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Abstract

The paper presents a new reinforcement learning mech-
anism for spiking neural networks. The algorithm is de-
rived for networks of stochastic integrate-and-fire neurons,
but it can be also applied to generic spiking neural net-
works. Learning is achieved by synaptic changes that de-
pend on the firing of pre- and postsynaptic neurons, and that
are modulated with a global reinforcement signal. The ef-
ficacy of the algorithm is verified in a biologically-inspired
experiment, featuring a simulated worm that searches for
food. Our model recovers a form of neural plastic-
ity experimentally observed in animals, combining spike-
timing-dependent synaptic changes of one sign with non-
associative synaptic changes of the opposite sign deter-
mined by presynaptic spikes. The model also predicts
that the time constant of spike-timing-dependent synaptic
changes is equal to the membrane time constant of the neu-
ron, in agreement with experimental observations in the
brain. This study also led to the discovery of a biologically-
plausible reinforcement learning mechanism that works by
modulating spike-timing-dependent plasticity (STDP) with
a global reward signal.

1. Introduction

Spiking neural networks [22, 15] are considered to be

the third generation of neural networks [20]. It was shown

that they have more computational power per neuron than

networks from the previous generations (with McCullogh-

Pitts neurons or with continuous sigmoidal activation func-

tions) [21]. The main interest for studying spiking neural

networks is, however, their close resemblance with biologi-

cal neural networks. This permits drawing inspiration from

experimental neuroscience when designing neural models,

and using the knowledge gained from simulations and the-

oretical analysis of the models to better understand the ac-

tivity of the brain.

Reinforcement learning algorithms for spiking neural

networks are important especially in the context of embod-

ied computational neuroscience, where an agent controlled

by a spiking neural networks learns by interacting with an

environment. Ideally, the agent should develop its own in-

ternal representations of the environment through unsuper-

vised or reinforcement learning, without supervised learn-

ing, in order to minimize the biases induced by the human

programmer [14].

An existing reinforcement learning algorithm for spiking

neural networks works by correlating fluctuations in irreg-

ular spiking with a reward signal, in networks composed

of neurons firing Poisson spike trains [33]. This algorithm

highly depends on the Poisson characteristic of the neurons

and needs injecting noise in neurons when using commonly

used neural models, such as the integrate-and-fire neuron.

It is thus difficult to use in conjunction with these neural

models. Also, this learning model presumes that neurons

respond instantaneously, by modulating their firing rate, to

their input. This partly ignores the memory of the neural

membrane potential, an important characteristic of spiking

neural models. Another reinforcement learning algorithm

that can be used for spiking neural networks works by rein-

forcing stochastic synaptic transmission [30].

Here, we present a new reinforcement learning algorithm

for spiking neural networks. The algorithm is derived ana-

lytically for networks of probabilistic (stochastic) integrate-

and-fire neurons, and is tested on networks of both proba-

bilistic and deterministic neurons. The learning rule that we

propose is local to the synapse, assuming that the reinforce-

ment signal is diffusely distributed into the network: synap-

tic changes depend on the reinforcement and the activity of

the pre- and postsynaptic neurons.

We first present, in Section 2, the derivation of the al-

gorithm. We discuss next the relationship of the proposed

algorithm with other similar algorithms (Section 3), and its

relevance to neuroscience (Section 4). In Section 5 we de-

scribe experiments that validate the learning capabilities of

the method. The last Section is dedicated to the conclusions.
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2. Derivation of the algorithm

2.1. Analytical derivation

The algorithm we propose is derived as an application of

the OLPOMDP reinforcement learning algorithm [9, 8], an

online variant of the GPOMDP algorithm [3, 7]. GPOMDP

assumes that the interaction of an agent with an environ-

ment is a partially observable Markov decision process, and

that the agent chooses actions according to a probabilistic

policy μ that depends on a vector θ of several real para-

meters. GPOMDP was derived analytically by maximizing

the long-term average of the reward received by the agent.

