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A REGULARIZING LEVENBERG-MARQUARDT SCHEME,

WITH APPLICATIONS TO INVERSE GROUNDWATER

FILTRATION PROBLEMS

MARTIN HANKE�

Abstract. The �rst part of this paper studies a Levenberg-Marquardt scheme for nonlinear

inverse problems where the corresponding Lagrange (or regularization) parameter is chosen from an
inexact Newton strategy. While the convergence analysis of standard implementations based on trust

region strategies always requires the invertibility of the Fr�echet derivative of the nonlinear operator

at the exact solution, the new Levenberg-Marquardt scheme is suitable for ill-posed problems as long
as the Taylor remainder is of second order in the interpolating metric between the range and domain

topologies.

Estimates of this type are established in the second part of the paper for ill-posed parameter
identi�cation problems arising in inverse groundwater hydrology. Both, transient and steady state

data are investigated. Finally, the numerical performance of the new Levenberg-Marquardt scheme is

studied and compared to a usual implementation on a realistic but synthetic 2D model problem from
the engineering literature.

Key words. Nonlinear ill-posed problems, Levenberg-Marquardt method, Tikhonov regulariza-

tion, parameter identi�cation, convergence analysis.

AMS subject classi�cations. 65J15, 65J20, 35R30

1. Introduction. Inverse problems are often solved by approximately minimiz-
ing the so-called output least squares functional

ku� � F (a)k2 ;(1.1)

where F : D(F ) � X ! Y is a nonlinear di�erentiable operator between Hilbert spaces
X and Y , and u� are the given data. In many applications it follows from physical
considerations that u� is a reasonably close approximation of some ideal u = F (ay) in
the range of F , hence the minimization of (1.1).

The Levenberg-Marquardt method is a variant of the Gau�-Newton iteration for
the minimization of (1.1). Given a current approximation an for ay the nonlinear map-
ping F (a) in (1.1) is replaced by its linearization around an prior to the minimization
process. If the inverse problem is ill-posed, however, neither the original problem of
minimizing (1.1) nor its linearized counterpart need to have a solution; even worse, if
a minimizer does exist, it can be arbitrarily far o� from the true solution ay. This is
important in many applications where one is interested in properties of ay itself and
not in F (ay).

To overcome this instability one can proceed along several lines, leading to di�erent
motivations for essentially the same algorithm (cf., e.g., Vogel [16]). In the Levenberg-
Marquardt method a trust region is chosen around an, i.e., a ball of radius �n, and the
linearized functional is minimized within this ball. This is easily seen to be equivalent
to minimizing

ku� � F (an)� F 0(an)hk2 + �n khk2 �! min.(1.2)
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for h = hn, where �n is the corresponding Lagrange parameter. Then this is repeated
with an+1 = an + hn instead of an and (possibly) some updated trust region radius
�n+1 until convergence. The di�culty in this approach is an appropriate strategy for
choosing f�ng, which must rely on heuristical considerations. Most standard strategies
(cf. Dennis and Schnabel [6] or Nash and Sofer [15]), in �rst place, do not cope with
the ill-posedness of the problem; they have originally been developed to \globalize"
the convergence of the Gau�-Newton iteration for well-posed minimization problems.

On the other hand, another justi�cation for (1.2) is the regularization induced by
adding the penalty term �n khk2 to the linearized functional. This is equivalent to
Tikhonov's method (cf., e.g., Groetsch [10]) applied to the linearized problem

F 0(an)h = u� � F (an) :(1.3)

Note that for hy

n = ay � an equation (1.3) holds up to the error

"n = u� � u + R(ay; an)(1.4)

in the right-hand side, where R(ay; an) denotes the Taylor remainder for the lineariza-
tion around an.

At this point it might be better to select �n from a trust region approach for
"n in Y rather than some trust region around an in X . For example, assume that
the right-hand side of (1.3) dominates "n, i.e., k"nk � �ku� � F (an)k for some � <

1. The minimal norm solution of (1.3) subject to this constraint on the data �t is
characterized by the same minimization problem (1.2) with the di�erence that �n is
now the reciprocal of the corresponding Lagrange parameter.

It will be shown below that this latter choice of �n leads to stable Levenberg-
Marquardt approximations of ay, provided that F 0(a) is locally bounded and the Taylor
remainder R(~a ; a) satis�es the inequality

kR(~a ; a)k � C k~a� ak kF (~a)� F (a)k(1.5)

for all ~a; a in a ball B � D(F ) around ay and some �xed C > 0. This assumption is ful-
�lled for an important inverse problem in groundwater �ltration, for which numerical
examples will be given at the end of the paper.

