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Abstract

Case-cohort designs are commonly used in large epidemiological studies to reduce the cost
associated with covariate measurement. In many such studies the number of covariates is very
large. An efficient variable selection method is needed for case-cohort studies where the covariates
are only observed in a subset of the sample. Current literature on this topic has been focused on
the proportional hazards model. However, in many studies the additive hazards model is preferred
over the proportional hazards model either because the proportional hazards assumption is violated
or the additive hazards model provides more relevent information to the research question.
Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we
investigate the properties of a regularized variable selection procedure in stratified case-cohort
design under an additive hazards model with a diverging number of parameters. We establish the
consistency and asymptotic normality of the penalized estimator and prove its oracle property.
Simulation studies are conducted to assess the finite sample performance of the proposed method
with a modified cross-validation tuning parameter selection methods. We apply the variable
selection procedure to the ARIC study to demonstrate its practical use.
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1 Introduction

In large-scale epidemiological cohort studies, investigators are usually interested in
assessing the association between a time-to-event outcome and a large number of risk
factors. Collecting information on risk factors often requires expensive bioassays and
precious biological specimens such as serum and genetic material. Prentice (1986) proposed
a case-cohort design to reduce the cost and effort in measuring expensive covariates without
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decreasing much efficiency in the estimation. In a case-cohort design, the complete covariate
information is only obtained from a randomly sampled subset of the full cohort plus all
subjects who developed the outcome event. In practice, some covariates that are correlated
with the more expensive exposure variables may be readily available for the entire cohort.
One example is the Atherosclerosis Risk in Communities (ARIC) study (Ballantyne et al.,
2004), where a cohort of 15,792 participants 45 to 64 years old were sampled from four U.S.
communities and were followed for ten years for the development of Coronary Heart
Disease (CHD). The primary interest was to assess the association between the protein hs-
CRP level and the risk of CHD. To preserve stored plasma and reduce costs, it is desirable to
only measure the hs-CRP on a subset of the entire cohort. On the other hand, sex, race, and
baseline age were available for all participants. To utilize the fully observed covariates to
gain estimation efficiency, Borgan et al. (2000) proposed a stratified case-cohort design
where the strata are defined by these covariates. The ARIC study implemented this stratified
case-cohort design with stratification on sex, race, and baseline age. The hs-CRP level was
measured only on the stratum-specific random subsets plus all incident CHD cases.

Cox proportional hazards model (Cox, 1972) is commonly used for the analysis of time-to-
event data. However, the critical assumption of proportional hazards may fail to hold in
many situations, making the Cox model invalid. For example, in the ARIC study there is
evidence that the hazard of CHD does not satisfy the proportionality assumption (Kang et
al., 2013). Even if the proportional hazards assumption is satisfied, investigators are
sometimes more interested in the absolute hazard difference as a measure of covariate effect
because it is more relevant to public health. Under rare event assumption, which is true for
many case-cohort studies, the cumulative hazard difference approximates the attributable
risk (the difference in the event rate per unit change in the exposure variable), which
translates directly into the number of events that would be avoided by eliminating a
particular exposure. Moreover, the risk difference is easier to interpret and communicate to
medical practitioners. Therefore, the additive hazards model is often used as an important
alternative to the Cox proportional hazards model. As its name suggests, the additive hazards
model assumes that the effect of covariates on the risk of event is additive. Since Aalen
(1980) first introduced the additive hazards model, many authors have investigated its
estimation procedure and the properties of the estimator. Lin & Ying (1994) proposed a
semiparametric estimating equation for a special case of additive hazards model where the
regression coefficients are time-independent. The authors derived the limiting distribution of
the estimator and studied its semiparametric efficiency. Kulich & Lin (2000) extended this
estimation method to case-cohort design and assessed its asymptotic relative efficiency with
respect to the full cohort analysis.

In case-cohort studies where a large number of covariates are collected, researchers are often
interested in selecting a subset of the covariates that are related to the event of interest. With
the inclusion of interaction and polynomial terms, the number of candidate covariates can be
very large. In the ARIC study, there are a number of potential confounders or effect
modifiers that need to be considered in the modeling process. With the pairwise interactions
between hs-CRP level and all the other covariates as well as the squared continuous
covariates, the total number of candidate covariates becomes quite large in comparison to the
number of events. As Huber (1973) argued, in the context of variable selection the number
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of parameters should be considered as increasing with sample size. Ni et al. (2016)
developed a regularized variable selection method for a case-cohort design under Cox’s
proportional hazards model with a diverging number of parameters. Such a method needs to
be developed for studies such as the ARIC study where the additive hazards model is used
under a case-cohort design.

