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Abstract

Case-cohort designs are commonly used in large epidemiological studies to reduce the cost 

associated with covariate measurement. In many such studies the number of covariates is very 

large. An efficient variable selection method is needed for case-cohort studies where the covariates 

are only observed in a subset of the sample. Current literature on this topic has been focused on 

the proportional hazards model. However, in many studies the additive hazards model is preferred 

over the proportional hazards model either because the proportional hazards assumption is violated 

or the additive hazards model provides more relevent information to the research question. 

Motivated by one such study, the Atherosclerosis Risk in Communities (ARIC) study, we 

investigate the properties of a regularized variable selection procedure in stratified case-cohort 

design under an additive hazards model with a diverging number of parameters. We establish the 

consistency and asymptotic normality of the penalized estimator and prove its oracle property. 

Simulation studies are conducted to assess the finite sample performance of the proposed method 

with a modified cross-validation tuning parameter selection methods. We apply the variable 

selection procedure to the ARIC study to demonstrate its practical use.
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1 Introduction

In large-scale epidemiological cohort studies, investigators are usually interested in 

assessing the association between a time-to-event outcome and a large number of risk 

factors. Collecting information on risk factors often requires expensive bioassays and 

precious biological specimens such as serum and genetic material. Prentice (1986) proposed 

a case-cohort design to reduce the cost and effort in measuring expensive covariates without 
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decreasing much efficiency in the estimation. In a case-cohort design, the complete covariate 

information is only obtained from a randomly sampled subset of the full cohort plus all 

subjects who developed the outcome event. In practice, some covariates that are correlated 

with the more expensive exposure variables may be readily available for the entire cohort. 

One example is the Atherosclerosis Risk in Communities (ARIC) study (Ballantyne et al., 

2004), where a cohort of 15,792 participants 45 to 64 years old were sampled from four U.S. 

communities and were followed for ten years for the development of Coronary Heart 

Disease (CHD). The primary interest was to assess the association between the protein hs-

CRP level and the risk of CHD. To preserve stored plasma and reduce costs, it is desirable to 

only measure the hs-CRP on a subset of the entire cohort. On the other hand, sex, race, and 

baseline age were available for all participants. To utilize the fully observed covariates to 

gain estimation efficiency, Borgan et al. (2000) proposed a stratified case-cohort design 

where the strata are defined by these covariates. The ARIC study implemented this stratified 

case-cohort design with stratification on sex, race, and baseline age. The hs-CRP level was 

measured only on the stratum-specific random subsets plus all incident CHD cases.

Cox proportional hazards model (Cox, 1972) is commonly used for the analysis of time-to-

event data. However, the critical assumption of proportional hazards may fail to hold in 

many situations, making the Cox model invalid. For example, in the ARIC study there is 

evidence that the hazard of CHD does not satisfy the proportionality assumption (Kang et 

al., 2013). Even if the proportional hazards assumption is satisfied, investigators are 

sometimes more interested in the absolute hazard difference as a measure of covariate effect 

because it is more relevant to public health. Under rare event assumption, which is true for 

many case-cohort studies, the cumulative hazard difference approximates the attributable 

risk (the difference in the event rate per unit change in the exposure variable), which 

translates directly into the number of events that would be avoided by eliminating a 

particular exposure. Moreover, the risk difference is easier to interpret and communicate to 

medical practitioners. Therefore, the additive hazards model is often used as an important 

alternative to the Cox proportional hazards model. As its name suggests, the additive hazards 

model assumes that the effect of covariates on the risk of event is additive. Since Aalen 

(1980) first introduced the additive hazards model, many authors have investigated its 

estimation procedure and the properties of the estimator. Lin & Ying (1994) proposed a 

semiparametric estimating equation for a special case of additive hazards model where the 

regression coefficients are time-independent. The authors derived the limiting distribution of 

the estimator and studied its semiparametric efficiency. Kulich & Lin (2000) extended this 

estimation method to case-cohort design and assessed its asymptotic relative efficiency with 

respect to the full cohort analysis.

In case-cohort studies where a large number of covariates are collected, researchers are often 

interested in selecting a subset of the covariates that are related to the event of interest. With 

the inclusion of interaction and polynomial terms, the number of candidate covariates can be 

very large. In the ARIC study, there are a number of potential confounders or effect 

modifiers that need to be considered in the modeling process. With the pairwise interactions 

between hs-CRP level and all the other covariates as well as the squared continuous 

covariates, the total number of candidate covariates becomes quite large in comparison to the 

number of events. As Huber (1973) argued, in the context of variable selection the number 
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of parameters should be considered as increasing with sample size. Ni et al. (2016) 

developed a regularized variable selection method for a case-cohort design under Cox’s 

proportional hazards model with a diverging number of parameters. Such a method needs to 

be developed for studies such as the ARIC study where the additive hazards model is used 

under a case-cohort design.