Results related to the convergence of OLPODMP to local

maxima have been obtained [2, 23, 24].

We consider a neural network that evolves in discrete

time. At each timestep t, a neuron i either fires (fi(t) = 1)

with probability σi(t), or does not fire (fi(t) = 0) with

probability 1 − σi(t). The neurons are connected through

plastic synapses with efficacies wij(t), where i is the in-

dex of the postsynaptic neuron. The efficacies wij can be

either positive or negative (corresponding to excitatory and

inhibitory synapses, respectively). A global reward signal

r(t) is broadcast to all synapses.

By considering each neuron i as an independent agent,

the firing/non-firing probabilities of the neuron as the pol-

icy μi of the corresponding agent, the weights wij of the

incoming synapses as the vector θi that parameterizes the

agent’s policy, and the firing states fj of the presynaptic

neurons as the observation of the environment available to

the agent, we may apply OLPODMP to the neural network.

The result is the following plasticity rules that update the

synapses such as to optimize the long term average of the

reward received by the network:

wij(t + δt) = wij(t) + γ r(t + δt) zij(t + δt) (1)

zij(t + δt) = β zij(t) + ζij(t) (2)

ζij(t) =

⎧⎪⎪⎨
⎪⎪⎩

1
σi(t)

∂σi(t)
∂wij

, if fi(t) = 1

− 1
1 − σi(t)

∂σi(t)
∂wij

, if fi(t) = 0,

(3)

where δt is the duration of a timestep, the learning rate γ
is a small constant parameter, z is an eligibility trace, and ζ
is a notation for the change of z resulted from the activity

in the last timestep. The discount factor β is a parameter

that can take values between 0 and 1, and that can also be

written as β = exp(−δt/τz), where τz is a time constant

for the exponential decay of z.

Up to now, we have followed a derivation also per-

formed in [4, 5]. However, unlike these studies, which dealt

with networks of memoryless binary stochastic units, from

now on we will consider here networks of stochastic leaky

integrate-and-fire neurons, that evolve in discrete time ac-

cording to:

Vi(t) = Vi(t−δt) exp (−δt/τi)+
∑

j

wij(t−δt)fj(t−δt)

(4)

where τi is the leakage time constant, and the sum on

the right represents the growth of the potential caused by

the injection of current during a timestep by the firing

of presynaptic neurons. The neuron fires stochastically

with probability σ(Vi(t)). This corresponds to a noisy

threshold of the neuron, also called escape noise in spik-

ing neural models [15]. We thus have ∂σi(t)/∂wij =
∂σi(t)/∂Vi ∂Vi(t)/∂wij . If the neuron fires (fi(t) =
1), the potential is reset to a base value (reset potential),

Vi(t) = Vr. By expanding Eq. 4 back in time, up to the

moment t − n δt when neuron i has fired most recently, we

get

Vi(t) = Vr exp

(
−n δt

τi

)
+

n∑
k=1

⎛
⎝exp

(
− (k − 1) δt

τi

) ∑
j

wij(t − k δt)fj(t − k δt)

⎞
⎠ .

(5)

If we neglect the variation of wij in the interval between

two postsynaptic spikes, an approximation that is justified

because the parameter γ and/or the value of z are small, we

have:

∂σi(t)
∂wij

=
∂σi(t)
∂Vi

n∑
k=1

fj(t − k δt) exp

(
− (k − 1) δt

τi

)
.

(6)

By introducing this back in Eq. 3, we have:

ζij(t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
σi

∂σi

∂Vi

n∑
k=1

fj(t − k δt) exp

(
− (k − 1) δt

τi

)
,

if fi(t) = 1

− 1
1 − σi

∂σi

∂Vi

n∑
k=1

fj(t − k δt) exp

(
− (k − 1) δt

τi

)
,

if fi(t) = 0.