Regularized variable selection procedures have gained much success over the last few
decades. Under certain regularity conditions, these procedures can simultaneously select
variables and estimate their coefficients. Among various penalty functions used in these
procedures, the smoothly clipped absolute deviation (SCAD) penalty (Fan & Li, 2001) and a
few others have been shown to possess the oracle property (Fan & Li, 2001). The SCAD
variable selection procedure has been applied to the additive hazards model (Lin & Lv,
2013). However, it has not been investigated under a stratified case-cohort design, which is
the objective of this paper. Tuning parameter selection is critical for the success of
regularized variable selection. We also propose a modified cross-validation based tuning
parameter selection strategy to overcome the issue of overfitting with the conventional cross-
validation method, and empirically evaluate its performance under large cohort sizes and
high censoring rates, which are two typical features of case-cohort studies.

2 Additive Hazards Model with A Stratified Case-Cohort Design

Suppose the full cohort of size nis divided into S mutually exclusive strata based on some
categorical variables that are available for all subjects. In this paper we assume Sis finite.
For subject 7in stratum s, let Z;{(? be the d), x 1 possibly time-dependent covariate vector.
We allow @, to increase with 77but at a slower rate that will be determined later. Without loss

. . T
of generality, we partition the real-valued true parameter vector 5, as (ﬂg P ﬂg ;) » Where

Bo,7and Sy 4y are the nonzero and zero components of By, respectively. Denote by 4, the
dimension of B , which is also allowed to diverge with 7and k;/a), converges to a constant
c € [0, 1]. Although the dimensions of the true parameter and covariates all depend on 7, we
suppress the subscript 7 for notational simplicity.

Let 75and C;be respectively the time to the outcome event and the censoring time for
subject 7in stratum s, which are independent conditional on Z,;. Let X5;= min(7g; Cs) be
the observed time and 4= ( 75;< Cs) be the censoring indicator, where /(:) is an indicator
function. Let z be the time at the end of study. Define the counting process Ns{() = (X< ¢,
A= 1), and the at risk process Ys{(8) = {(X,= §). Let A4(5) denote the hazard function for

subject 7in stratum s. The additive hazards model assumes a_{71Z (1)} = hy(®) + /}ngi(t),

where /(9 is a common baseline hazard function for all strata, and £ is constant over time.
Under the stratified case-cohort design proposed in Borgan et al. (2000), we randomly select
a subcohort of fixed size from each stratum. We assume that the selection of subcohort is
independent across the strata. Let /; denote the subcohort size in stratum s with size n,, and
&sibe the indicator of subject 7being selected into the subcohort in stratum s. Then for
subject in stratum s=1, ..., S, the selection probability pr(£si=1) = Ai/ns= as Under
simple random sampling (£s,...,€sny) are correlated. The cases (i.e. individuals who
developed the event) in each stratum that are not selected into the corresponding subcohort
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are added to it to form the stratum-specific case-cohort samples. Assuming the censoring
time is available for the noncases outside the subcohorts and complete covariate history is
available for cases outside the subcohorts, we consider the following estimating function for

Bo,

T

S ng
uBy=2 > | r,®
s=1li=1 0

{dN ()~ Y (01 Z (0dr),

2,0 =20 n“si

where
~ n n
20 =35 _ T, pg0Y JOZ 01 25 _ 1 B oY (0. p(0) = A+ (= A E G ),

and a (1) = 2:"2 (€1 - Asi)Ysi(t)/Z?S (1= 4)Y (1. This estimating equation is based on

Kulich & Lin (2000) with the selection probability asreplaced by its time-dependent sample
estimate ds(t). The estimator 5, solves U,{f,) and takes on a closed form

n -1
s

S T
B, = [ > / P(Z0) - 20} 22y ywar) x (1)
s=1i=1 0

n T

S s
[s; i; Z,(t) - Z) [N (0],
0

where 492 = aa’ for a vector a.