2. Monotonicity of the Levenberg-Marquardt iterates. Let � and 
 be
positive parameters with � < 1 < 
. Assume that after n iterations hy

n = ay � an
satis�es (1.3) up to an error

ku� � F (an)� F 0(an)h
y

nk �
�



ku� � F (an)k :(2.1)

Denote by hn;� the minimizer of (1.2) for a given parameter �n = �, and de�ne the
actual Levenberg-Marquardt parameter �n from Morozov's discrepancy principle

ku� � F (an)� F 0(an)hn;�nk = �ku� � F (an)k :(2.2)

It is well-known (cf. Groetsch [10, pp. 44]) that �n is uniquely determined from (2.2).
Moreover, among all h 2 X with ku��F (an)�F 0(an)hk � �ku��F (an)k (including
h = hy

n) hn;�n is the unique element of minimal norm. The following result shows that
an + hn;�n is a better approximation of ay than an.
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Proposition 2.1. Let 0 < � < 1 < 
 and assume that (2.1) is ful�lled so that �n

can be de�ned via (2.2). Then, with vn =
�
F 0(an)F

0(an)
�+�nI

�
�1

(u�� F (an)) there

holds

kay � ank2 � kay� (an + hn;�)k2 >
2(
 � 1)�



ku� � F (an)k kvnk ;(2.3)

and also

kay � ank2 � kay� (an + hn;�)k2 >
2(
 � 1)�(1� �)


kF 0(an)k2
ku� � F (an)k2 :(2.4)

Proof. For ease of notation let T = F 0(an), ~y = u� � F (an) and, as before,
hyn = ay � an. Since for � > 0

hn;� = T �(TT � + �I)�1~y ; ~y � Thn;� = �(TT � + �I)�1~y ;(2.5)

cf. [10], it follows that

khn;� � hynk2 = khn;�k2 � 2h hn;�; hyn i+ khynk2

= h ~y; TT �(TT � + �I)�2~y i � 2h (TT �+ �I)�1~y; Thyn i+ khynk2

= h ~y; TT �(TT � + �I)�2~y i � 2 h ~y; (TT �+ �I)�1~y i
+ 2 h (TT �+ �I)�1~y; ~y � Thyn i+ khynk2

= �h ~y; TT �(TT � + �I)�1~y i � 2�h ~y; (TT �+ �I)�2~y i
+ 2 h (TT �+ �I)�1~y; ~y � Thyn i+ khynk2 :

By virtue of (2.1) ~y does not belong to the orthogonal complement of the range of T ,
i.e., TT �~y 6= 0, and hence, h ~y; TT �(TT �+�I)�1~y i is positive. As a consequence, this
implies that

khynk2 � khn;� � hynk2

> 2� k(TT � + �I)�1~yk2 � 2 k(TT � + �I)�1~yk k~y � Thynk :
(2.6)

Consider now � = �n, i.e., the solution of (2.2). In this case the assumptions yield
k~y � Thynk � �


 k~yk and k~y � Thn;�nk = �k~yk . In view of (2.5), these two relations
can be used in (2.6) to obtain the inequality

khynk2 � khn;�n � hynk2 > 2k(TT �+ �nI)
�1~yk

�
�k~yk � �



k~yk

�

=
2(
 � 1)�



k~yk k(TT � + �nI)

�1~yk :

Since ~y = u� � F (an) and (TT � + �nI)
�1~y = vn the �rst assertion (2.3) follows.

For � > �
1��

kTk2 there holds

�

�+ �
> � ; 0 � � � kTk2 ;
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and hence, cf. (2.5),

k~y � Thn;�k = k�(TT � + �I)�1~yk > �k~yk for � > �
1��

kTk2 :(2.7)

This shows that �n � �
1��

kTk2, and since ~y = (TT � + �I)vn this implies that

k~yk � kTT � + �Ik kvnk = (kTk2 + �)kvnk �
1

1� �
kTk2kvnk :

Inequality (2.4) now follows by using this as a lower bound for kvnk in (2.3).
Since the Levenberg-Marquardt iteration proceeds with

an+1 = an + hn;�n = an + F 0(an)
�vn ;

cf. (2.5), vn plays an important role in this iterative scheme. On the basis of Propo-
sition 2.1 the following convergence result can now be established.

Theorem 2.2. Let 0 < � < 1 and assume that F 0(�) is locally bounded and that

the Taylor remainder of F satis�es (1.5) for some C > 0. If u� = u = F (ay) and

if a0 2 B with ka0 � ayk < �=C then the Levenberg-Marquardt iteration with f�ng
determined from (2.2) converges to a solution of F (a) = u as n!1.

Proof. De�ne 
 = �=(C kay� a0k) which is greater than 1 by assumption. There-
fore (1.5) with ~a = ay and a = a0 implies (2.1), and hence,

kay � an+1k < kay� ank

for n = 0 by virtue of Proposition 2.1. By induction this inequality remains true for
all n showing that kay � ank is monotonically decreasing during the entire iteration.

It is more di�cult to establish the convergence of fang to a solution of F (a) = u.
The proof, however, is the same as the one for Theorem 4.2 in [11], and is therefore
omitted here.

While Theorem 2.2 shows that the iterates fang of the Levenberg-Marquardt
iteration converge to a minimizer of (1.1) if the data u = F (ay) in (1.1) are given
exactly, the sequence cannot converge if no solution of F (a) = u� exists. From linear
problems it is well-known (cf. [7]) that the iteration will rather exhibit a semiconvergent

behaviour in this case: the iterates seemingly converge in the beginning of the iteration
before they eventually turn to diverge. To prevent divergence and to compute stable
approximations of ay or some other solution of the unperturbed problem a suitable
stopping rule has to be supplied.