(7)

We see that, when a postsynaptic spike follows one or more

presynaptic spikes that were emitted after the previous post-

synaptic spike, ζ is positive, as 0 ≤ σ ≤ 1 because it is a

probability and ∂σ/∂V ≥ 0 because the firing probability

increases with higher membrane potential. We have thus a

spike-timing-dependent potentiation of z. The depression
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of z is non-associative, as each presynaptic spike decreases

z continuously until a postsynaptic spike is emitted.

We may choose to model the escape noise σ as a bounded

exponential function [15]:

σi(Vi) =

{
δt/τσ exp(βσ (Vi − θi)), if less than 1

1, otherwise
(8)

where θi is the threshold potential of the neuron and τσ and

βσ are constant positive parameters. For exponential escape

noise, ∂σi/∂Vi = βσ σi and we have:

ζij(t) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βσ

n∑
k=1

fj(t − k δt) exp

(
− (k − 1) δt

τi

)
,

if fi(t) = 1

− βσ σ(t)
1 − σ(t)

n∑
k=1

fj(t − k δt) exp

(
− (k − 1) δt

τi

)
,

if fi(t) = 0.

(9)

Hence, a spike pair consisting of a postsynaptic spike emit-

ted at t and a presynaptic spike emitted at t − k δt leads to

a potentiation of z with βσ exp (−(k − 1) δt/τi). We thus

have exactly an exponential dependence of the potentiation

of z on the relative spike timing.

The timestep δt should be small enough in order to keep

σ to values much smaller than 1. If σ is allowed to take val-

ues close to 1, ζ may diverge. The parameter τσ should be

chosen as a function of δt, since, if all parameters of the ex-

ponential escape noise function remain constant, the firing

probability within a given finite time varies as a function of

δt.
The parameters β and γ should be chosen such that

1/(1−β) and 1/γ are large compared to the mixing time of

the system. The mixing time can be defined rigourously for

a Markov process and can be thought of as the time from

the occurrence of an action until the effects of that action

have died away. However, β cannot be set arbitrarily close

to 1, since this induces a large variance in the estimation

of the gradient towards the optimum. Thus, there is a bias-

variance trade-off in setting β. Detailed information about

this is provided in [9, 3, 8, 7, 6, 2].

2.2. Generalization to other neural models

The neural models that are commonly used in simula-

tions are usually deterministic. In this case, a straightfor-

ward generalization of the reinforcement learning algorithm

is to still use Eq. 9 while considering σ as a constant para-

meter. Also, if the neural model used is not leaky integrate-

and-fire, τi in the same equation may characterize only the

plasticity mechanism, with no connection to neuronal dy-

namics. We will show that the algorithm proves in experi-

ments to be effective even after these generalizations.

The algorithm is not constrained by the use of discrete

time, and can be easily reformulated for continuous time by

taking the limit δt → 0.

3. Relationship and comparison to other rein-
forcement learning algorithms for spiking
neural networks

It can be shown that the algorithm proposed here shares a

common analytical background with the other two existing

reinforcement learning algorithms for spiking neural net-

works [30, 33].

Seung [30] applies OLPOMDP by considering that a

synapse is the agent, instead of the neuron, as we did. The

action of the agent is the release of a neurotransmitter vesi-

cle, instead of the spiking of the neuron, and the parameter

that is optimized is a parameter that controls the release of

the vesicle, instead of the synaptic connections to the neu-

ron. The result is a learning algorithm that is biologically

plausible, but for which there exists no experimental evi-

dence yet.

Xie and Seung [33] do not model in detail the inte-

grative characteristics of the neural membrane potential,

and consider that neurons respond instantaneously to in-

puts by changing the firing rate of their Poisson spike train.

The study derives a episodic algorithm that is similar to

GPOMDP, and extends it to an online algorithm similar to

OLPOMDP without any justification. It can be seen that the

expression of the eligibility trace, Eq. 13 in [33], is identi-

cal, after adapting notation and ignoring the sum due to the

episodic nature of the algorithm, to the one in our paper, Eq.