Regularized variable selection procedures have gained much success over the last few 

decades. Under certain regularity conditions, these procedures can simultaneously select 

variables and estimate their coefficients. Among various penalty functions used in these 

procedures, the smoothly clipped absolute deviation (SCAD) penalty (Fan & Li, 2001) and a 

few others have been shown to possess the oracle property (Fan & Li, 2001). The SCAD 

variable selection procedure has been applied to the additive hazards model (Lin & Lv, 

2013). However, it has not been investigated under a stratified case-cohort design, which is 

the objective of this paper. Tuning parameter selection is critical for the success of 

regularized variable selection. We also propose a modified cross-validation based tuning 

parameter selection strategy to overcome the issue of overfitting with the conventional cross-

validation method, and empirically evaluate its performance under large cohort sizes and 

high censoring rates, which are two typical features of case-cohort studies.

2 Additive Hazards Model with A Stratified Case-Cohort Design

Suppose the full cohort of size n is divided into S mutually exclusive strata based on some 

categorical variables that are available for all subjects. In this paper we assume S is finite. 

For subject i in stratum s, let Zsi(t) be the dn × 1 possibly time-dependent covariate vector. 

We allow dn to increase with n but at a slower rate that will be determined later. Without loss 

of generality, we partition the real-valued true parameter vector β0 as (β0, I
T , β0, II

T )T, where 

β0,I and β0,II are the nonzero and zero components of β0, respectively. Denote by kn the 

dimension of β0,I, which is also allowed to diverge with n and kn/dn converges to a constant 

c ∈ [0, 1]. Although the dimensions of the true parameter and covariates all depend on n, we 

suppress the subscript n for notational simplicity.

Let Tsi and Csi be respectively the time to the outcome event and the censoring time for 

subject i in stratum s, which are independent conditional on Zsi. Let Xsi = min(Tsi, Csi) be 

the observed time and Δsi = I(Tsi ≤ Csi) be the censoring indicator, where I(·) is an indicator 

function. Let τ be the time at the end of study. Define the counting process Nsi(t) = I(Xsi ≤ t, 
Δsi = 1), and the at risk process Ysi(t) = I(Xsi ≥ t). Let λsi(t) denote the hazard function for 

subject i in stratum s. The additive hazards model assumes hsi{t |Zsi(t)} = h0(t) + β0
TZsi(t), 

where h0(t) is a common baseline hazard function for all strata, and β0 is constant over time. 

Under the stratified case-cohort design proposed in Borgan et al. (2000), we randomly select 

a subcohort of fixed size from each stratum. We assume that the selection of subcohort is 

independent across the strata. Let ñs denote the subcohort size in stratum s with size ns, and 

ξsi be the indicator of subject i being selected into the subcohort in stratum s. Then for 

subject in stratum s = 1, …, S, the selection probability pr(ξsi = 1) = ñs/ns = αs. Under 

simple random sampling (ξs1,…,ξsns) are correlated. The cases (i.e. individuals who 

developed the event) in each stratum that are not selected into the corresponding subcohort 
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are added to it to form the stratum-specific case-cohort samples. Assuming the censoring 

time is available for the noncases outside the subcohorts and complete covariate history is 

available for cases outside the subcohorts, we consider the following estimating function for 

β0,

Un(βn) = ∑
s = 1

S
∑

i = 1

ns

0

τ

ρsi(t) Zsi(t) − Z∼(t) {dNsi(t) − Ysi(t)βn
TZsi(t)dt},

where 

Z
∼(t) = ∑s = 1

S ∑ j = 1
ns ρsj(t)Ysj(t)Zsj(t)/∑s = 1

S ∑ j = 1
ns ρsj(t)Ysj(t), ρsi(t) = Δsi + (1 − Δsi)ξsiαs

−1(t), 

and αs(t) = ∑i = 1
ns ξsi(1 − Δsi)Ysi(t)/∑i = 1

ns (1 − Δsi)Ysi(t). This estimating equation is based on 

Kulich & Lin (2000) with the selection probability αs replaced by its time-dependent sample 

estimate α̂
s(t). The estimator β̃n solves Un(βn) and takes on a closed form

β
∼

n = ∑
s = 1

S
∑
i = 1

ns

0

τ

ρsi(t) Zsi(t) − Z
∼(t) ⊗ 2Ysi(t)dt]

−1

×

[ ∑
s = 1

S
∑
i = 1

ns

0

τ

Zsi(t) − Z
∼(t) dNsi(t) ,

(1)

where a⊗2 = aaT for a vector a.