For the present version of the Levenberg-Marquardt iteration the discrepancy
principle is an appropriate stopping rule for this purpose. Assume that

ku� � F (ay)k � � ;

and to emphasize the dependency on � in the remainder of this section let fa�ng denote
the iterates if u� instead of u is used in the iteration. According to the discrepancy
principle the iteration is terminated as soon as

ku� � F (a�n)k � ��(2.8)

is ful�lled for the �rst time, with � > 1 another parameter. The following result
shows that this stopping rule is well-de�ned and provides a stable approximation of a
solution of F (a) = u.
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Theorem 2.3. Let 0 < � < 1 and � > 1=�. Assume that F 0(�) is locally bounded

in D(F ) and that the Taylor remainder of F satis�es (1.5). If ku � u�k � � and if

a0 2 B is su�ciently close to a solution ay of F (a) = u then the discrepancy principle

(2.8) terminates the Levenberg-Marquardt scheme with parameters f�ng from (2.2)
after n(�) <1 iterations. Moreover, the corresponding approximations a�n(�) converge

to a solution of F (a) = u as � ! 0.
Proof. Let C be the constant in (1.5). At �rst it will be shown that

ka� a�nk < ka� a�n�1k ; n = 1; : : : ; n(�) ;(2.9)

provided that a is a solution of F (a) = u, and that an open ball around a of radius
1
C (�� � 1)=(� + 1) including a0 belongs to B. In this case it follows from (1.4) and
(1.5) that

ku� � F (a0)� F 0(a0)(a� a0)k � � + C ka� a0k ku� F (a0)k

�
�
1 + C ka� a0k

�
� + C ka� a0k ku� � F (a0)k :

If n(�) > 0 then � < ku� � F (a0)k=� , and hence,

ku� � F (a0)� F 0(a0)(a� a0)k �
1 + (1 + �)C ka� a0k

�
ku� � F (a0)k :

This shows that (2.1) holds for n = 0 with 
 = ��=(1 + (1 + �)C ka� a0k), which is
greater than 1 by assumption. Consequently Proposition 2.1 applies and the mono-
tonicity assertion (2.9) follows as in the proof of Theorem 2.2.

Now assume that a0 is so close to ay that (2.9) holds for a = ay. Then, taking the
sum of (2.4) for n = 0; : : : ; n(�)� 1 one obtains

n(�)�2�2 �
n(�)�1X
n=0

ku� � F (a�n)k2 �

c2

2�(1� �)(
 � 1)
kay � a0k2 <1 ;

where c is a uniform bound for kF 0(a�n)k in B. This shows that n(�) is a �nite number.
Next, consider a�n(�) as � ! 0. By continuity, if n(�) = n for all � > 0 then a�n ! an

as � ! 0, where an is the nth Levenberg-Marquardt iterate with exact right-hand side
u. Furthermore, since ku� � F (a�n)k � �� by de�nition of n = n(�) there must hold
F (an) = u in the limit � ! 0. Consequently, a�n(�) converges to the solution an of

F (a) = u in this �rst case that n(�) = n for all � > 0.
Finally, assume that n(�)!1 as � ! 0, and denote by a the limit of fang which

exists by virtue of Theorem 2.2. Since

ka� ayk = lim
n!1

kan � ayk � ka0 � ayk ;

cf. (2.9), it follows that

ka� a0k � ka� ayk + kay � a0k � 2kay� a0k �
�� � 1

C(� + 1)
;

provided that a0 is su�ciently close to ay. Therefore (2.9) applies with a being the
limit of fang. Given " > 0 let m(") be such that ka � amk < "=2 for m > m(") and
let �(") be so small that n(�) > m(") for � < �("); then it follows from (2.9) that

ka� a�n(�)k < ka� a�mk � "=2 + kam � a�mk
5



for m = m(") and all � < �("). Again by continuity it follows that kam � a�mk < "=2
and hence ka�a�n(�)k < " for � su�ciently small. This proves that a�n(�) ! a as � ! 0

in the case where n(�)!1.
The general case now follows by considering appropriate subsequences of n(�) if

necessary.
It remains to comment on the rate of convergence, i.e., on the magnitude of n(�).

According to the parameter choice rule (2.2) there holds

ku� � F (a�n)� F 0(a�n)(a
�
n+1 � a�n)k = �ku� � F (a�n)k ; n = 0; 1; : : : ; n(�)� 1 :

Using the triangle inequality and assumption (1.5) it follows that

�ku� � F (a�n)k � ku� � F (a�n+1)k � kF (a�n+1)� F (a�n)� F 0(a�n)(a
�
n+1 � a�n)k

� ku� � F (a�n+1)k � C ka�n+1 � a�nk kF (a�n+1)� F (a�n)k

�
�
1� C ka�n+1 � a�nk

�
ku� � F (a�n+1)k

� C ka�n+1 � a�nk ku� � F (a�n)k ;

and hence,

ku� � F (a�n+1)k �
�+ C ka�n+1 � a�nk
1� C ka�n+1 � a�nk

ku� � F (a�n)k :(2.10)

The fraction on the right-hand side is below 1 for � su�ciently small and n su�ciently
large which yields the following result.

Theorem 2.4. Under the assumptions of Theorem 2.3 the stopping index n(�)
grows like n(�) = O(j log � j) as � ! 0.

It can also be seen from (2.10) that the asymptotic convergence factor for the
decay rate of the residuals will approach � as � ! 0.