3 Variable Selection in Additive Hazards Model with A Case-Cohort Design

3.1 Penalized loss function

Unlike the Cox proportional hazards model where the log-partial likelihood function is a
natural choice of loss function for variable selection, under additive hazards model the
likelihood function is difficult to work with due to the nonparametric estimate of the
baseline hazard function and the additive structure. Motivated by the similarity between the
Lin-Ying estimator for additive hazards model (Lin & Ying, 1994) and the least square
estimator, Martinussen & Scheike (2009) proposed a loss function that is the integral of the
Lin-Ying estimating equation with respect to g, Similarly, we propose a loss function under
stratified case-cohort design

~ 1 T 75
LB)=5BA p,~2815),

where
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We then propose the following objective function for variable selection,

d

0,B)=L,B)+ Y Py (D @

Jj=1
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where P/lnj(') is a nonnegative penalty function with PA”/- (0) = 0. The tuning parameter A,
controlling the magnitude of the penalty. We use SCAD penalty with covariate-specific A

When A,,=0, PAnj(|ﬂ,,/|) = 0. The first derivative of the SCAD penalty is
, -1
Pﬂnj(e) = Anjl(e < Anj) + (allnj - 6')+(a -1 10> Anj) for some a>2 and 6> 0.

3.2 Asymptotic Properties of the Penalized Estimator

. . .. ~ ~ ~ T A N
Denote the penalized estimator that minimizes (2) as g, = (ﬂ’f r ﬂz ;) » Where B, and B, i

are the penalized estimators of B ;and By s, respectively. Let 220 =1, 81 = 4, and 82 =
aa’ for a vector a. Let Py(11) = oP,(1p1)/ap and P;(151) = azP/l(lﬂl)/aﬂz. We first define the

following notations for each 7.

n
N

s
sgk)(z) =2y Y Ysi(t)ZSl.(t)@k, k=0,1,2,

s=1li=1

s

Eg‘)(z) =ty '21 P 0¥ 0z 0 k=012,

s=1i=

SOy = esPmye=012 ¢ o=
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4 oL (B)
o =E / (2~ e, ) B 2¥@de|, T ()= Var a2 a”/} n
O n
b = max (1P, (1B.DIL,  w.= max {IP) (8.},
n ISjSkn }“nj 0j n ISjSkn lnj 0;

lI’n=diag{Pﬁ UﬁOll)""’Pﬁ (IﬁOk D},
nl nk n

@, =P, (g sen(fyps Py (g szl
nl nkn n n

Only main theorems are presented in this section. Since the integrands of A, and &, involves
Agjwhich is not predictable with respect to the filtration generated by Y{(9, Ns(9, and
Zs( D, the standard martingale convergence theorem cannot be used to establish the
asymptotic results. We instead use empirical process techniques in the proof. The regularity
conditions and the outline of the proofs are provided in Web appendix. We first establish the
consistency of the penalized estimator and establish its convergence rate.

Theorem 1—Under Conditions (A) to (C) in Web appendix, if y,, — 0 and dﬁ/n —o0asn

— 00, then with probability tending to one there exists a local minimizer ,8,7 of OAB,), as
defined in (2), such that (|3, — 4|l = op{d}f(n‘”2 +,)).

l/2d—l/2
n

From Theorem 1 one can obtainan -consistent penalized estimator provided that ¢,

= O(Y2), which is the case for SCAD penalty. The following theorem establishes the
oracle property of the consistent penalized estimator.

Theorem 2—Under Conditions (A) to (E) in Web appendix, if y,— 0, dfl/n -0, Ap—
0, lnjnl/zd;”Z—) o forj=1, ..., dy and ¢, = O(Y/2) as n— oo, then the n'/?d 12

. s A7 a7 T . N . -
consistent local minimizer g, = (ﬁ,{ 1’55 ;) mustsatisfy (i) By, /=0 with probability
tending to one, and (ii) for any nonzero k;, x 1 constant vector u, with llgl = 1,

A

12 T =112 -1
2l 2o DB, = B+ @y )T O, = NOD

n" nll

in distribution, where <7 ;11 consists of the first &, x k, components of .« ,, and 77;11(Bo)
consists of the first &, x k, components of 7,{f).
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For the SCAD penalty, ¢,=0, ¥,=0, and @&,= 0 for large nunder Condition (E) in in Web
appendix, and the result of Theorem 2 reduces to

N
12 Tr=1/2
nu, Foy "B 1By = B, p =~ NO.D

in distribution.