3 Variable Selection in Additive Hazards Model with A Case-Cohort Design

3.1 Penalized loss function

Unlike the Cox proportional hazards model where the log-partial likelihood function is a 

natural choice of loss function for variable selection, under additive hazards model the 

likelihood function is difficult to work with due to the nonparametric estimate of the 

baseline hazard function and the additive structure. Motivated by the similarity between the 

Lin-Ying estimator for additive hazards model (Lin & Ying, 1994) and the least square 

estimator, Martinussen & Scheike (2009) proposed a loss function that is the integral of the 

Lin-Ying estimating equation with respect to βn. Similarly, we propose a loss function under 

stratified case-cohort design

L∼n(βn) = 1
2(βn

T A
∼

nβn − 2βn
T b

∼
n),

where
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A
∼

n = ∑
s = 1

S
∑

i = 1

ns

0

τ

ρsi(t){Zsi − Z∼(t)} ⊗ 2Ysi(t)dt,

b
∼

n = ∑
s = 1

S
∑

i = 1

ns

0

τ

{Zsi − Z∼(t)}dNsi(t) .

We then propose the following objective function for variable selection,

Q
∼

n(βn) = L
∼

n(βn) + ∑
j = 1

dn
Pλnj

( | βnj | ), (2)

where Pλnj (·) is a nonnegative penalty function with Pλnj (0) = 0. The tuning parameter λnj 

controlling the magnitude of the penalty. We use SCAD penalty with covariate-specific λnj. 

When λnj = 0, Pλnj (|βnj|) = 0. The first derivative of the SCAD penalty is 

Pλnj
′ (θ) = λnjI(θ ≤ λnj) + (aλnj − θ)+(a − 1)−1I(θ > λnj) for some a > 2 and θ > 0.

3.2 Asymptotic Properties of the Penalized Estimator

Denote the penalized estimator that minimizes (2) as βn = (βn, I
T , βn, II

T )
T

, where β̂n,I and β̂n,II 

are the penalized estimators of β0,I and β0,II, respectively. Let a⊗0 = 1, a⊗1 = a, and a⊗2 = 

aaT for a vector a. Let Pλ′ ( | β | ) = ∂Pλ( | β | )/ ∂β and Pλ″( | β | ) = ∂2Pλ( | β | )/ ∂β2. We first define the 

following notations for each n.

Sn
(k)(t) = n−1 ∑

s = 1

S
∑

i = 1

ns
Ysi(t)Zsi(t)

⊗ k, k = 0, 1, 2,

S
∼

n
(k)(t) = n−1 ∑

s = 1

S
∑

i = 1

ns
ρsi(t)Ysi(t)Zsi(t)

⊗ k, k = 0, 1, 2,

sn
(k)(t) = E{Sn

(k)(t)}, k = 0, 1, 2, en(t) =
sn
(1)(t)

sn
(0)(t)

,
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𝒜n = E
0

τ
{Z(t) − en(t)} ⊗ 2Y(t)dt , Γn(βn) = Var  n−1/2∂L∼n(βn)

∂βn
,

ϕn = max
1 ≤ j ≤ kn

{ |Pλnj
′ ( | β0 j | ) | }, ψn = max

1 ≤ j ≤ kn
{ |Pλnj

″ ( | β0 j | ) | },

Ψn = diag{Pλn1
″ ( | β01 | ), …, Pλnkn

″ ( | β0kn
| )},

Φn = {Pλn1
′ ( | β01 | )sgn(β01), …, Pλnkn

′ ( | β0kn
| )sgn(β0kn

)}T .

Only main theorems are presented in this section. Since the integrands of Ãn and b̃n involves 

Δsi which is not predictable with respect to the filtration generated by Ysi(t), Nsi(t), and 

Zsi(t), the standard martingale convergence theorem cannot be used to establish the 

asymptotic results. We instead use empirical process techniques in the proof. The regularity 

conditions and the outline of the proofs are provided in Web appendix. We first establish the 

consistency of the penalized estimator and establish its convergence rate.

Theorem 1—Under Conditions (A) to (C) in Web appendix, if ψn → 0 and dn
2/n 0 as n 

→ ∞, then with probability tending to one there exists a local minimizer βn̂ of Q̃
n(βn), as 

defined in (2), such that ‖βn − β0‖ = Op{dn
1/2(n−1/2 + ϕn)}.

From Theorem 1 one can obtain a n1/2dn
−1/2-consistent penalized estimator provided that ϕn 

= O(n−1/2), which is the case for SCAD penalty. The following theorem establishes the 

oracle property of the consistent penalized estimator.