Remark. Theorems 2.2 and 2.3 actually hold for a considerably larger class
of strategies for choosing the Levenberg-Marquardt parameter �n in (1.2). Roughly
speaking, any continuous parameter choice rule (i.e., a rule for which �n depends
continuously on u�) with �n greater than the solution of (2.2) will do. This is so
because for those parameters (2.2) can be replaced by

ku� � F (a�n)� F 0(a�n)hn;�nk � �ku� � F (a�n)k ;

cf. [10, Thm. 3.3.1], which su�ces for the proof of Proposition 2.1.
For example, if � > 2 then alternative choices include �n = kF 0(a�n)k2 in view

of (2.7), or �n = �, a constant greater than kF 0(a)k2 for all a 2 B. A particularly
attractive choice for �n is a strategy developed by Engl, Gfrerer and Raus (cf. [7,
Sect. 4.4]) for choosing the regularization parameter in Tikhonov regularization for
linear problems. This parameter choice rule which determines �n from

h r�; �(F 0(a�n)F
0(a�n)

� + �I)�1r� i = �2ku� � F (a�n)k2 ;

with r� = u� � F (a�n)� F 0(a�n)hn;� ;
(2.11)

has the advantage that under assumption (2.1) the corresponding error is always
smaller than for any greater parameter � (cf. [7, Prop. 5.12]). The solution �n of (2.11)
is somewhat greater than the solution of (2.2), but always less than � = ckF 0(a�n)k2
for some c depending only on �.
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3. An inverse problem in groundwater hydrology. Let 
 be a bounded
domain in IRN , N � 2, with smooth (C2) boundary �, and consider the boundary
value problem

ut � div (a gradu) = f in 
 ;

u = ' on � ;
(3.1)

where f and ' are functions of time t with values in H�1(
) and H1=2(�), respectively.
This di�erential equation is used as a model for groundwater 
ow, where a is the
di�usivity of the sediment, u the piezometric head, and f represents water sources
and sinks. Further applications of (3.1) are discussed by Banks and Kunisch [2].

Given Cauchy data u0 2 L2(
) the direct problem associated with (3.1) consists
in �nding a solution u of (3.1) in a time interval T = [0; T ] with u(0) = u0 for
given functions a, f , and '. Under mild assumptions on a, namely a 2 L1(
) with
a(x) � a > 0 for all x 2 
 (3.1) has a weak solution u with values in H1(
), cf., e.g.,
Dautray and Lions [5]. Let F : a 7! u denote this parameter-to-solution mapping.

The inverse problem is aiming for the material coe�cient a in order to explore
the internal structure of the aquifer 
. To this end, wells are drilled to measure u
in 
 (f and ' are presumably known), and then the nonlinear problem F (a) = u is
solved for a. Hence, this corresponds to the setting of the introduction. In the sequel
it shall be assumed that distributed data for u are given in L2(T �
). If only discrete
measurements are available (e.g., the values of u at the wells) this may call for an
interpolation of these measurements prior to reconstruction, cf. Section 4.2. In this
setting, i.e., with X � L1 and Y = L2(T � 
) the inverse problem is known to be
ill-posed, cf., e.g., Kravaris and Seinfeld [13] or [2, Sect. 4.2].

In practical applications both the steady state of (3.1) (where f and ', and hence
u do not depend on time) as well as the overdetermined transient case are of interest.
In either case the validity of the basic assumption (1.5) for the results of Section 2
hinges on the H2 regularity of the elliptic operator

Au = � div (a gradu) ;(3.2)

de�ned for the moment on H1
0(
) in the usual weak sense. Here, A is called H2 regular

if kukH2(
) can be bounded by kAukL2(
) for any function u 2 H2(
)\H1
0(
). Note

that H2 regularity has also been employed as an essential ingredient in [2, Chapter 6]
(see also [4]) for a convergence analysis of certain constrained projection methods for
reconstructing ay.

H2 regularity imposes a certain smoothness on the parameter function a (cf. La-
dyzhenskaya and Ural'tseva [14] or Grisvard [9]), e.g., a 2 W1;p(
) with p > N .
Here, W1;p(
) is the usual Sobolev space of functions with weak derivatives in Lp(
),
cf. Adams [1]. The restricition a 2 W1;p(
) will also serve as a basic assumption for the
analysis to come; it implies that A is an isomorphism between V := H2(
) \ H1

0(
)
and L2(
), cf. [14, p. 184]. Denote by V 0 the dual space of V with respect to the
bilinear form

h v ; w i =
Z


v(x)w(x) dx ;

and identify the corresponding dual space of L2(
) with itself. Then the associated
dual operator A0 : L2(
)! V 0 of A is an isomorphic extension of A to L2(
) because

7



A is symmetric when considered as a densely de�ned operator in L2(
). The same
symbol A will again be used for this extension to all of L2(
) further on.

On the other hand, for a not necessarily positive function h 2 W1;p(
) with p > N

and associated operator

H : H2(
)! L2(
) ; H : u 7! div (h gradu) ;(3.3)

one has

kHk
L
2(
) H2(
) � ckhk

W
1;p(
) ;(3.4)

and the constant c therein depends only on 
. To see this, let u 2 C1(�
) and consider

kHuk
L2(
) = kh�u + gradh � grad uk

L2(
)

� khkL1(
)k�uk
L
2(
) + k gradh � graduk

L
2(
) :

Using the H�older inequality the second member of the right-hand side can be esti-
mated from above by ckhkW1;p(
)kukW1;q(
) with q = 2p=(p� 2). Now (3.4) follows
because W1;p(
) embeds continuously into L1(
) and H2(
) embeds continuously
into W1;q(
) as p > N (cf. [1]).