3. By reinterpreting the current-discharge function f in [33]

as the escape function σ, and the decaying synaptic current

hij as the contribution of a presynaptic spike to the mem-

brane potential Vi of the neuron that decays due to leakage,

we can see that the algorithm of Xie and Seung is mathemat-

ically equivalent to the algorithm derived, more accurately,

here. However, our different implementation of the mathe-

matical framework permits a straightforward generalization

and application to neural models commonly used in simu-

lations, which the Xie and Seung algorithm does not permit

because of the inescapable dependence on the Poisson char-

acteristic of the neurons.

The common theoretical background of the three algo-

rithms suggests that their learning performance should be

similar.
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4. Relevance to neuroscience: Reinforcement
learning and spike-timing-dependent plas-
ticity (STDP)

The plasticity rule implied by our algorithm for proba-

bilistic integrate-and-fire neurons with exponential escape

noise features an exponential dependence of the potentia-

tion of z on the time interval between pre- and postsynap-

tic spikes, and a non-associative depression of z dependent

on presynaptic spikes, as shown in Section 2. If the rein-

forcement r is negative, the potentiation of z determines a

depression of w, and we thus have spike-timing-dependent

depression and non-associative potentiation of the synap-

tic efficacy. This type of plasticity has been experimentally

discovered in the brain of the electric fish [16], and is a par-

ticular form of spike-timing-dependent plasticity (STDP).

STDP is the dependence of synaptic changes on the rela-

tive timing of pre- and postsynaptic action potentials, a phe-

nomenon that was experimentally observed in a variety of

biological neural systems [25, 10, 12]. The typical example

of STDP is given by the potentiation of a synapse when the

postsynaptic spike follows the presynaptic spike within a

time window of a few tens of milliseconds, and the depres-

sion of the synapse when the order of the spikes is reversed.

The dependence is approximately exponential.

If the reinforcement r is positive, our model recov-

ers the exponential characteristic of the typical spike-

timing-dependent potentiation. However, the model pre-

dicts non-associative depression in this case, instead of

the spike-timing-dependent, associative depression typi-

cally observed. In an experiment presented below, we have

replaced the non-associative depression of z implied by

the derived algorithm with exponential spike-timing depres-

sion. We have thus explored the learning properties of mod-

ulation of standard STDP by the reinforcement signal. We

found that reward-modulated STDP is also effective as a

reinforcement learning mechanism. A similar result, pub-

lished in abstract form, seems to have been found indepen-

dently [13].

Our model also predicts that the time constant of the

spike-time dependent potentiation time window is equal to

the membrane time constant of the neuron, τi. This is

consistent with experimental observations, as the two time

constants have the same order of magnitude—a few tens

of milliseconds. It was already speculated that the two

time constants should be comparable, since this ensures that

only those presynaptic spikes that arrive within the temporal

range over which a neuron integrates its inputs are potenti-

ated, enforcing the requirement of causality that is a typical

characteristic of STDP [1]. The same prediction also results

from a theoretical model that considers STDP as a mecha-

nism that reduces variability in the postsynaptic spike train

[11].

It is remarkable that our model recovers these features

of the brain given that the only ingredients that led to the

model are the abstract framework of the partially observable

Markov decision process following a parameterized proba-

bilistic policy, and a probabilistic version with exponential

escape noise of the integrate-and-fire neuron, the simplest

and the most widely used spiking neural model.

Our algorithm implies that STDP is modulated by the

reward signal r. This may be implemented in the brain by

a neuromodulator. For example, dopamine carries a short-

latency reward signal indicating the difference between ac-

tual and predicted rewards [28] that fits well our learning

model based on continuous reward-modulated plasticity. It

is known that dopamine and acetylcholine modulate clas-

sical (firing rate dependent) long term potentiation and de-

pression of synapses [29, 17, 32]. Current experimental ev-

idence of modulation of STDP by neuromodulators is lim-

ited to the discovery of amplification of spike-time depen-

dent potentiation in hippocampal CA1 pyramidal neurons

by the activation of β-adrenergic receptors [19, Fig. 6F]. As

speculated before [33], it may be that other studies failed to

detect the influence of neuromodulators on STDP because

they were performed in vitro, where the reward circuitry

may not have worked, and the reward signal may have been

fixed to a given value.