4 Considerations in Practical Implementation

4.1 Selection of Tuning Parameters

The tuning parameter A, involved in the SCAD penalty function controls the complexity of
the selected model. A sequence of increasing A, values gives rise to a solution path
containing models with decreasing dimension. The oracle property of the variable selection
procedure guarantees that the solution path contains the true model. In practice, however,
one has to choose A, to identify the true model. The typical methods of tuning parameter
selection are data-driven procedures such as K-fold cross-validation and generalized cross-
validation (GCV) (Craven & Wahba, 1979). The d/-dimensional optimization problem is

difficult to solve in practice. We follow Ni et al. (2016) to take 4,; = ,lnSAE(ﬂES)), where

§E(ﬁ$)) is the estimated standard error of the unpenalized estimator. Then the optimization

problem reduces to one-dimensional and a grid-search can be performed. In the literature of
variable selection in Cox’s proportional hazards model the GCV is predominantly used due
to the availability of the partial likelihood function. Under additive hazards model, however,
no such likelihood function is available. Therefore, we use five-fold cross-validation with
L,{B,) as a natural choice of loss function. Denote the full dataset by Dand the training and
validation dataset by D — DY and DV, respectively, for v=1, ..., 5. For each A, compute

L N ﬁ;y(ﬂn)} based on the validation dataset, where 1" is the sample size of dataset DY and
n

ﬁ;”(,ln) is the penalized estimate based on the training dataset and A, The conventional

cross-validation statistics is defined as

A—U

5 ~
V() = Y. L (B, Gp) @)

v=1

and A, is chosen by minimizing (3). Since the cross-validation method aims at minimizing
the prediction error rather than model selection consistency, it tends to overfit the model
(Hastie et al., 2009). We propose a modified cross-validation method that incorporates an
additional penalty on the model size in the cross-validation statistics. The modified statistic
is defined as

5 o A—U

CViG) = X IL 1B, I K7 (@)

v=1
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where KV is the number of nonzero components of /?;” The penalized loss function in (4)
is analogous to the Akaike information criterion (AIC) (Akaike, 1973). Thus, the proposed
statistic can be seen as a combination of cross-validation and AIC. We denote the minimizer
of (3) and (4) as A5 and ASVF, respectively. In the simulation section, we empirically
investigate the model selection performance of these two tuning parameter selection criteria.

According to Fan & Li (2001), the second tuning parameter a in the SCAD penalty is set to
3.7.

4.2 Estimation Procedure

Since the SCAD penalty function is singular at the origin, in practical implementation the
penalized estimator cannot be directly obtained by solving the first derivative of (2). Instead,
we follow Fan & Li (2001) to use a local quadratic approximation (LQA) to the penalty
function. The unpenalized loss function £,{(8,) is a special case of (2) with P,lnj(|,8,7/|) =0

forall j=1, ..., d, Applying Theorem 1 with ¢,= 0, we know there exists a n'/%d~!/%-
consistent minimizer of (2). The concavity of (2) ensures that the minimizer is unique. This

minimizer A;O) is used as the initial value for the LQA algorithm. A sequence of about 40

increasing values of the tuning parameter denoted as A = {14, ..., A4} needs to be specified
before the procedure. Based on our simulation experience, the range rarely exceeds [0, 3]
and the estimation result is insensitive to the fineness of the grid. The iterative estimation
procedure is summarized as follows.

Step1 Randomly split data into five equal-size partitions;
Step2  Use four fifth of the data to fit an unpenalized stratified additive hazards

regression with all candidate covariates to obtain the initial value /?20) and

SE(A) using (1);

Step 3 For a chosen tuning parameter A; set A= §E(ﬁ§3)),1i and constant ¢;= A, for
/=1 ..., dy

(k+1)
nj
Otherwise, the SCAD penalty is approximated by a quadratic function as

Step4  Atany iteration , for j=1, ..., ), if Iﬁgjf)l < c; then set B =0.