H extends to an operator H : H1(
) ! V 0 in the usual weak sense. The fol-
lowing estimate will be useful below: given u 2 H1(
) and v 2 V it follows through
integration by parts (n denotes the outward normal to 
 on �) that

hHu ; v i =
Z


u div (h gradv) dx �

Z
�
hu

@v

@n
ds

� kukL2(
)kHvkL2(
) + khuk
H�1=2(�)kvkV

�
�
kukL2(
)kHkL2(
) H2(
) + khkL1(
)kukH�1=2(�)

�
kvkV :

Together with (3.4) this implies that

kHukV 0 � ckhkW1;p(
)

�
kukL2(
) + kuk

H�1=2(�)

�
:(3.5)

3.1. The steady state case. Assume for the time being that f and ' are
constant in time. Let a; ~a 2 W1;p(
) be bounded from below by some a > 0, and let
A and ~A be the associated operators (3.2). Furthermore, let u = F (a) and ~u = F (~a)
be the solutions (which are now functions of space only) of the respective boundary
value problems (3.1).

It is instructive to evaluate Au as u = F (a) =2 V , and hence, A here really denotes
the extended operator. It turns out that

Au = f � g ;(3.6)

where g 2 V 0 is the representation of the continuous linear functional

h g ; v i =

Z
�
a'

@v

@n
ds ; v 2 V :

8



Considered as a mapping fromW1;p(
) to L2(
) the operator F is di�erentiable:
u0 = F 0(a)h is given as the (weak) solution of the boundary value problem

� div (a gradu0) = div (h gradu) in 
 ;

u0 = 0 on � ;

or rather,

Au0 = HF (a)(3.7)

with A and H as above. This formula is well-known in the literature; moreover, cf. Ito
and Kunisch [12], the derivative considered as an operator F 0(a) : L1(
)! L2(
) is
a compact operator. This means that not only the nonlinear inverse problem but also
the linearized problem (1.3) is ill-posed in general.

Theorem 3.1. Let 
 � IRN be bounded with C2 boundary �, and a; ~a 2 W1;p(
)
with p > N be greater than a > 0 in 
. Then F 0(�) is uniformly bounded in a W1;p(
)-
neighborhood of a and

kF (~a)� F (a)� F 0(a)(~a� a)k
L
2(
) � C k~a� ak

W
1;p(
)kF (~a)� F (a)k

L
2(
) ;

where the constants only depend on 
, a and on the W1;p(
) norm of a.

Proof. Since A of (3.2) is an isomorphism from L2(
) to V 0 it follows from (3.7)
that

F 0(a)h = A�1HF (a) ;

and hence, by (3.5),

kF 0(a)hkL2(
) � kA�1kL2(
) V 0 kHF (a)kV 0

� c khkW1;p(
)

�
kF (a)kL2(
) + k'k

H�1=2(�)

�
;

where the constant c depends only on 
, a, and kakW1;p(
), cf. [14, p. 189]. Fur-
thermore, by (3.6), kF (a)kL2(
) depends on the same quantities as before, as well as
on kfkV 0 and on k'k

H�1=2(�). As a consequence, kF 0(�)k is uniformly bounded in a

W1;p(
)-neighborhood of a.
Now let u = F (a), ~u = F (~a), and u0 = F 0(a)h with h = ~a � a. It will be useful

for the sequel to evaluate A~u: taking an arbitrary v 2 V and integrating by parts it
follows from the variational de�nition of ~u that

hAv ; ~u i = �
Z
�
a'

@v

@n
ds +

Z


a grad ~u � grad v dx

= � h g ; v i +
Z


(a� ~a) grad ~u � grad v dx + h f ; v i

= h f � g +H ~u ; v i ;

and hence, A~u = f � g +H ~u. Therefore, for

w = ~u� u� u0 = F (~a)� F (a)� F 0(a)(~a� a)

9



it follows from (3.6) and (3.7) that

Aw = A~u� Au� Au0 = f � g +H ~u� (f � g)�Hu = H(~u� u) :

Together with (3.5) this yields

kwk
L
2(
) � kA�1k

L
2(
) V 0 kH(~u� u)kV 0 � c khk

W
1;p(
)k~u� uk

L
2(
) ;

where again, c only depends on 
, a and on kak
W1;p(
).

For a 1D version of Theorem 3.1 (with a and ~a in H1(
)), cf. [7, Ex. 11.1].
Since W1;p(
) is no Hilbert space, it is no suitable choice for X in the setting of

Sections 1 and 2. On the other hand, when N � 3 then H2(
) can be continuously
embedded into W1;p(
) for appropriate p > N :

Corollary 3.2. Assume that N = 2 or N = 3 and that 
 is as in Theorem 3.1.
If a; ~a 2 H2(
) are bounded in 
 from below by some a > 0 then

kF (~a)� F (a)� F 0(a)(~a� a)k
L2(
) � C k~a� ak

H2(
)kF (~a)� F (a)k
L2(
) :

Proof. Note, cf. [1], that H2(
) is continuously embedded in W1;p(
) when p � 2
and (N � 2)p � 2N . Thus, for N = 2 and N = 3, every a 2 H2(
) is embedded in
W1;4(
), i.e., kakW1;4(
) � ckakH2(
) for some �xed c > 0. Thus the assertion follows
from Theorem 3.1 with p = 4.

