(0,by) with modulus Ly .
(¢) f is strongly convex with modulus o > 0.

Under Assumption 7 (¢), Amin(V2f(2)) > o for all z € R® and Aj, = 0 for all & > 0.
First, we give an upper bound of ||dj (v)]|.

Lemma 5.9. Suppose that ||gx|| # 0. Suppose also that Assumption 7 holds. Then,

lde)Il < =llgkll, Vv € [Vmin, 0).

Q|+

Proof. Tt directly follows from the inequality (3.1) of Lemma 3.1 and Apin (Hg+cApI+v||gi||°T) > 0. O

—~

From the above lemma, we show that the regularized parameter v} is bounded above by some positive
constant independent of k.

Lemma 5.10. Suppose that Assumptions 1 and 7 hold. Then,
v S ﬁmax7

where

1—
N Y2 LgU}™°
DUmax 1= max | v, ————>— | .

Proof. We have from (5.4) of Lemma 5.1 that

Far+ ) = mn(da0),0) < 3 (Lanlde()] = Aol (o)
<3 (22 o) e
1-6
= (LHZ - ) o Pl )P

where the second inequality follows from Lemma 5.9, and the third inequality follows from (3.2). Now
we suppose that v > LHUgl_‘S/U. Then, we have

[y + di(v)) < my(dy(v),v),
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and hence

fzk) = flog +di(v))
f(@g) —mi(di(v),v)

Therefore, from the updating rule of 7, , v; must satisfy

LyUy=° LyU}=°
PER P - P R G -

This completes the proof. ]

Pr(dr(v),v) = > 1.

From the above lemma, we show that the number of inner iteration [}, at k-th iteration is bounded
above by some positive constant independent of k.

Theorem 5.6. Suppose that Assumptions 1 and 7 hold. Then,

lk < Zmaxz
where
7 ﬁmax
lmax = {log,Yl (Vmin> + 1—‘ .
Proof. In a way similar to the proof of Theorem 5.1, we obtain the desired inequality. O

By using Lemmas 5.4 and 5.5, we give a lower bound of the reduction of the model function.
Lemma 5.11. Suppose that Assumptions 1 and 7 hold. Then,
_2
f(@e) —my = psllgraa |75,

where

2

— ()
° 2((1+ OUn + DmaxU2)? \ kg Ul
Proof. We have from the equality (5.7) of Lemma 5.6 and Ay, (Hy) > o that

alld;]?. (5.21)

DN | =

fleg) —mp =

From Lemma 5.5, ||gr+1]| < #a max(||gx|®[|d; |, |d;]|?) holds. Now we consider two cases: (i) ||di[|? <
lgrll°lld ]l and (i) (|1 = [lgell®lld; -

Case (i): In this case, we have from Lemma 5.5 that

Ry
lgsall < mallgell®dill < ;I\gklll”,

where the second inequality follows from Lemma 5.9, and the last inequality follows from

Lemma 5.10. Thus we have
1
o 1+48
gl > (|9k+1|> :
Ry

From Lemma 5.4 and Lemma 5.10, we have

1

dy|| > .
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It then follows from (5.21) that

g
2((1+ ) Un + DmaxU2)? |

> o (")”n s (5.22)
Z 2((1+C)UH+l7maxU§)2 . Jk+1 . .

f(ar) —my, = lgxI”

Case (ii): In this case, we have from Lemma 5.5 that

g1l < Kalldi]|?.

It then follows from (5.21) that

. o o 2 _1-8 o 2
flxr) —my > s—|lgpr1ll = 5= lgr1l| ™75 > ——=llgr+1|7+7, (5.23)
2/14 2/14 1+35
2/434Ug
where the last inequality follows from (3.2).
Therefore, we obtain from (5.22) and (5.23) that
)
o o o
() — mi. > min e (2) T | Lol
’“ 2T+ U+ omaV3 \5a ) g5
This completes the proof. O

By using the above lemma, we give a lower bound of the reduction f(zx) — f(zk+1)-

Lemma 5.12. Suppose that Assumptions 1 and 7 hold. Then,

L‘
f(@r) = f(@kt1) = mps|lgeta || TF
Proof. In a way similar to the proof of Lemma 3.5, we obtain the desired inequality. O

Now, by using Lemma, 5.12, we obtain the global complexity bound J, in the case where f is strongly
convex.