Thus, the derivation of this algorithm led to the finding

of a reinforcement mechanism that is highly biologically

plausible and that may operate in our brains.

5. Experiments and results

5.1. Experimental design

We tested the proposed reinforcement learning mecha-

nisms on a biologically-inspired problem. We simulated an

imagined aquatic worm that had one end fixed to a support

and had a mouth at the other end (see Fig. 1). There was a

source of food near the worm, which diffused a gradient of

a chemical substance in the water. The worm perceived this

gradient. If the mouth moved to a position with a higher

concentration of substance, the worm’s neural system re-

ceived a positive reward; if it moved to a position with a

lower concentration, the reward was negative. By learn-

ing to maximize the average reward, the worm should have

moved its mouth towards the food source.

The design of the experiment was motivated by the fol-

lowing considerations. The learning mechanism that we in-

vestigated is biologically plausible, hence we wanted to test

it in a biologically-inspired framework. We used an em-

bodied agent because of our belief that computational neu-

roscience models are best studied in an embodied context

([14]; see also [27]). The size of the neural network that we

could simulate was restricted by computational constraints.
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a) b) c)

Figure 1. The movement of the worm during the first 30 s of three experiments where the food source
is in a difficult to reach position. The dotted line represents the trajectory of the mouth of the worm.
The thin lines represent snapshots of the position of the worm, taken every 3 s. The thick line
represents the position of the worm at 30 s after the beginning of the experiment. The filled circle
indicates the position of the food source, the open square indicates the position of the base of the
worm. a) Experiment 1: The worm is controlled by a network of stochastic integrate-and-fire neurons.
b) Experiment 2: The worm is controlled by a network of Izhikevich neurons. c) Experiment 3: The
worm is controlled by a network of Izhikevich neurons featuring reward-modulated STDP.

Thus the animal we simulated should have been very sim-

ple, according to the size of the neural network. In the de-

sign of the simulated animal, we followed the principles

stated in [26]. While we believe that the setup is of bio-

logical relevance, we did not attempt to model a particular

real animal.

We simulated the worm as a chain of 20 articulated lin-

ear segments in two dimensions. The worm could move

each articulation to a relative angle within ±θmax = 25o by

commanding two antagonist effectors.

The simulated animal was controlled by a spiking neural

network. In some experiments, the network was composed

of probabilistic integrate-and-fire neurons, described above.

In other experiments, the network was composed of deter-

ministic Izhikevich neurons [18]. The network was com-

posed of a set of input neurons, a set of hidden neurons and

a set of motor neurons, with random connectivity. At each

time step, the network received a reward r(t) = 1 if the

mouth moved closer to the food source, or r(t) = −1 if the

mouth moved farther.

The input neurons conveyed proprioceptive information

about the articulations. For each articulation there were 4

corresponding input neurons. The activation of 2 of them

was proportional to the angle between the orientation of the

articulation and the leftmost possible orientation; the acti-

vation of the other 2 corresponded to the angle between the

orientation of the articulation and the rightmost possible ori-

entation. The activations were normalized between 0 and 1.

The input neurons fired Poisson spike trains, with a firing

rate proportional to the activation, between 0 and 50 Hz.

The spikes of motor neurons were converted to effector

activations by integrating them with a leaky accumulator of

time constant τe = 2 s. This is equivalent to performing

a weighted estimate of the firing rate using an exponential

kernel with the same time constant. The motor activations

a evolved according to a(t) = a(t − δt) exp(−δt/τe) +
(1 − exp(−1/νeτe))f(t), where f(t) indicates whether the

motor neuron has fired. The factor that weighed the con-

tribution f(t) of the spikes insured that the activation was

normalized to 1 when the neuron fired regularly with fre-

quency νe = 25 Hz; the activation was also limited to the

interval [0, 1] through hard bounds. The activations of 2

motor neurons were averaged to yield the activation of one

effector. There were two antagonist effectors per articula-

tion; if their activations were a+ and a−, the articulation

was set to a relative angle (a+−a−)θmax. The network was

thus composed of 80 input neurons and 80 motor neurons.