Theorem 2—Under Conditions (A) to (E) in Web appendix, if ψn → 0, dn
2/n 0, λnj → 

0, λnjn
1/2dn

−1/2 ∞ for j = 1, …, dn, and ϕn = O(n−1/2) as n → ∞, then the n1/2dn
−1/2-

consistent local minimizer βn = (βn, I
T , βn, II

T )
T

 must satisfy (i) β̂n, II = 0 with probability 

tending to one, and (ii) for any nonzero kn × 1 constant vector un with ‖un‖ = 1,

n1/2un
TΓn11

−1/2(β0)(𝒜n11 + Ψn){β
^

n, I − β0, I + (𝒜n11 + Ψn)−1Φn} N(0, 1)

in distribution, where n11 consists of the first kn × kn components of n, and Γn11(β0) 

consists of the first kn × kn components of Γn(β0).
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For the SCAD penalty, ϕn = 0, Ψn = 0, and Φn = 0 for large n under Condition (E) in in Web 

appendix, and the result of Theorem 2 reduces to

n1/2un
TΓn11

−1/2(β0)𝒜n11(β
^

n, I − β0, I) N(0, 1)

in distribution.

4 Considerations in Practical Implementation

4.1 Selection of Tuning Parameters

The tuning parameter λn involved in the SCAD penalty function controls the complexity of 

the selected model. A sequence of increasing λn values gives rise to a solution path 

containing models with decreasing dimension. The oracle property of the variable selection 

procedure guarantees that the solution path contains the true model. In practice, however, 

one has to choose λn to identify the true model. The typical methods of tuning parameter 

selection are data-driven procedures such as K-fold cross-validation and generalized cross-

validation (GCV) (Craven & Wahba, 1979). The dn-dimensional optimization problem is 

difficult to solve in practice. We follow Ni et al. (2016) to take λnj = λnSE(βnj
(0)), where 

SE(βnj
(0)) is the estimated standard error of the unpenalized estimator. Then the optimization 

problem reduces to one-dimensional and a grid-search can be performed. In the literature of 

variable selection in Cox’s proportional hazards model the GCV is predominantly used due 

to the availability of the partial likelihood function. Under additive hazards model, however, 

no such likelihood function is available. Therefore, we use five-fold cross-validation with 

L̃
n(βn) as a natural choice of loss function. Denote the full dataset by D and the training and 

validation dataset by D − Dν and Dν, respectively, for ν = 1, …, 5. For each λn, compute 

L
∼

nν{βn
−ν(λn)} based on the validation dataset, where nν is the sample size of dataset Dν and 

βn
−ν(λn) is the penalized estimate based on the training dataset and λn. The conventional 

cross-validation statistics is defined as

CV(λn) = ∑
ν = 1

5
L
∼

nν{β
^

n

−ν
(λn)}, (3)

and λn is chosen by minimizing (3). Since the cross-validation method aims at minimizing 

the prediction error rather than model selection consistency, it tends to overfit the model 

(Hastie et al., 2009). We propose a modified cross-validation method that incorporates an 

additional penalty on the model size in the cross-validation statistics. The modified statistic 

is defined as

CVP(λn) = ∑
ν = 1

5
[L
∼

nν{β
^

n

−ν
(λn)} + k−ν], (4)
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where k−ν is the number of nonzero components of βn
−ν. The penalized loss function in (4) 

is analogous to the Akaike information criterion (AIC) (Akaike, 1973). Thus, the proposed 

statistic can be seen as a combination of cross-validation and AIC. We denote the minimizer 

of (3) and (4) as λn
CV and λn

CVP, respectively. In the simulation section, we empirically 

investigate the model selection performance of these two tuning parameter selection criteria. 

According to Fan & Li (2001), the second tuning parameter a in the SCAD penalty is set to 

3.7.

4.2 Estimation Procedure

Since the SCAD penalty function is singular at the origin, in practical implementation the 

penalized estimator cannot be directly obtained by solving the first derivative of (2). Instead, 

we follow Fan & Li (2001) to use a local quadratic approximation (LQA) to the penalty 

function. The unpenalized loss function L̃
n(βn) is a special case of (2) with Pλnj (|βnj|) = 0 

for all j = 1, …, dn. Applying Theorem 1 with ϕn = 0, we know there exists a n1/2dn
−1/2-

consistent minimizer of (2). The concavity of (2) ensures that the minimizer is unique. This 

minimizer βn
(0) is used as the initial value for the LQA algorithm. A sequence of about 40 

increasing values of the tuning parameter denoted as Λ = {λ1, …, λ40} needs to be specified 

before the procedure. Based on our simulation experience, the range rarely exceeds [0, 3] 

and the estimation result is insensitive to the fineness of the grid. The iterative estimation 

procedure is summarized as follows.

Step 1 Randomly split data into five equal-size partitions;

Step 2 Use four fifth of the data to fit an unpenalized stratified additive hazards 

regression with all candidate covariates to obtain the initial value βn
(0) and 

SE(βn
(0)) using (1);

Step 3 For a chosen tuning parameter λi, set λnj = SE(βnj
(0))λi and constant cj = λnj for 

j = 1, …, dn;

Step 4 At any iteration k, for j = 1, …, dn, if |βnj
(k) | < c j then set βnj

(k + 1) = 0. 