Theorem 5.7. Suppose that Assumptions 1 and 7 hold. Let {xy} be a sequence generated by the
proposed algorithm. Let J, be the first iteration such that ||g;,|| < €. Then,

Jg S f(xO) - fminefﬁ +1.
mps3
In particular, if 6 =1, then
Jg S f(mO) - fmin€_1 +1.
mps
Proof. It directly follows from the proof of Theorem 5.2. O

By using a technique similar to [13, Theorem 7], we can show that {f(zx) — f(z*)} converges to 0
linearly.

Theorem 5.8. Suppose that Assumptions 1 and 7 hold. Let {xy} be a sequence generated by the
proposed algorithm. Then, {f(xr) — f(«*)} globally linearly converges to 0. Thus, the first iteration J¢
such that f(x,) — f(x*) < € satisfies

Jr=0 (loge_l) .

26



Proof. Since f is strongly convex, we have

1
F@rn) = f(27) < g @en = 27) < llgesa]l - [zeen — 27| < ~llgesall*.

It then follows from Lemma 5.12 that

1

Flar) = f(@r1) = mpso ™ (f(@pgn) — f(2)) T

Denoting ay, := f(zr) — f(z*) and v := nlpgaﬁ, we obtain
1

==
Qg 2 Qg1 + Y0

Then, we have from aj4+1 < ag that

1 1
Otk<

5 — -
1+,yak 1+46 1+,ya0 1+46

apq1 < Q.

Therefore, f(xy) — f(«*) globally linearly converges to 0.
Next, we show the second part of the theorem. From (5.24), we have

k
1
ag < - Qo,
14+ yag '*°
and hence if
1
k> T log %7

1 + 'YOZO 1+5 €

then aj < e. This completes the proof.

6 Numerical results

(5.24)

In this section, we report some results on the following numerical experiments for the proposed algorithm.

1. Examination of the effects of the updating rules of the regularized parameter;

2. Comparison of the proposed algorithm and the existing Newton-type methods.

In each experiment, benchmark problems were chosen from CUTEr [7]. All algorithms were coded in
MATLAB 7.4, and run on a machine with 3.2GHz Pentium 4 CPU and 3.2GB memory. We used an
initial point z given by CUTEr, and set the termination criterion as ||gx|| < 1075. If the number of
inner iterations at the k-th iteration or the number of outer iterations exceeds 10%, then we terminated

all methods as failing.

We consider the following two updating rules of the regularized parameter piy.

(A) e = cAi + vilgrl|’;
(B) px = cAy + vpmin(1, || gx]®).

The updating rule (B) prevents ||dy(7,)|| from becoming too small when ||gy||° is large. Note that the
convergence properties given in Sections 3 — 5 still hold even if we replace the above updating rule (A)

with (B). We updated vy, in Steps 2 and 3 as follows.

pk(dk(ﬂlk)7ﬂlk) <M1 = V41 = Wy,
N2 > pk(dk(ljlk)’f/lk) > M= Vg1 = Vi
o (di (D
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where v, and 7, are positive parameters such that v, < 1 and v, > 1. In all numerical experiments,
except for 7., 7» and d, the parameters of the proposed algorithm are chosen as follows.

vo =1, Umin = 107°, ¢ =2, n; = 0.01, 175 = 0.8.

In Subsections 6.1 and 6.2, we will compare algorithms by using the distribution function proposed
in [6]. We denote a set of solvers as S, and a set of problems that can be solved by all methods in S
as Ps. We also denote a measure for evaluation required to solve a problem p by a solver s as ¢, , and
the best t,, ; for each p as ¢%, i.e., t; := min{t, s | a € S}. The distribution function F(7) for a method
s is defined by

_HpePs |ty <78}

FS(r) P ,

T2>1.
The algorithm whose FZ(7) is close to 1 is considered to be superior to the other algorithms in S.