The network also had 200 hidden neurons (the number of

hidden neurons was chosen to be somehow larger than the

total number of input and motor neurons, for biological rel-
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Figure 2. A spikegram representing the activ-
ity of the neural network in the last 0.5 s of
the movement represented in Fig. 1 b)

evance). Each neuron in the network sent axons to 15 % of

hidden and motor neurons, chosen randomly.

The network was simulated with a time step δt = 1 ms.

Since effector activations were initially set to 0 and bending

of an articulation required an imbalance in the activities of

the antagonist effectors, the initial position of the worm was

vertical.

5.2. Experiment 1: Training a network of proba-
bilistic integrate-and-fire neurons

In the first experiment, the worm was controlled by a net-

work of probabilistic integrate-and-fire neurons, for which

the reinforcement learning algorithm was derived. The neu-

rons had a time constant τi = 20 ms, reset potential Vr = 10
mV, threshold potential θi = 16 mV, exponential escape

noise with τσ = 20 ms and βσ = 0.2 mV−1. The synap-

tic weights evolved according to Eq. 9, were hard-bounded

within [wmin, wmax] and were initialized with random val-

ues at the beginning of the experiment. For synapses from

input neurons, wmin = −0.1 mV, wmax = 1.5 mV; for the

other synapses, wmin = −0.4 mV, wmax = 1 mV. There

were no axonal delays. The parameters of the learning al-

gorithm were τz = 5 ms, γ = 0.025 mV2 · (wmax−wmin).

5.3. Experiment 2: Training a network of Izhike-
vich neurons

In a second experiment, we verified whether the learn-

ing algorithm can generalize to networks composed of other

types of neurons. Thus, the simulated worm was controlled

by a spiking neural network composed of Izhikevich-type

neurons [18]. These deterministic model neurons have bi-
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D
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Figure 3. The evolution in time of the average
distance between the mouth of the worm and
the food source. Squares represent data for
experiment 1, circles correspond to experi-
ment 2, diamonds correspond to experiment
3. Data for each curve is extracted from 100
trials; for each trial the food is placed in a
random position, in a semicircle with radius
of 0.8 times the worm length, centered on the
worm’s base.

ologically plausible dynamics, similar to Hodgkin-Huxley-

type neurons, but are suitable for large-scale simulation.

The learning algorithm included the generalizations

mentioned in Section 2.2. For more biological realism, we

also included in the model the dependence of the synaptic

current on the membrane potential Vi of the postsynaptic

neuron. We considered that synapses are characterized by a

positive conductance gij that depends on presynaptic activ-

ity, a positive efficacy wij hard-bounded between 0 and 1

that was modified during the learning process, according to

Eq. 1, and a constant positive strength sij . At each timestep

δt, a postsynaptic potential sij wij(t) gij(t) (Eij −Vi(t)) δt
was transmitted by a synapse to the postsynaptic neuron,

where Eij is the reversal potential of the synaptic chan-

nels. Conductances evolved according to gij(t) = gij(t −
δt) exp(−δt/τg) + fj(t), where fj(t) is the spike train of

the presynaptic neuron and τg is a decay time constant. In

this case, the sign of the postsynaptic potential is given by

Eij − Vi(t) and w is always positive. Hence, we set the pa-

rameter γ to be positive for excitatory synapses and negative

for inhibitory ones, in order to maintain the same behavior

as in the case where w is a signed quantity.