)
P, (181
N Ay ~ 2
~ Ky, 7 g2 k)
Plnj(lﬂ”fl)Npﬂnj(lﬁ”le 2I1§,(1’]‘-)I ﬂnj (ﬁnj) ,

, (D (k) Ak : ;
and therefore P/lnj(lﬂnjl) ~ {Plnj('ﬁnj |)/|ﬁnj I}ﬁnj. Then fit a penalized

stratified additive hazards regression with covariates whose lﬁgj‘,)l >c; and the

objective function (2) with the above quadratic penalty to obtain the nonzero
components of /?;“ D This is essentially a ridge regression and a closed form
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~tk+1)

is available for Bff * 1 Denote the nonzero component of 4,

as . The

sandwich estimate of the covariance matrix of ﬁ: can be obtained as

~ A - -1
PL 5
2

2% o%
L5
2

oL (5%
Var nA*n
6ﬂn

Cov(py) = +n®, (5 +n® (5)

By By

o PO ~ e —1
={A, +n® (B7)} nl (FOM(A;+nd (B}

where A" is the sub-matrix of 4, corresponding to 57, " (") is the estimate of

L (Bo.@ (B =diag(Py (17 DNF L ..Py (" D/1B" 1}, and k" is the
nl e nk nk
n

dimension of ﬁ:. The sandwich estimate of the covariance matrix does not
apply to the zero estimate of the parameters;

Step 5  Iterate the above step until convergence or no nonzero parameter estimate is
left. Then apply the final model to the remaining one fifth of data to compute
one summand in (4);

Step 6 Repeat Step 2 to 5 rotating over the five data partitions to complete the five-
fold cross-validation, and compute CVP(A) using (4);

Step 7  Repeat Step 1 to 6 over all values in A and choose the tuning parameter 1g
with the smallest CVP. Then use A and the full dataset to fit a penalized
stratified additive hazards model to obtain the final estimate 8, and SE(3 ).

5 Simulation Studies

5.1 Simulation Setup

Independent failure times are generated by the additive hazards model i () = h(7) + ﬂgzﬂ.(t)

under the constraint A;{ =0 (s=1,2;i=1, ..., ny. We set /(9 = 2 and the dimension of
Hotobed, =05 nélz = 175001 to reflect its dependence on sample size, where 71, is the

number of cases and [x] rounds x to the nearest integer. We use 71, instead of 77to determine
the model size because the former better represents the amount of information in the dataset.
The smallest nonzero parameter in terms of the absolute value is set to 0.70 or 0.43, which
represents 35% and 22% increase from the baseline hazard for one standard deviation
increase in the covariate. The remaining nonzero parameters recycling from values —0.8 and
1. There is one nonzero parameter for every two zero parameters. To generate the design
matrix and strata, we first generate a (dj, + 1)-dimensional multivariate standard normal

variable 2* with corr(Z], Z}) = 0.5" =7 The first component is then dichotomized with a

cutoff value of zero and used to define two strata. For the remaining dj, components, we
dichotomize half of them with a cutoff value of zero. As a result, the design matrix consists
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of a mixture of correlated binary and continuous covariates that are correlated with the
stratification variable. A simple random sample is selected independently from each stratum
with the same sampling probability. Censoring times Cjare generated from a uniform
distribution U(0, ¢) where cis adjusted to achieve desired censoring percentage.

Two sample sizes, two censoring rates, and two sampling probabilities of the random
subcohort are considered for each minimum effect size (8yin=0.70 and 0.43). The sampling
probabilities are chosen so that the case to noncase ratio in the case-cohort sample is 1:1 or
1:2. Comparisons are made on the performance of penalized variable selection procedures

with tuning parameter ,ISV and ,ISVP. We include the backwards elimination as a competing

variable selection method. We also include as a benchmark the oracle procedure where the
correct subset of covariates is used to fit the model. As the censoring rate in case-cohort
studies is typically high, we set it to 85% and 90% in our simulation to better mimic real-
world studies. For each setting 500 replications are conducted.

The performance of the model selection procedure is evaluated by model error defined as
ME(4) = E{EY/2) - (2} Under the additive hazards model with constant baseline

hazard /, it can be shown that E(Y1Z) = (hy + /%Z)_1 and i(2) = (ho + /?ZZ)_I. Therefore,

A7 =1 -12
ME(#) = E{(h, + ,BZZ) = (hy + /}gZ) 1} . We further define the relative model error (RME)

of a model selection procedure as the ratio of its model error to that of the unpenalized
estimates from the full model. Following Tibshirani (1996), we use the median and the
median absolute deviation (MAD) of the relative model error to compare the performance of
different model selection procedures. We also calculate the average number of zero
parameters incorrectly estimated as nonzero (FP), the average number of nonzero parameters
incorrectly estimated as zero (FN), the median model size (MS), and the overall rate of
identifying the true model (RITM). In addition, point estimates, empirical and model-based
standard errors, and the 95% coverage are calculated for ,émin using replications with
NONZero Bmin.