6.1 Influences of the updating rule of the regularized parameter

First, we investigate influences of the parameter § and the updating rules (A) and (B). We set v, and
Y as v = 0.5 and 7, = 2, respectively.

Table 1 shows the number of the function evaluations for 6 = 1/2,1, 2 and the updating rules (A) and
(B). The symbol “—” in the table means that the number of inner or outer iterations of the proposed
algorithm exceeds 10%.

Figure 2 shows the distribution functions for the proposed algorithm with various § and the updating
rules (A) and (B) in terms of the number of the function evaluations. Figure 2 shows that for § = 0.5,
the updating rule (A) is almost same as the updating rule (B). On the other hand, for § = 1 and 2,
the updating rule (B) is better than the updating rule (A). The reason is that when |gx||° is large,
ldi(71,,)|| becomes too small, and a sequence of the proposed algorithm changes only slightly. Moreover,
from the same reason, the number of the function evaluations tends to become large as § become large
for the updating rule (A). Finally, for the updating rule (B), the proposed algorithm does not have
much difference among § = 0.5,1,2. From the above fact, the proposed algorithm has good numerical
performance when we use the updating rule (B).

T —

FP(

—3§=0.5and (A)
- ==3%=0.5and (B) B
d=1and (A)
d=1and (B) 4
—93=2and (A)
===93=2and(B)

1 12 14 16 18 2 22 24 26 2.8 3

Figure 2: Comparison of § and the updating rules (A) and (B)

28



Next, we examine the influences of (74, 7). We set 6 = 1 and used the updating rule (B), and tested
the proposed algorithm for each (va4,7s) in {3, %, 15} x {2,5,10}.

Table 2 shows the number of the function evaluations for each (74, 7s). Figure 3 shows the compar-
isons of (74,7s) in terms of the number of the function evaluations. From Figure 3, we see that v, = 5
and 10 have good performances as compared to v, = 2.

e e B Ry ——————————

__________

0.9

0.8

0.7

0.6

FS () —(,v)=022
05 vy ¥p) = (212,5) |
— (v, ¥p) = (172, 10)
04 - oY) = (15,2) i
(v, ¥,) = (L/5, 5)
0.3+ - = = ¥,y = (5,10 B
— (v,y)=(@710,2)
“l (¥, ¥,) = (1/10, 5) N
(v, y,) = (1/10, 10)
0.1 |

Figure 3: Comparison of (ya, V)

6.2 Comparison with the existing Newton-type methods

We compare the proposed adaptive regularized Newton method (ARNM) with the regularized Newton
method with Armijo’s step size rule (RNM) and the TR-Newton method. We denote the TR-Newton
method solving subproblems exactly as “TR-NM”, and the TR-Newton method solving subproblems
approximately by using the conjugate gradient method as “TRCG-NM”.

The regularized Newton method with Armijo’s step size rule is described as follows.

The Regularized Newton Method with Armijo’s Step Size Rule

Step 0 : Choose a starting point xg. Set k := 0.
Step 1 : If the stopping criterion is satisfied, then terminate. Otherwise, go to Step 2.

Step 2 : Compute

dy = —(Hy, + 2A,1 + min(1, || gx|NI) " gr-

Step 3 : Find the smallest nonnegative integer [; such that

f(x) — flap + (0.5)*dy) > —0.01 x (0.5)* gl d.

Step 4 : Update x3,1 = x + (0.5)"*dy. Set k :=k + 1, and go to Step 1.
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The TR-Newton method is described as follows.

The TR-Newton Method

Step 0 : Choose a starting point xg. Set Ay :=1 and k := 0.
Step 1 : If the stopping criterion is satisfied, then terminate. Otherwise, go to Step 2.
Step 2 : Step 2.0 : Set [ :=1 and A;, = A
Step 2.1 : Compute an approximate solution di(A;, ) of the trust-region subproblem

1
L T T
d+ —d* Hid
Im;lel]g}}ze fzk) + g5 B k4

subject to ||d|| < Ay, .