To agree with experimental evidence, we considered the

neurons to be either inhibitory or excitatory (Dale’s law).
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Out of the 200 hidden neurons, 70 were inhibitory and the

rest excitatory. The input and motor neurons were also

excitatory. Inhibitory neurons were of ’fast spiking’ type,

the other neurons were ’regular spiking’, with parameters

from [18]. Axonal delays were chosen randomly between 1

ms and 40 ms. Excitatory synapses had synaptic strength

s = 0.1 and reversal potential E = 0 mV; inhibitory

synapses had s = 0.2 and E = −90 mV. The decay time

constant of the conductances was τg = 5 ms. The effica-

cies w were initialized randomly at the beginning of the

experiment with values between 0 and 1. The parameters

of the learning algorithm were τi = 20 ms, βσ = 0.2,

σ = 0.02, τz = 5 ms (we considered that the eligibility

trace and the evoked postsynaptic potential evolve on the

same time scale); γ was 0.025 for excitatory synapses and

-0.025 for inhibitory synapses (the sign changes because we

considered that w is always positive).

5.4. Experiment 3: Reinforcement learning through
modulated STDP

In a third experiment, we investigated whether we could

still have reinforcement learning if we consider that changes

of z depend exclusively on the timing between pre- and

postsynaptic spikes. In this case, the algorithm is a mod-

ulation, through the reinforcement r, of the standard form

of STDP. As in previous studies [31, 1], we model STDP as

having an exponential dependence on the relative spike tim-

ing, and we consider that the effect of different spike pairs

is additive. Hence, in this experiment,

ζij(t) = A+ fi(t)
∞∑

k=1

fj(t−k δt) exp

(
− (k − 1) δt

τi

)
−

A− fj(t)
∞∑

k=1

fi(t − k δt) exp

(
− (k − 1) δt

τi

)
, (10)

where A± are constant parameters, A+ = 0.005, A− =
1.05 A+ [31]. In a computer simulation, ζ can be computed

by using two variables for each synapse, P+ that tracks the

influence of presynaptic spikes and P− that tracks the in-

fluence of postsynaptic spikes:

P+
ij (t) = P+

ij (t − δt) exp(−δt/τi) + A+ fj(t − δt)

P−
ij (t) = P−

ij (t − δt) exp(−δt/τi) − A− fi(t − δt)

ζij(t) = P+
ij (t) fi(t) + P−

ij (t) fj(t). (11)

The ζ computed like this was used in conjunction with Eqs.

1 and 2 to compute the synaptic changes. We used a net-

work of Izhikevich neurons, with the same setup as in Ex-

periment 2, except setting γ = 1 for excitatory synapses and

γ = −1 for inhibitory synapses, since the synaptic changes

were already scaled by the A± parameters.

5.5. Results

The simulated worm learned quite fast (in less than one

minute of simulated time) to find the food source, in all

three experiments. Fig. 1 illustrates typical trajectories

of the worm. It was always able to perform the task if

food is placed in the accessible area. After approaching

the food, the mouth of the worm remained close to it, os-

cillating around, as illustrated in Fig. 3. Thus, the proposed

algorithm is efficient as a reinforcement learning mecha-

nism for networks of probabilistic integrate-and-fire neu-

rons, for which it was designed, as well as for generic spik-

ing neural networks, composed, for example, by Izhikevich

neurons. Reward-modulated STDP was as effective for re-

inforcement learning as the analytically-derived algorithm.

6. Conclusion

In conclusion, we have derived a new reinforcement

learning mechanism for spiking neural networks and have

tested its efficacy in a biologically-inspired framework. The

algorithm was derived for stochastic integrate-and-fire neu-

rons, but we verified that it can be also applied to generic

spiking neural networks. Our model recovers the expo-

nential characteristic of the experimentally observed spike-

time dependent potentiation, and predicts that the time con-

stant of the spike-time dependent potentiation time win-

dow is equal to the membrane time constant of the neuron,

in agreement with experimental observations in the brain.

The algorithm has also led to the discovery of a reinforce-

ment learning mechanism based on the modulation of spike-

timing dependent plasticity, a mechanism that may operate

in the brain.
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