Otherwise, the SCAD penalty is approximated by a quadratic function as

Pλnj
( | βnj | ) ≈ Pλnj

( | βnj
(k) | ) +

Pλnj
′ ( | βnj

(k) | )

2 | βnj
(k)|

βnj
2 − (βnj

(k))2 ,

and therefore Pλnj
′ ( | βnj | ) ≈ {Pλnj

′ ( | βnj
(k) | )/ | βnj

(k) | }βnj. Then fit a penalized 

stratified additive hazards regression with covariates whose |βnj
(k) | ≥ c j and the 

objective function (2) with the above quadratic penalty to obtain the nonzero 

components of βn
(k + 1). This is essentially a ridge regression and a closed form 
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is available for βn
(k + 1). Denote the nonzero component of βn

(k + 1) as βn
∗. The 

sandwich estimate of the covariance matrix of βn
∗ can be obtained as

Cov(βn
∗) =

∂2L∼n(βn
∗)

∂(βn
∗)2

+ nΦn(βn
∗)

−1
Var 

∂L∼n(βn
∗)

∂βn
∗ ×

∂2L∼n(βn
∗)

∂(βn
∗)2

+ nΦn(βn
∗)

−1

= {A
∼

n
∗ + nΦn(βn

∗)}
−1

nΓn(βn
∗)}{{A

∼
n
∗ + nΦn(βn

∗)}
−1

,

where A
∼

n
∗ is the sub-matrix of Ãn corresponding to βn

∗, Γn(βn
∗) is the estimate of 

Γn(βn
∗), Φn(βn

∗) = diag{Pλn1
′ ( | βn1

∗ | )/ | βn1
∗ | , …, Pλ

nkn
∗

′ ( | β
nkn

∗
∗ | )/ | β

nkn
∗

∗ | }, and kn
∗ is the 

dimension of βn
∗. The sandwich estimate of the covariance matrix does not 

apply to the zero estimate of the parameters;

Step 5 Iterate the above step until convergence or no nonzero parameter estimate is 

left. Then apply the final model to the remaining one fifth of data to compute 

one summand in (4);

Step 6 Repeat Step 2 to 5 rotating over the five data partitions to complete the five-

fold cross-validation, and compute CVP(λi) using (4);

Step 7 Repeat Step 1 to 6 over all values in Λ and choose the tuning parameter λ0 

with the smallest CVP. Then use λ0 and the full dataset to fit a penalized 

stratified additive hazards model to obtain the final estimate β̂n and SE(βn).

5 Simulation Studies

5.1 Simulation Setup

Independent failure times are generated by the additive hazards model hsi(t) = h0(t) + β0
TZsi(t)

under the constraint hsi(t) ≥ 0 (s = 1, 2; i = 1, …, ns). We set h0(t) = 2 and the dimension of 

β0 to be dn = [0.5 ∗ nc
1/2 − 1/500] to reflect its dependence on sample size, where nc is the 

number of cases and [x] rounds x to the nearest integer. We use nc instead of n to determine 

the model size because the former better represents the amount of information in the dataset. 

The smallest nonzero parameter in terms of the absolute value is set to 0.70 or 0.43, which 

represents 35% and 22% increase from the baseline hazard for one standard deviation 

increase in the covariate. The remaining nonzero parameters recycling from values –0.8 and 

1. There is one nonzero parameter for every two zero parameters. To generate the design 

matrix and strata, we first generate a (dn + 1)-dimensional multivariate standard normal 

variable Z* with corr(Zi
∗, Z j

∗) = 0.5|i − j|. The first component is then dichotomized with a 

cutoff value of zero and used to define two strata. For the remaining dn components, we 

dichotomize half of them with a cutoff value of zero. As a result, the design matrix consists 
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of a mixture of correlated binary and continuous covariates that are correlated with the 

stratification variable. A simple random sample is selected independently from each stratum 

with the same sampling probability. Censoring times Ci are generated from a uniform 

distribution U(0, c) where c is adjusted to achieve desired censoring percentage.

Two sample sizes, two censoring rates, and two sampling probabilities of the random 

subcohort are considered for each minimum effect size (βmin=0.70 and 0.43). The sampling 

probabilities are chosen so that the case to noncase ratio in the case-cohort sample is 1:1 or 

1:2. Comparisons are made on the performance of penalized variable selection procedures 

with tuning parameter λn
CV and λn

CVP. We include the backwards elimination as a competing 

variable selection method. We also include as a benchmark the oracle procedure where the 

correct subset of covariates is used to fit the model. As the censoring rate in case-cohort 

studies is typically high, we set it to 85% and 90% in our simulation to better mimic real-

world studies. For each setting 500 replications are conducted.