Step 2.2 : Compute

o x fxy) — flog + de(Ay))
pk(dk(Alk)7Alk) = f(ick) — (f(Sck) Jrg;;rdk(ﬁlk) + %dk‘(Alk)Tdek(Alk)).

If Pk(dk(Alk)aAlk) < 0.05, then update Alk+1 = 025Alk Set I := I + 1, and
go to Step 2.1. Otherwise, go to Step 3.

Step 3 : 1f 0.9 > p_k(dk(_Alk),Alk) > 0.05, then update Ay iy = Ay, . B
If pp(di(Ar), Ay,) > 0.9, then update Ay 1 = max(10°,2.54, ).
Update zg41 = o + di(Ay,). Set k:=k 4+ 1, and go to Step 1.

In solving subproblems of the TR-NM, we used Algorithm 7.3.4 in [4], and employed the terminate
condition (7.3.20) in [4], where we set a parameter Keasy s Keasy = 1074, On the other hand, in solving
subproblems of the TRCG-NM, we used Algorithm 7.5.1 in [4]. We set the upper bound of the number
of iterations in the trust-region subproblems as 5 x 10%. In the proposed algorithm, we adopted the
updating rule (B) of ug, and set § =1, 7, = 1/10 and ;, = 10.

Table 3 shows the number of the function evaluations (Ny) and the number of solving linear equations
(Np) for each method. Note that the computational complexity of calculating the minimum eigenvalue
of Hj is not contained in Nj. Note also that since the TRCG-NM does not solve a linear equation
exactly, we do not consider Ny, for the TRCG-NM.

The ARNM cannot solve 'MARATOSB’, and the TR-NM cannot solve ' BROWNAL’, 'FREUROTH’
and 'SBRYBND’, and the TRCG-NM cannot solve ‘CURLY10’, '"CURLY20’, 'MOREBV’, 'NONDIA’,
'"QUARTC’, 'SBRYBND’, 'TESTQUAD’ and "TOINTGSS’.

Figures 4 and 5 show the comparisons of the ARNM and the RNM for Ny and Ny, Figures 6 and 7
show the comparisons of the ARNM and the TR-NM for Ny and Ny, and Figure 8 shows the comparison
of the ARNM and the TRCG-NM for Ny.

Figures 4 and 5 show that both Ny and Ny of the ARNM are much less than those of the RNM,
that is, the proposed algorithm is much superior to the traditional regularized Newton method. Figure
6 shows that Ny of the ARNM is almost same as that of the TR-NM. On the other hand, from Figure
7, we see that Np of the ARNM is much less than that of the TR-NM. These results show that the
ARNM can solve subproblems more easily as compared to the TR-NM. Finally, Figure 8 shows that N
of the proposed algorithm is slightly than that of the TRCG-NM. Note that since the TRCG-NM solves
subproblems approximately, it is faster than the ARNM for some problems.
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Figure 4: Comparison of ARNM and RNM for Ny

F> (0

03f g

02r —— ARNM 7
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1 15 2 25 3 35 4 45 5

Figure 5: Comparison of ARNM and RNM for Ny,
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Figure 6: Comparison of ARNM and TR-NM for N¢

0.8 b

F> ()

Figure 7: Comparison of ARNM and TR-NM for Ny,
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Figure 8: Comparison of ARNM and TRCG-NM for Ng

7 Concluding remarks

In this paper, we have proposed a regularized Newton method without line search. We have shown
the global and superlinear convergence of the proposed algorithm, and given its global complexity
bounds. In particular, we have given the conditions under which the global complexity bound J; of
the proposed algorithm is better than that of the steepest descent method J, = O(¢~?) when f is not
convex. Moreover, we have presented some numerical results, which shows that the proposed algorithm
is competitive with the existing Newton-type methods.