In higher dimensional spaces a 2 H2(
) does not su�ce in Corollary 3.2. The
reason is twofold. First, the argument in the proof fails for higher dimensions. Sec-
ondly, the analysis in Section 2 requires that a whole ball in X around ay contains
only strictly positive functions. Consequently, X has to be a subspace of bounded
functions.

Remark. Note that in the proof of Theorem 3.1 the functions u; ~u, and w need
only belong to L2(
). Therefore the same result holds under considerably weaker
assumptions on f and g; in particular, f 2 V 0 would be su�cient. This may be of
practical importance because it allows the use of delta distributions for f (e.g., point
injections at the wells) provided that N � 3.

3.2. The transient case. When f and ' are functions of time t, 0 � t � T ,
i.e.,

f 2 L2(0; T ;H�1(
)) ; ' 2 L2(0; T ;H1=2(�)) ;

and the initial data u0 belong to H1(
) then (3.1) has a unique solution

u = F (a) 2 L2(0; T ;H1(
)) :

The formal derivative of F with respect to a has a similar form as above, i.e., u0 =
F 0(a)h solves the Cauchy-Dirichlet problem

u0(0) = 0 ; Lu0 � u0t � div (a gradu0) = Hu in 
 ;

u0 = 0 on � ;
(3.8)

where H is given by (3.3) and u = F (a) is the solution of (3.1) with initial data
u(0) = u0.

10



Theorem 3.3. Let 
 � IRN be bounded with C2 boundary �, and a; ~a 2 W1;p(
)
with p > N be greater than a > 0 in 
. Then F 0(�) is locally bounded in a W1;p(
)-
neighborhood of a and

kF (~a)�F (a)�F 0(a)(~a�a)k
L2(0;T ;L2(
)) � C k~a�ak

W1;p(
)kF (~a)�F (a)kL2(0;T ;L2(
)) ;

where c depends only on 
, on a and on the W1;p(
) norm of a. Corollary 3.2 applies

accordingly.

Proof. By the regularity result in [5, p. 116] the dual operator L0 of L (with
respect to L2(0; T ;L2(
)) given by

L0v = � vt � div (a gradv)

for v 2 L2(0; T ;H1
0(
)) with v(T ) = 0 (which corresponds to an evolution operator

backwards in time from T to 0) is bounded from below as operator from L2(0; T ;D(A))
to L2(0; T ;L2(
)). Under the assumptions of the theorem,

D(A) � fu 2 H1
0(
) j Au 2 L2(
)g = V ;

and hence, L is bounded from below as a mapping

L : L2(0; T ;L2(
))! L2(0; T ;V 0) :

Consequently, it follows from (3.8) and (3.5) that for certain c > 0

kF 0(a)hk2
L2(0;T ;L2(
)) � c

Z T

0
kHF (a)k2V 0 dt

� c

Z T

0
khk2

W1;p(
)

�
kF (a)k2

L2(
) + k'k2
H�1=2(�)

�
dt

� c khk2
W1;p(
)

�
kF (a)k2

L2(0;T ;L2(
)) + k'k2
L2(0;T ;H�1=2(�))

�
:

The boundedness of the derivative now follows similar to the proof of Theorem 3.1.
Furthermore, if h = ~a�a, u = F (a), ~u = F (~a), and u0 denotes the solution of (3.8),

then similar computations as in the proof of Theorem 3.1 establish that w = ~u�u�u0
is a solution of

w(0) = 0 ; Lw = H(~u� u) ; wj� = 0 ;

and the same inequality chain as before yields

kwkL2(0;T ;L2(
)) � c khkW1;p(
)k~u� ukL2(0;T ;L2(
))

as was to be shown.
Remark. Once again, the crucial role of the H2 regularity of the di�erential

operator A of (3.2) for the theorems in this section should be stressed. Whenever A is
H2 regular under modi�ed assumptions on 
 analogous results can be established. In
particular, similar results follow for convex domains from the regularity results in [9].
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4. Numerical results. The theoretical results in this paper establish that the
Levenberg-Marquardt scheme with the parameters f�ng determined from (2.2) can
be applied to the above inverse problems from groundwater hydrology. The algorithm
has been tested on synthetic data suggested by Carrera and Neuman [3] as a realistic
test case for inverse groundwater �ltration problems.

The exact di�usivity coe�cient ay of this model problem is piecewise constant with
signi�cant discontinuities; hence, A of (3.2) lacks H2 regularity and the theoretical
analysis of this paper does not apply to this particular example. Nevertheless, the
numerical results are extremely promising and indicate the usefulness of the method
for a larger class of problems. This does not mean, however, that this algorithm
is recommended as the method of choice for this problem. There are a number of
alternative approaches, cf., e.g., the survey of Yeh [17] and the references in [2, 3].
More recent contributions with up to date references can be found in the proceedings
of the 1994 gamm-siam conference on di�usion processes [8].