5.2 Simulation Results

Table 1 summarizes the model selection performance when SByin = 0.70. The CVP tuning
parameter selection method outperforms the CV tuning parameter selection method in all
settings in terms of relative model error (RME) and the rate of identifying the true model
(RITM). It also outperforms the backwards elimination method except for the scenarios with
n=10000 and R = 1:1. Higher sampling proportion and lower censoring rate are associated
with better model selection performance of the CVP and CV methods despite the associated
larger number of parameters but seem to adversely affect the performance of the backwards
elimination method. This suggests that the performance of the latter method is more
sensitive to the number of parameters. Compared to the CVP method, the CV and backwards
elimination methods tend to overfit the model as shown by the FP columns. Table 2
summarizes the estimation result of By, under settings in Table 1. Given that Bpip, is
correctly identified as nonzero, all procedures produce reasonably unbiased point estimates.
The model-based standard error estimates are very close to the empirical standard errors and
the 95% coverage is close to the nominal level.
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Table 3 summarizes the model selection performance when Sy, = 0.43. Under the same
setting, there is a decrease in the model selection performance for all three procedures in
comparison to that with larger Bmin. This is expected as smaller effect is more difficult to
detect. Nevertheless, similar to Table 1, the CVP method outperforms the CV method in all
settings. It also outperforms the backwards elimination method under 85% censoring rate
but performs slightly worse than it under 90% censoring rate. However, since the
performance of the backwards elimination method is more strongly affected by the number
of parameters than is the CVP method as shown in Table 1 and 3, overall it seems that the
regularized variable selection with CVP tuning parameter selection method is a better
strategy than the backwards elimination. Table 4 shows the estimation result of Bnyin under
settings in Table 3. Conditional on correctly identifying Bmin all three procedures produce
noticeable overestimation in the parameter and its standard error. The bias diminishes as the
rate of identifying true model increases, suggesting that the bias is likely due to the fact that
zero estimates are excluded from the calculation. We also performed inference using all
simulation replications and the point estimates are substantially smaller than the true value
due to the inclusion of zero estimates (results not shown). The post-selection inference is an
active research area of its own and it is beyond the scope of this paper to identify the optimal
post-selection inference procedure.

6 Analysis of ARIC Study

We use the proposed model selection procedures to analyze the ARIC study data (Ballantyne
et al., 2004). As mentioned in the Introduction section, a cohort of 15,792 individuals were
sampled from four U.S. communities and followed for ten years for the development of
CHD. After excluding subjects for missing data and other reasons, a total of 12,199 subjects
comprised the potential full cohort. Those who were alive and free of disease by the end of
1998 or lost to follow-up during the study periods were treated as censored. A random
subcohort of 978 participants was selected by stratified random sampling from strata defined
by sex, race (black versus white), and age at baseline (< 55 versus >55). After including all
CHD cases, the case-cohort size is 1,568. There is a total of 638 CHD cases, corresponding
to a censoring rate of 94.8%. In this analysis we are interested in identifying risk factors for
incidence of CHD. In particular, the main risk factor of interest is the protein hs-CRP level,
which is modeled as a categorical variable of low (<1.0 mg/L), middle (1.0 — 3.0 mg/L), and
high (>3.0 mg/L) levels due to its nonlinear effect on the risk of CHD. Since CRP level is
the main exposure variable, we do not penalize its regression coefficients and therefore set
their tuning parameters to zero. Similarly, we keep the CRP terms in the model for the hard
threshold method regardless of their p values. We also consider several other factors in the
model selection process: age (years), BMI, systolic blood pressure (mmHg), LDL (mmol/L),
HDL (mmol/L), diabetes (yes/no), and current smoker (yes/no). As shown in Kang et al.
(2013), the empirical cumulative hazards functions for the different CRP groups increase
approximately in a linear fashion. Therefore, the additive hazards model is a reasonable
choice.

Table 5 summarizes the baseline characteristics of the full cohort and the subcohort. Note
that the CRP level is not available for the full cohort due to the case-cohort design. It seems
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that the distribution of the covariates are reasonably similar between the full cohort and
subcohort, so the subcohort is representative of the full cohort.