The most time-consuming tasks of the proposed algorithm are to solve linear equations for a search
direction and to calculate the minimum eigenvalue of V2 f(x},). Therefore, it is important to calculate
them efficiently for large-scale problems. For the unconstrained convex optimization, Li and Li [10]
proposed the regularized Newton method using an inexact solution of a regularized Newton equation as
a search direction. We expect that the proposed algorithm is accelerated by exploiting their idea. On
the other hand, we may use the approximating value A, of Aj; such that

0.5A, < Ay < 2A4
instead of Ay in (2.1), that is, we adopt ux such that
pe = ey + vellgel?, > 2. (7.1)

The proposed algorithm with this modification has the same convergence properties given in Sections 3
— 5. In fact, by denoting ¢i := cAg/Ag, we have

i = cAy, + vi|lgil]® = cri + villgrll’- (7.2)

Moreover, we obtain that ¢ > ¢/2 > 1,¥k > 0 and {cy} is bounded. Then, in a way similar to the
proofs in Sections 3 — 5, we can show that the proposed algorithm with (7.2) (that is (7.1)) has the same
convergence properties.
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A Tables of numerical results

Table 1: Influence of §

§=1/2 s=1 =2
Name n] A ®] @A) ®] @A) ®
3PK 30 15 15 14 12 20 9
AKIVA 2 6 6 7 6 10 6
ALLINITU 4 13 9 15 9 11 9
ARGLINA 200 7 6 9 5 13 5
ARWHEAD 100 6 6 6 6 13 6
BARD 3 8 8 9 8 14 9
BDQRTIC 100 10 9 12 9 25 9
BEALE 2 10 10 8 9 11 9
BIGGS6 6 115 111 111 111 144 136
BOX3 3 8 8 8 8 9 7
BRKMCC 2 5 4 5 4 7 4
BROWNAL 200 4 4 8 4 42 4
BROWNBS 2 25 18 46 17 — 17
BROWNDEN 4 8 8 12 8 105 8
BROYDNT7D 100 37 25 39 25 30 25
BRYBND 100 9 16 10 16 18 16
CHNROSNB 50 72 68 82 68 107 68
CLIFF 2 27 27 27 27 | 4898 27
COSINE 100 13 14 10 13 12 13
CRAGGLVY 100 13 13 15 13 28 13
CUBE 2 43 40 47 43 64 46
CURLY10 100 34 43 26 43 21 42
CURLY20 100 28 38 21 37 23 37
DECONVU 61 10 34 13 29 51 36
DENSCHNA 2 6 5 6 5 8 5
DENSCHNB 2 6 6 6 6 8 6
DENSCHNC 2 10 10 11 10 19 10
DENSCHND 3 28 43 29 43 884 43
DENSCHNE 3 20 31 28 18 23 32
DENSCHNF 2 6 6 7 6 15 6
DIXMAANA 300 8 7 10 7 17 6
DIXMAANB 300 8 8 10 8 18 7
DIXMAANC 300 9 8 11 8 20 8
DIXMAAND 300 10 9 12 9 22 9
DIXMAANE 300 10 10 11 9 18 8

DIXMAANF 300 13 13 23 12 37 13
DIXMAANG 300 22 13 25 13 39 13
DIXMAANH 300 21 14 28 14 41 14

DIXMAANI 300 12 12 12 10 20 10
DIXMAANJ 300 24 25 20 26 28 33
DIXMAANK 15 11 13 17 12 29 12
DIXMAANL 300 19 27 22 31 32 37
DIXON3DQ 100 11 11 9 8 8 6
DQDRTIC 100 6 5 10 5 22 4
EDENSCH 36 11 12 16 12 30 12
ENGVALL1 100 8 7 11 7 20 7
ENGVAL2 3 17 17 23 17 26 17
ERRINROS 50 71 79 89 96 112 124
EXPFIT 2 10 14 10 13 13 13
FLETCBV2 100 8 8 4 4 1 1
FREUROTH 100 12 24 11 24 23 24
GENROSE 100 168 176 161 176 178 175
GROWTHLS 3 148 121 200 121 332 121
GULF 3 38 42 36 49 61 57
HAIRY 2 63 108 68 108 68 107
HATFLDD 3 19 17 17 17 28 16
HATFLDE 3 21 18 16 17 27 17
HEARTG6LS 6 | 1620 1410 | 1869 1445 | 3442 2142
HEARTSLS 8 166 146 155 160 182 159
HELIX 3 15 9 13 9 34 9
HIELOW 3 6 10 10 10 16 10
HILBERTA 2 7 7 6 6 7 5
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Table 1: Influence of §