The synthetic data from [3] correspond to a square aquifer (0 � �; � � 6) with
six di�erent transmissivity zones with constant values of ay, ranging from 5 to 150 as
displayed in Figure 4.1. The circles in this �gure mark the locations of the eighteen
wells where head measurements are to be taken; the dashed line will be referred to
later on. The piezometric head u solves the di�erential equation (3.1) with mixed
Neumann-Dirichlet boundary data on �, namely

u (�; 0) = 100 ; u�(6; �) = 0 ;

(au�) (0; �) = �500 ; u� (�; 6) = 0 :

The right-hand side f of (3.1) is given by

f(�; �) =

8><
>:

0 ; 0 < � < 4 ;
137 ; 4 < � < 5 ;
274 ; 5 < � < 6 :

Carrera and Neuman also suggest a transient test case corresponding to a pumping
of two out of the eighteen wells. For the ease of computation and to simplify the display
of computational output, numerical results will only be presented for the steady state
case.
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Fig. 4.2. Contour plots of the two reconstructions

The implementation of this example uses a re�nement of the triangularization in
[3] of the aquifer area with 288 triangles and 169 grid points. The exact di�usivity co-
e�cient ay is used to compute approximate head data with the �nite element method;
random noise is added to all simulated data. Although the same triangularization is
used for the inverse problem, approximate di�usivity parameters are taken from the
subspace of piecewise linear functions. As a consequence the exact di�usivity coe�-
cent does not belong to this trial space; in fact, the best approximation of ay from this
subspace has a relative error of approximately 0:1628 (measured in L2(
)).

In this implementation F is considered as a mapping

F : D(F ) \ L2(
)! L2(
) ;

i.e., X = Y = L2(
). Here, as before,

D(F ) = fa 2 L1(
) j ess inf a > 0g :

To take this positivity constraint into account the Levenberg-Marquard method is
modi�ed in the following way: whenever the value of some iterate an at some grid
point happens to be negative this value is replaced by one. In all experiments with
the Levenberg-Marquardt method a0 � 20 is used as initial guess. The parameters �
and � in (2.2) and (2.8) are freezed throughout to be � = 0:5 and � = 2:5.

The numerical results are summarized under three aspects: the regularizing prop-
erties of the iteration, the performance with distributed data and with discrete mea-
surements, and the e�ciency of the method as compared to a conventional Levenberg-
Marquardt strategy as described, e.g., in [6].

4.1. Regularizing properties. To verify the regularizing properties as pre-
dicted by Theorem 2.3 distributed data with two di�erent signal to noise ratios (snr)
of 100 and 1000 (with respect to L2(
)) have been used as input for the Levenberg-
Marquardt scheme. The reconstructions are shown in Figure 4.2 in form of a contour
plot, the level lines corresponding to multiples of ten. For an alternative visualiza-
tion of these results consider Figure 4.3: it shows the traces of the phantom and of
the two reconstructions along the dashed lines in Figure 4.2 connecting the points
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Fig. 4.4. Error and residual history for both noise levels

(�; �) = (1; 0) and (6; 5) (compare also Figure 4.1). The improvement with less noise
is obvious from this plot.

It is even more instructive to look at the iteration history of the relative errors,
kan � ayk=kayk , and of the relative residuals, ku� � F (an)k=ku�k . These histories
are displayed in Figure 4.4. On each of these curves, a star denotes the point where
the algorithm is terminated according to the discrepancy principle (2.8): these are the
points when the residual norm drops below �=snr with � = 2:5 (as indicated by the
dotted lines in the right-hand side plot). As the error history shows, in both cases
this termination point is close to optimal. Note that the dotted line indicates the
error of the best approximation of ay from the trial space of piecewise linears: the
reconstructions of the algorithm are only worse by a factor of 2.4 (snr = 100) and 1.5
(snr = 1000), respectively.

Concerning the analysis of Sect. 2 the essentially monotonic decay of the iteration
error is in nice agreement with the theory. In the case of snr = 100 the semiconvergent
behaviour of the iteration is also obvious: without an adequate stopping criterion the
iteration would eventually diverge. A similar phenomenon occurs in the case of less
noise after some twenty more iterations. Finally, concerning Theorem 2.4, note that
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the residual does indeed decay linearly with a reduction of about 60% per step in
the beginning of the iteration (the residuals are displayed in a semilogarithmic plot)
but in the case of less noise this behaviour seems to deteriorate before the stopping
point is reached. This may indicate that the necessary assumption (1.5) does not hold
throughout.

4.2. The case of discrete measurements. In practice head data will only be
measured at a �nite number of wells within 
. Carrera and Neuman suggest to take
data at the eighteen locations indicated by circles in Figure 4.1. The results presented
in this subsection are based on point evaluations of the noise-corrupted piezometric
head u� (snr = 100) at these locations.

There are two principally di�erent approaches in dealing with this case of discrete
measurements. One option is to interpolate the eighteen measurements to obtain
\distributed" data which can then be used in precisely the same way as above. If this
is done the interpolated head function ~u has a relative error of k~u � uk=kuk � 0:02
(the corresponding signal to noise ratio is snr � 48:7), which corresponds to twice as
much noise as for the respective \input function" u�. It therefore comes as no surprise
that the reconstructions of the di�usivity coe�cient are somewhat worse: the best
approximations are obtained after about ten iterations with a relative error somewhat
below 0.39 (for comparison: the best error for snr = 100 has been 0.31, cf. Figure 4.4).

Alternatively one could consider the nonlinear operator F as a mapping from
D(F )\L2(
) to IR18, i.e., the set of discrete data vectors equipped with the Euclidean
norm. Of course, the same Levenberg-Marquardt algorithm can be applied to this
semidiscrete setting. With this approach the optimal reconstruction had an error of
0.38, but it took more than �fty iterations to get there.