We apply the SCAD penalized variable selection procedures with tuning parameter ,ISV or

ASVP as well as the backwards elimination method to the ARIC study data to identify

important risk factors for CHD. We include all covariates reported in Table 5 in the initial
model. To ensure we do not miss any higher order effect of continuous variables and
interactions between CRP and other variables, we include quadratic terms of all continuous
variables as well as pairwise interaction between CRP and all other variables in the initial
model. All continuous variables are standardized using the means and standard deviations

based on the random subcohort. The tuning parameter selector identified ASV =0.993 and
ASVP = 2.466. Table 6 shows the selected covariates and their estimated coefficients and
standard errors by the three methods. The SCAD with /ISV selects the largest model and

SCAD with ASVP selects the smallest model. This is consistent with the observation in the

simulation study that the CV and backwards elimination methods tend to over-select
variables compared to the CVVP method. Besides CRP levels, all three methods identify HDL

and HDL? as significant risk factors for CHD. The SCAD with ,15\’ additionally includes 11

covariates and the backwards elimination method additionally selects 7 covariates.

CVP
/In

Based on the results in Table 6 with , the risk of CHD for subjects whose serum CRP

level is between 1.0 and 3.0 mg/L is 0.50 x 107> (95% CI: —0.99 x 107> to 1.99 x 107°) per-
day, or 1.83 (95% CI: —-3.61 to 7.27) per 1,000 person years, higher than those whose CRP
level is below 1.0 mg/L. The risk of CHD for subjects whose CRP level is above 3.0 mg/L is
0.99 x 1072 (95% CI: —0.50 x 107 to 2.48 x 107°) per-day, or 3.62 (95% CI: —1.82 to 9.06)
per 1,000 person years, higher than those whose CRP level is below 1.0 mg/L. The effect of
HDL level on risk of CHD follows a quadratic form with the minimum risk achieved at an
HDL level of 2.7 standard deviations above population mean. Thus, vast majority of the
population lie below this level. Hence there is a negative association between HDL level and
risk of CHD, and the magnitude of the association decreases as HDL level increases. This
finding is consistent with the common knowledge that HDL is the “good” cholesterol.

7 Discussion

In this paper we investigate a regularized variable selection procedure based on SCAD
penalty in an additive hazards model with a stratified case-cohort design and a diverging
number of parameters. Although this study is similar to the previous one on Cox
proportional hazards model (Ni et al., 2016), it makes several important contributions to the
field. First, as mentioned in the introduction, the additive hazards model is an important
alternative to the proportional hazards model that warrants its own investigation, especially
when the incidence rate is low as in most case-cohort studies. Second, due to the different
objective functions used in the regularized estimation in the two models, there are
differences in the theoretical derivations and tuning parameter selection methods. In
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particular, the allowed divergence rate of the number of parameters to ensure the oracle
property is higher in the additive hazards model than in the proportional hazards model. We
also propose and assess a modified cross-validation tuning parameter selection method that
is tailored to the additive hazards model with very high censoring rates. Lastly, in this paper
we consider stratification by covariates observed in the entire cohort. This is an important
strategy to increase efficiency of the case-cohort design, which was not investigated in the
previous study on the Cox model.

In the simulation study we find that the proposed tuning parameter selection method
outperforms the conventional cross-validation in terms of identifying the true model under
all simulation scenarios. This is expected as the proposed modified cross-validation method
incorporates a penalty on the model size to compensate for the overfitting effect of cross-
validation. In public health and biomedical studies, investigators are often interested in
identifying the true risk factors for the disease under study to facilitate policy making or
reveal the underlying biological mechanisms of the disease. In such situations, it is more
important to identify the true model than to predict the risk of individual subjects. Since we
have demonstrated the superior performance of the penalized cross-validation method in
model identification under various sample sizes, censoring rates, and sampling probabilities
of the subcohort, we recommend it for practical use for tuning parameter selection in
additive hazards model with a case-cohort design when the purpose of the study is to
identify the true risk factors for the disease. A formal theoretical investigation on the
proposed properties of the penalized cross-validation method is a future research topic.