§=1/2 §=1 §=2
Name n|l ) ®B | @A @B KB @
HILBERTB 10 5 7] 7 7] 13 1
HIMMELBB 2 13 11 20 11 40 11
HIMMELBF 4| 136 159 | 164 153 | 159 167
HIMMELBG 2 8 7 7 7 7 7
HIMMELBH 2 6 7 5 7 5 6
HUMPS 2| 385 497 | 1098 633 | 502 509
KOWOSB 4 9 9 7 7 8 8
LIARWHD 100 11 11 14 11 26 11
LOGHAIRY 2 | 4498 4496 | 3028 3030 | 5234 5236
MARATOSB 2 | 1494 1212 | 2169 1209 | 3543 1235
MEXHAT 2 46 47 42 47 69 47
MOREBV 100 4 4 3 3 2 2
NONCVXU2 100 49 50 41 48 83 48
NONCVXUN 100 28 47 36 46 91 45
NONDIA 100 9 11 8 11 22 11
OSBORNEA 5 58 66 64 69 84 101
OSBORNEB 11 15 15 20 16 29 22
PALMERIC 8 14 14 14 12 | 3485 10
PALMERID 7 13 12 13 11 | 316 9
PALMER2C 8 14 14 13 11| 296 9
PALMER3C 8 14 14 12 11| 107 8
PALMERA4C 8 15 15 12 11| 107 9
PALMERS5C 6 7 5 10 5 18 5
PALMER6C 8 16 16 12 12 31 9
PALMERT7C 8 17 17 13 13 57 9
PALMERSC 8 16 16 13 12 32 9
PFITILS 3| 569 547 | 748 714 | 1135 1049
PFIT2LS 3| 244 189 | 395 256 | 550 388
PFIT3LS 3| 232 259 | 282 389 | 439 548
PFIT4LS 3| 423 417 | 620 567 | 953 922
POWELLSG 4 15 15 16 15 23 15
QUARTC 100 24 24 31 24 - 24
ROSENBR 2 32 32 32 33 43 35
S308 2 11 10 15 10 15 10
SBRYBND 100 - 96 48 96 43 95
SCHMVETT 100 5 5 6 4 8 4
SINEVAL 2 82 72 | 107 72 | 125 76
SINQUAD 100 16 21 14 20 18 20
SISSER 2 12 12 13 12 14 12
SNAIL 2| 112 115 | 130 130 | 147 158
SPARSINE 100 6 6 8 6 19 6
SPARSQUR 100 16 16 17 16 26 16
SPMSRTLS 100 12 10 14 10 18 10
SROSENBR 100 8 9 8 9 17 8
STRATEC 10 27 33 29 33 64 33
TESTQUAD 1000 7 6 12 5 | 2529 5
TOINTGOR 50 8 7 10 6 19 6
TOINTGSS 100 8 6 9 6 14 6
TOINTPSP 50 23 31 26 30 41 30
TOINTQOR 50 7 6 8 5 14 5
TQUARTIC 100 15 15 13 15 13 14
TRIDIA 100 6 5 8 4 16 4
VARDIM 200 29 29 31 29 - 29
VAREIGVL 50 12 11 15 15 36 27
VIBRBEAM 8| 103 88 86 88 54 88
WATSON 12 9 9 9 9 13 9
WOODS 4 68 65 81 65 | 103 65
YFITU 3 70 59 90 59 | 166 59
ZANGWIL2 2 5 5 5 4 5 4
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Table 2: Influence of 7, and ~,