The performance of the model selection procedure is evaluated by model error defined as 

ME(μ̂) = E{E(Y|Z) − μ̂(Z)}2. Under the additive hazards model with constant baseline 

hazard h0, it can be shown that E(Y |Z) = (h0 + β0
TZ)−1

 and μ(Z) = (h0 + βn
TZ)

−1
. Therefore, 

ME(μ) = E{(h0 + βn
TZ)

−1
− (h0 + β0

TZ)−1}
2
. We further define the relative model error (RME) 

of a model selection procedure as the ratio of its model error to that of the unpenalized 

estimates from the full model. Following Tibshirani (1996), we use the median and the 

median absolute deviation (MAD) of the relative model error to compare the performance of 

different model selection procedures. We also calculate the average number of zero 

parameters incorrectly estimated as nonzero (FP), the average number of nonzero parameters 

incorrectly estimated as zero (FN), the median model size (MS), and the overall rate of 

identifying the true model (RITM). In addition, point estimates, empirical and model-based 

standard errors, and the 95% coverage are calculated for β̂min using replications with 

nonzero β̂min.

5.2 Simulation Results

Table 1 summarizes the model selection performance when βmin = 0.70. The CVP tuning 

parameter selection method outperforms the CV tuning parameter selection method in all 

settings in terms of relative model error (RME) and the rate of identifying the true model 

(RITM). It also outperforms the backwards elimination method except for the scenarios with 

n = 10000 and R = 1:1. Higher sampling proportion and lower censoring rate are associated 

with better model selection performance of the CVP and CV methods despite the associated 

larger number of parameters but seem to adversely affect the performance of the backwards 

elimination method. This suggests that the performance of the latter method is more 

sensitive to the number of parameters. Compared to the CVP method, the CV and backwards 

elimination methods tend to overfit the model as shown by the FP columns. Table 2 

summarizes the estimation result of βmin under settings in Table 1. Given that βmin is 

correctly identified as nonzero, all procedures produce reasonably unbiased point estimates. 

The model-based standard error estimates are very close to the empirical standard errors and 

the 95% coverage is close to the nominal level.
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Table 3 summarizes the model selection performance when βmin = 0.43. Under the same 

setting, there is a decrease in the model selection performance for all three procedures in 

comparison to that with larger βmin. This is expected as smaller effect is more difficult to 

detect. Nevertheless, similar to Table 1, the CVP method outperforms the CV method in all 

settings. It also outperforms the backwards elimination method under 85% censoring rate 

but performs slightly worse than it under 90% censoring rate. However, since the 

performance of the backwards elimination method is more strongly affected by the number 

of parameters than is the CVP method as shown in Table 1 and 3, overall it seems that the 

regularized variable selection with CVP tuning parameter selection method is a better 

strategy than the backwards elimination. Table 4 shows the estimation result of βmin under 

settings in Table 3. Conditional on correctly identifying βmin all three procedures produce 

noticeable overestimation in the parameter and its standard error. The bias diminishes as the 

rate of identifying true model increases, suggesting that the bias is likely due to the fact that 

zero estimates are excluded from the calculation. We also performed inference using all 

simulation replications and the point estimates are substantially smaller than the true value 

due to the inclusion of zero estimates (results not shown). The post-selection inference is an 

active research area of its own and it is beyond the scope of this paper to identify the optimal 

post-selection inference procedure.

6 Analysis of ARIC Study

We use the proposed model selection procedures to analyze the ARIC study data (Ballantyne 

et al., 2004). As mentioned in the Introduction section, a cohort of 15,792 individuals were 

sampled from four U.S. communities and followed for ten years for the development of 

CHD. After excluding subjects for missing data and other reasons, a total of 12,199 subjects 

comprised the potential full cohort. Those who were alive and free of disease by the end of 

1998 or lost to follow-up during the study periods were treated as censored. A random 

subcohort of 978 participants was selected by stratified random sampling from strata defined 

by sex, race (black versus white), and age at baseline (≤ 55 versus >55). After including all 

CHD cases, the case-cohort size is 1,568. There is a total of 638 CHD cases, corresponding 

to a censoring rate of 94.8%. In this analysis we are interested in identifying risk factors for 

incidence of CHD. In particular, the main risk factor of interest is the protein hs-CRP level, 

which is modeled as a categorical variable of low (<1.0 mg/L), middle (1.0 – 3.0 mg/L), and 

high (>3.0 mg/L) levels due to its nonlinear effect on the risk of CHD. Since CRP level is 

the main exposure variable, we do not penalize its regression coefficients and therefore set 

their tuning parameters to zero. Similarly, we keep the CRP terms in the model for the hard 

threshold method regardless of their p values. We also consider several other factors in the 

model selection process: age (years), BMI, systolic blood pressure (mmHg), LDL (mmol/L), 

HDL (mmol/L), diabetes (yes/no), and current smoker (yes/no). As shown in Kang et al. 