In this paper we adopt the stratified case-cohort design proposed in Borgan et al. (2000). In
that paper the authors focused on the estimation efficiency for a single “exposure” variable
that is correlated with the stratification variable. However, in observational studies many
covariates are likely to be correlated with the stratification variable, and therefore
stratification considered in this paper is a general strategy to increase the estimation
efficiency for all covariates in the model under a case-cohort design. The theoretical results
in this paper require the number of strata to be finite and ny/n= O(1) for s=1, ..., S, which

implies that the condition di/ns — 0 is required for all s. The practical implication of this

requirement is that the number of strata should not increase with sample size, which is a
reasonable assumption since most stratification variables have a fixed number of pre-
specified categories.

The proposed variable selection method does not have a mechanism to ensure the
hierarchical structure of the candidate covariates in the presence of interaction and
polynomial terms. As a result, the selected models from the ARIC study does not maintain a

hierarchical structure. For example, the model identified by SCAD with ASV contains an

interaction between CRP2 and BMI but not the main effect of BMI. Although this issue does
not pose any theoretical difficulties, it does lead to some difficulties in the interpretation. A
future research topic would be to take into account the hierarchical structure of the candidate
covariates in an additive hazards model with a case-cohort design by using group variable
selection techniques (Yuan & Lin, 2006; Zeng & Xie, 2014).
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The R and Matlab programs implementing the estimation procedure described in Section 4.2
are available from the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 5

Baseline characteristics of the cohort of ARIC study

Full cohort (n=12,199)

Subcohort (i=978)

Variables Mean (SD) or % Mean (SD) or %
Age (yrs) 56.8 (5.7) 58.4 (5.6)
BMI 27.9(5.7) 28.2 (5.5)
Systolic blood pressure (mmHg) 132.8 (36.7) 134.6 (37.7)
LDL (mmol/L) 121.1 (18.5) 125.1 (19.8)
HDL (mmol/L) 50.5 (16.7) 495 (16.8)
Diabetes (%) 13.4 20.0
Current Smoker (%) 22.0 229
CRP level - 3.3(3.4)
CRP category (%)

Low (<1.0mg/L) - 28.2

Middle (1.0 - 3.0mg/L) - 35.2

High (>3.0mg/L) - 36.6
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Table 6

Estimated coefficients and standard errors from ARIC study data

Backwards Elimination
B(SE) (x107)

scap (1Y) scap (iSVP)

Variable B(SE) (x10%) B (SE) (x1075)
CRP2 (middle (1.0 — 3.0mg/L)) -0.10 (0.21) 0.060 (0.82) 0.50 (0.76)
CRP3 (high (>3.0mg/L)) 0.70 (0.24) 0.63 (0.81) 0.99 (0.76)
Age 0(-) 0.27 (0.32) 0(-)
Age? 0.29 (0.11) 0(-) 0(-)
BMI 0(-) 0(-) 0()
BMI2 0() 0() 0(-)
LDL (mmol/L) 0.72 (0.11) 0.43 (0.40) 0(-)
LDL? 0(-) 0(-) 0()
HDL (mmol/L) -1.42 (0.15) -0.87 (0.63) -1.27 (0.38)
HDL?2 0.34 (0.055) 0.22 (0.18) 0.24 (0.18)
SBP (mmHg) 0(-) 0.46 (0.37) 0(-)
SBP2 0.34 (0.079) 0.14 (0.25) 0(-)
Current Smoker 0.91 (0.25) 0(-) 0(-)
Diabetes 2.13(0.39) 1.28 (0.85) 0(-)
CRP2*age 0(-) 0() 0(-)
CRP3*age 0(-) 0(-) 0(-)
CRP2*BMI -0.61 (0.18) -0.56 (0.67) 0(-)
CRP3*BMI -0.35 (0.13) -0.32 (0.43) 0(-)
CRP2*LDL 0(-) 0(-) 0(-)
CRP3*LDL 0(-) 0.24 (0.66) 0(-)
CRP2*HDL 0(-) -0.42 (0.76) 0(-)
CRP3*HDL 0(-) -0.30 (0.79) 0(-)
CRP2*SBP 0(-) 0(-) 0()
CRP3*SBP 0(-) 0(-) 0(-)
CRP2*current smoker 0(-) 0.80(1.32) 0(-)
CRP3*current smoker 0(-) 0(-) 0(-)
CRP2*diabetes 0(-) 0() 0(-)
CRP3*diabetes 0(-) 0(-) 0(-)

All continuous covariates are standardized using the means and standard deviations based on the random subcohort.
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