Ya =1/2 Ya =1/5 Ya = 1/10
Name n|w=2 w=5 w=10]%w=2 %=5 w=10|%=2 %=5 =10
3PK 30 12 12 12 7 7 7 6 6 6
AKIVA 2 6 6 6 6 6 6 6 6 6
ALLINITU 4 9 9 9 8 8 8 8 8 8
ARGLINA 200 5 5 5 4 4 4 4 4 4
ARWHEAD 100 6 6 6 5 5 5 5 5 5
BARD 3 8 8 8 7 7 7 7 7 7
BDQRTIC 100 9 9 9 9 9 9 9 9 9
BEALE 2 9 9 9 10 8 9 11 9 8
BIGGS6 6 111 99 93 124 104 104 154 114 100
BOX3 3 8 8 8 7 7 7 7 7 7
BRKMCC 2 4 4 4 4 4 4 3 3 3
BROWNAL 200 4 4 4 4 4 4 4 4 4
BROWNBS 2 17 15 16 16 13 12 16 13 12
BROWNDEN 4 8 8 8 8 8 8 8 8 8
BROYDN7D 100 25 25 25 25 25 25 42 32 33
BRYBND 100 16 14 11 19 14 12 21 13 12
CHNROSNB 50 68 58 57 103 71 72 118 85 119
CLIFF 2 27 27 27 27 27 27 27 27 27
COSINE 100 13 11 12 9 9 9 9 9 9
CRAGGLVY 100 13 13 13 13 13 13 13 13 13
CUBE 2 43 40 38 66 47 42 77 48 46
CURLY10 100 43 33 32 45 31 27 43 30 26
CURLY20 100 37 29 27 41 28 25 40 27 24
DECONVU 61 29 17 22 50 30 33 36 23 25
DENSCHNA 2 5 5 5 5 5 5 5 5 5
DENSCHNB 2 6 6 6 8 5 7 9 7 5
DENSCHNC 2 10 10 10 10 10 10 10 10 10
DENSCHND 3 43 35 33 52 37 36 54 36 36
DENSCHNE 3 18 18 18 16 16 16 13 13 13
DENSCHNF 2 6 6 6 6 6 6 6 6 6
DIXMAANA 300 7 7 7 7 7 7 13 11 9
DIXMAANB 300 8 8 8 8 8 8 30 22 17
DIXMAANC 300 8 8 8 9 9 9 9 9 9
DIXMAAND 300 9 9 9 9 9 9 9 9 9
DIXMAANE 300 9 9 9 8 8 8 8 8 8
DIXMAANF 300 12 12 12 12 12 12 12 12 12
DIXMAANG 300 13 13 13 13 13 13 13 13 13
DIXMAANH 300 14 14 14 14 14 14 14 14 14
DIXMAANI 300 10 10 10 9 9 9 17 13 12
DIXMAANJ 300 26 20 19 29 23 19 28 23 21
DIXMAANK 15 12 12 13 28 19 14 22 24 18
DIXMAANL 300 31 23 25 33 26 22 32 26 22
DIXON3DQ 100 8 8 8 6 6 6 5 5 5
DQDRTIC 100 5 5 5 4 4 4 4 4 4
EDENSCH 36 12 12 12 12 12 12 12 12 12
ENGVAL1 100 7 7 7 7 7 7 7 7 7
ENGVAL2 3 17 17 17 17 17 17 17 17 17
ERRINROS 50 96 76 80 109 66 63 106 63 57
EXPFIT 2 13 11 10 14 10 10 14 12 12
FLETCBV2 100 4 4 4 3 3 3 3 3 3
FREUROTH 100 24 19 19 18 13 — 17 13 13
GENROSE 100 176 121 107 222 155 136 265 154 146
GROWTHLS 3 121 96 92 183 155 122 221 131 184
GULF 3 49 41 38 61 33 37 60 49 36
HAIRY 2 108 79 106 192 101 115 196 120 70
HATFLDD 3 17 17 17 19 18 18 22 19 21
HATFLDE 3 17 17 18 23 17 19 25 19 17
HEARTG6LS 6 1445 1507 1654 2333 1732 1515 2975 1794 1875
HEARTSLS 8 160 158 151 224 159 153 260 181 175
HELIX 3 9 9 9 9 9 9 10 10 10
HIELOW 3 10 9 8 13 10 9 15 11 10
HILBERTA 2 6 6 6 5 5 5 4 4 4
HILBERTB 10 4 4 4 4 4 4 3 3 3
HIMMELBB 2 11 11 11 12 12 12 12 12 12
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Table 2: Influence of 7, and ~,