(2013), the empirical cumulative hazards functions for the different CRP groups increase 

approximately in a linear fashion. Therefore, the additive hazards model is a reasonable 

choice.

Table 5 summarizes the baseline characteristics of the full cohort and the subcohort. Note 

that the CRP level is not available for the full cohort due to the case-cohort design. It seems 
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that the distribution of the covariates are reasonably similar between the full cohort and 

subcohort, so the subcohort is representative of the full cohort.

We apply the SCAD penalized variable selection procedures with tuning parameter λn
CV or 

λn
CVP as well as the backwards elimination method to the ARIC study data to identify 

important risk factors for CHD. We include all covariates reported in Table 5 in the initial 

model. To ensure we do not miss any higher order effect of continuous variables and 

interactions between CRP and other variables, we include quadratic terms of all continuous 

variables as well as pairwise interaction between CRP and all other variables in the initial 

model. All continuous variables are standardized using the means and standard deviations 

based on the random subcohort. The tuning parameter selector identified λn
CV = 0.993 and 

λn
CVP = 2.466. Table 6 shows the selected covariates and their estimated coefficients and 

standard errors by the three methods. The SCAD with λn
CV selects the largest model and 

SCAD with λn
CVP selects the smallest model. This is consistent with the observation in the 

simulation study that the CV and backwards elimination methods tend to over-select 

variables compared to the CVP method. Besides CRP levels, all three methods identify HDL 

and HDL2 as significant risk factors for CHD. The SCAD with λn
CV additionally includes 11 

covariates and the backwards elimination method additionally selects 7 covariates.

Based on the results in Table 6 with λn
CVP, the risk of CHD for subjects whose serum CRP 

level is between 1.0 and 3.0 mg/L is 0.50 × 10−5 (95% CI: −0.99 × 10−5 to 1.99 × 10−5) per-

day, or 1.83 (95% CI: –3.61 to 7.27) per 1,000 person years, higher than those whose CRP 

level is below 1.0 mg/L. The risk of CHD for subjects whose CRP level is above 3.0 mg/L is 

0.99 × 10−5 (95% CI: −0.50 × 10−5 to 2.48 × 10−5) per-day, or 3.62 (95% CI: –1.82 to 9.06) 

per 1,000 person years, higher than those whose CRP level is below 1.0 mg/L. The effect of 

HDL level on risk of CHD follows a quadratic form with the minimum risk achieved at an 

HDL level of 2.7 standard deviations above population mean. Thus, vast majority of the 

population lie below this level. Hence there is a negative association between HDL level and 

risk of CHD, and the magnitude of the association decreases as HDL level increases. This 

finding is consistent with the common knowledge that HDL is the “good” cholesterol.

7 Discussion

In this paper we investigate a regularized variable selection procedure based on SCAD 

penalty in an additive hazards model with a stratified case-cohort design and a diverging 

number of parameters. Although this study is similar to the previous one on Cox 

proportional hazards model (Ni et al., 2016), it makes several important contributions to the 

field. First, as mentioned in the introduction, the additive hazards model is an important 

alternative to the proportional hazards model that warrants its own investigation, especially 

when the incidence rate is low as in most case-cohort studies. Second, due to the different 

objective functions used in the regularized estimation in the two models, there are 

differences in the theoretical derivations and tuning parameter selection methods. In 
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particular, the allowed divergence rate of the number of parameters to ensure the oracle 

property is higher in the additive hazards model than in the proportional hazards model. We 

also propose and assess a modified cross-validation tuning parameter selection method that 

is tailored to the additive hazards model with very high censoring rates. Lastly, in this paper 

we consider stratification by covariates observed in the entire cohort. This is an important 

strategy to increase efficiency of the case-cohort design, which was not investigated in the 

previous study on the Cox model.

In the simulation study we find that the proposed tuning parameter selection method 

outperforms the conventional cross-validation in terms of identifying the true model under 

all simulation scenarios. This is expected as the proposed modified cross-validation method 

incorporates a penalty on the model size to compensate for the overfitting effect of cross-

validation. In public health and biomedical studies, investigators are often interested in 

identifying the true risk factors for the disease under study to facilitate policy making or 

reveal the underlying biological mechanisms of the disease. In such situations, it is more 

important to identify the true model than to predict the risk of individual subjects. Since we 

have demonstrated the superior performance of the penalized cross-validation method in 

model identification under various sample sizes, censoring rates, and sampling probabilities 

of the subcohort, we recommend it for practical use for tuning parameter selection in 

additive hazards model with a case-cohort design when the purpose of the study is to 

identify the true risk factors for the disease. A formal theoretical investigation on the 

proposed properties of the penalized cross-validation method is a future research topic.