Note that the costs per iteration are not much di�erent in either approach because
the same number of boundary value problems (3.7) must be solved to evaluate F 0(a).
Therefore, in this example, the semidiscrete case turned out to be considerably more
expensive without giving any better results.

4.3. A classical Levenberg-Marquardt implementation. In standard soft-
ware packages the Lagrange parameter �n of the Levenberg-Marquardt method is
selected on the grounds of a trust region strategy, cf. [6, 15]. Let

khk � �n(4.1)

de�ne the trust region after n iterations. In the (n + 1)st iteration the new approxi-
mation is de�ned as an+1 = an + hn where hn is the minimizer of

ku� � F (an)� F 0(an)hk2 �! min.

subject to the constraint (4.1). Afterwards the radius �n of the trust region is modi�ed
according to the improvement of the nonlinear objective function ku� �F (a)k during
this iteration.

To compare the new Levenberg-Marquardt scheme with those more standard ones
the following trust region strategy from [6, p. 145] has been implemented. Denote by

�f := ku� � F (an)k � ku� � F (an + h)k

the actual reduction of the objective function, and compare �f with the reduction

�fpred := ku� � F (an)k � ku� � F (an)� F 0(an)hk
15
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Fig. 4.5. Error history and �-history for both implementations (snr = 100)

predicted by the linear model. Then the trust region radius �n is updated in the
following way:

�n+1 =

8><
>:

p
2 �n �f � 0:75�fpred ;

�n=
p
2 �f � 0:1�fpred ;

�n else :

(4.2)

No line search is implemented in this scheme but for a robust performance of
this algorithm it is essential to discard updates hn for which �f is negative, i.e.,
for which the objective function increases; such iterations are said to be unsuccessful.
Unsuccessful iterations are repeated with a reduced trust region radius �n  �n=2 until
they eventually become successful. (In this implementation no Armijo-type condition,
cf. [15, p. 315], is imposed on an iteration to be successful). Note that unsuccessful
iterations do not show up in the iteration history plots in Figure 4.5, but they are
nevertheless essential for a comparison of the two algorithms because unsuccessful
iterations are as expensive as successful ones.

The two Levenberg-Marquardt implementations (the new scheme with �n chosen
from (2.2) and the classical one with the trust region strategy (4.2)) have both been
tested on the model problem with snr = 100. Consider Figure 4.5 for the iteration
histories: the solid lines refer to the conventional implementation using (4.2) whereas
the dashed lines correspond to the new algorithm. As can be seen from the error
history in the left-hand plot the performance of the two methods is quite comparable
in the �rst ten iterations. In both cases the error is reduced to about 0.31 after eight
iterations which is essentially optimal. But not only the iteration history is comparable
up to this point; the reconstructions are similar, too, which is quite obvious from
Figure 4.6 which shows the traces of the two reconstructions along the dashed line in
Figure 4.1.

After seven iterations, however, every further iteration of the conventional imple-
mentation happens to run into two unsuccessful iterations in the average, thus leading
to a signi�cant computational overhead. In fact, the algorithm would diverge if unsuc-
cessful iterations were considered successful. (Note that the new Levenberg-Marquardt
scheme does not distinguish between successful and unsuccessful iterations). The im-
pact on the chosen Lagrange parameters can be seen from the right-hand plot of
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Figure 4.5. It shows the \relative Lagrange parameters" for the successful iterations,
i.e., �n=kF 0(an)k2, the Lagrange parameter divided by the squared norm of the linear
operator.

It seems as if the general tendency in choosing the parameter �n from the two
adaptive strategies (2.2) and (4.2) is not much di�erent { at least in the convergent
stage of the iteration. Both schemes �rst reduce the parameter subsequently down to
a (relative) value between 10�4 and 10�5. This value is then recognized as being too
small, and hence increased. While the new strategy of changing �n turns out to be
quite 
exible, the conventional implementation is somewhat more lethargic; this could
of course be modi�ed by replacing

p
2 by a somewhat larger factor in (4.2).

In summary, the standard Levenberg-Marquardt method seems to give the same
accuracy as the new scheme for which regularizing properties can be established. On
the other hand, it is not clear what kind of stopping rule would be appropriate for
the standard implementation. Although this may not be such a delicate question as
far as stability is concerned, it is essential for the computational expenses: if only ten
instead of eight iterations were performed with the present trust region implementation
this would result in additional seven unsuccessful iterations, and hence, the standard
implementation would require about twice as much work as the new scheme.

5. Conclusion. The adaptive strategy (2.2) for choosing the Lagrange param-
eter in the Levenberg-Marquardt method has been shown to be a stable method. In
combination with the discrepancy principle (2.8) as a stopping rule this algorithm is
a regularization method in the sense of [7, Def. 3.1] for (at least some) ill-posed prob-
lems. In particular, this method applies to the reconstruction of di�usivity parameters
in elliptic and parabolic equations from distributed data. Problems of this type arise,
e.g., in groundwater hydrology.

The numerical experiments seem to con�rm the theoretical results. It turns out,
however, that a conventional trust region strategy seems to give comparable recon-
structions, at least for the particular example considered in Sect. 4. Whether such
trust region implementations of the Levenberg-Marquardt iteration are also regular-
ization methods in the aforementioned sense remains a very interesting open problem.
Especially, this concerns the design of suitable stopping criteria for these implemen-
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tations. The numerical examples indicate that the same stopping rule (2.8), i.e., the
discrepancy principle, might be a worthwhile candidate.
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