Ya =1/2 Ya =1/5 Ya = 1/10
Name n|w=2 w=5 w=10]%w=2 %=5 w=10|%=2 %=5 =10
HIMMELBF 4 153 153 153 167 161 162 165 163 158
HIMMELBG 2 7 5 6 8 7 6 9 7 7
HIMMELBH 2 7 7 8 6 5 6 6 6 6
HUMPS 2 633 434 422 1049 327 652 676 476 340
KOWOSB 4 7 7 7 10 9 8 12 9 12
LIARWHD 100 11 11 11 10 10 10 10 10 10
LOGHAIRY 2 3030 1411 2504 2385 4391 2507 3649 1649 51
MARATOSB 2 1209 - 907 1848 1424 1171 2346 1502 —
MEXHAT 2 47 36 35 60 42 37 65 46 44
MOREBV 100 3 3 3 2 2 2 2 2 2
NONCVXU2 100 48 41 40 30 30 30 47 38 36
NONCVXUN 100 46 39 37 40 32 30 27 27 27
NONDIA 100 11 10 8 13 10 8 15 11 10
OSBORNEA 5 69 60 46 73 71 44 93 62 59
OSBORNEB 11 16 17 17 18 17 22 23 21 17
PALMERI1C 8 12 12 12 7 7 7 6 6 6
PALMERI1D 7 11 11 11 7 7 7 6 6 6
PALMER2C 8 11 11 11 7 7 7 6 6 6
PALMERS3C 8 11 11 11 7 7 7 6 6 6
PALMERA4C 8 11 11 11 7 7 7 6 6 6
PALMERS5C 6 5 5 5 4 4 4 4 4 4
PALMER6C 8 12 12 12 7 7 7 6 6 6
PALMERTC 8 13 13 13 8 8 8 6 6 6
PALMERSC 8 12 12 12 7 7 7 6 6 6
PFIT1LS 3 714 695 751 893 771 861 1236 751 613
PFIT2LS 3 256 237 263 398 397 272 475 231 238
PFIT3LS 3 389 364 373 416 439 491 515 328 245
PFIT4LS 3 567 445 735 714 649 649 808 458 419
POWELLSG 4 15 15 15 15 15 15 15 15 15
QUARTC 100 24 24 24 24 24 24 24 24 24
ROSENBR 2 33 27 27 41 33 31 49 30 40
S308 2 10 9 9 14 11 10 16 12 11
SBRYBND 100 96 65 71 61 40 38 62 35 30
SCHMVETT 100 4 4 4 4 4 4 4 4 4
SINEVAL 2 72 57 57 102 73 66 127 83 123
SINQUAD 100 20 21 16 25 21 17 30 23 16
SISSER 2 12 12 12 12 12 12 12 12 12
SNAIL 2 130 94 100 171 110 122 202 126 236
SPARSINE 100 6 6 6 6 6 6 6 6 6
SPARSQUR 100 16 16 16 16 16 16 16 16 16
SPMSRTLS 100 10 10 10 11 11 11 10 10 10
SROSENBR 100 9 9 9 8 8 8 7 7 7
STRATEC 10 33 23 20 46 28 20 35 28 26
TESTQUAD 1000 5 5 5 4 4 4 4 4 4
TOINTGOR 50 6 6 6 5 5 5 5 5 5
TOINTGSS 100 6 6 6 6 6 6 5 5 5
TOINTPSP 50 30 23 25 38 26 33 41 29 41
TOINTQOR 50 5 5 5 4 4 4 4 4 4
TQUARTIC 100 15 14 13 14 12 10 15 15 13
TRIDIA 100 4 4 4 4 4 4 3 3 3
VARDIM 200 29 29 29 29 29 29 29 29 29
VAREIGVL 50 15 16 13 12 12 12 30 25 25
VIBRBEAM 8 88 67 62 89 52 41 78 51 44
WATSON 12 9 9 9 9 9 9 9 9 9
WOODS 4 65 54 56 93 64 64 106 66 67
YFITU 3 59 55 52 78 54 57 92 62 62
ZANGWIL2 2 4 4 4 4 4 4 4 4 4
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