In this paper we adopt the stratified case-cohort design proposed in Borgan et al. (2000). In 

that paper the authors focused on the estimation efficiency for a single “exposure” variable 

that is correlated with the stratification variable. However, in observational studies many 

covariates are likely to be correlated with the stratification variable, and therefore 

stratification considered in this paper is a general strategy to increase the estimation 

efficiency for all covariates in the model under a case-cohort design. The theoretical results 

in this paper require the number of strata to be finite and ns/n = O(1) for s = 1, …, S, which 

implies that the condition dn
2/ns 0 is required for all s. The practical implication of this 

requirement is that the number of strata should not increase with sample size, which is a 

reasonable assumption since most stratification variables have a fixed number of pre-

specified categories.

The proposed variable selection method does not have a mechanism to ensure the 

hierarchical structure of the candidate covariates in the presence of interaction and 

polynomial terms. As a result, the selected models from the ARIC study does not maintain a 

hierarchical structure. For example, the model identified by SCAD with λn
CV contains an 

interaction between CRP2 and BMI but not the main effect of BMI. Although this issue does 

not pose any theoretical difficulties, it does lead to some difficulties in the interpretation. A 

future research topic would be to take into account the hierarchical structure of the candidate 

covariates in an additive hazards model with a case-cohort design by using group variable 

selection techniques (Yuan & Lin, 2006; Zeng & Xie, 2014).
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The R and Matlab programs implementing the estimation procedure described in Section 4.2 

are available from the corresponding author upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 5

Baseline characteristics of the cohort of ARIC study

Variables
Full cohort (n=12,199)

Mean (SD) or %
Subcohort (ñ=978)
Mean (SD) or %

Age (yrs) 56.8 (5.7) 58.4 (5.6)

BMI 27.9 (5.7) 28.2 (5.5)

Systolic blood pressure (mmHg) 132.8 (36.7) 134.6 (37.7)

LDL (mmol/L) 121.1 (18.5) 125.1 (19.8)

HDL (mmol/L) 50.5 (16.7) 49.5 (16.8)

Diabetes (%) 13.4 20.0

Current Smoker (%) 22.0 22.9

CRP level – 3.3 (3.4)

CRP category (%)

  Low (<1.0mg/L) – 28.2

  Middle (1.0 – 3.0mg/L) – 35.2

  High (>3.0mg/L) – 36.6
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Table 6

Estimated coefficients and standard errors from ARIC study data

Variable

Backwards Elimination
β̂ ( SE) (×10−5)

SCAD ( λn
CV)

β̂ ( SE) (×10−5)

SCAD ( λn
CVP)

β̂ ( SE) (×10−5)

CRP2 (middle (1.0 – 3.0mg/L)) −0.10 (0.21) 0.060 (0.82) 0.50 (0.76)

CRP3 (high (>3.0mg/L)) 0.70 (0.24) 0.63 (0.81) 0.99 (0.76)

Age 0 (−) 0.27 (0.32) 0 (−)

Age2 0.29 (0.11) 0 (−) 0 (−)

BMI 0 (−) 0 (−) 0 (−)

BMI2 0 (−) 0 (−) 0 (−)

LDL (mmol/L) 0.72 (0.11) 0.43 (0.40) 0 (−)

LDL2 0 (−) 0 (−) 0 (−)

HDL (mmol/L) −1.42 (0.15) −0.87 (0.63) −1.27 (0.38)

HDL2 0.34 (0.055) 0.22 (0.18) 0.24 (0.18)

SBP (mmHg) 0 (−) 0.46 (0.37) 0 (−)

SBP2 0.34 (0.079) 0.14 (0.25) 0 (−)

Current Smoker 0.91 (0.25) 0 (−) 0 (−)

Diabetes 2.13 (0.39) 1.28 (0.85) 0 (−)

CRP2*age 0 (−) 0 (−) 0 (−)

CRP3*age 0 (−) 0 (−) 0 (−)

CRP2*BMI −0.61 (0.18) −0.56 (0.67) 0 (−)

CRP3*BMI −0.35 (0.13) −0.32 (0.43) 0 (−)

CRP2*LDL 0 (−) 0 (−) 0 (−)

CRP3*LDL 0 (−) 0.24 (0.66) 0 (−)

CRP2*HDL 0 (−) −0.42 (0.76) 0 (−)

CRP3*HDL 0 (−) −0.30 (0.79) 0 (−)

CRP2*SBP 0 (−) 0 (−) 0 (−)

CRP3*SBP 0 (−) 0 (−) 0 (−)

CRP2*current smoker 0 (−) 0.80 (1.32) 0 (−)

CRP3*current smoker 0 (−) 0 (−) 0 (−)

CRP2*diabetes 0 (−) 0 (−) 0 (−)

CRP3*diabetes 0 (−) 0 (−) 0 (−)

All continuous covariates are standardized using the means and standard deviations based on the random subcohort.
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