
Western Michigan University Western Michigan University

ScholarWorks at WMU ScholarWorks at WMU

Dissertations Graduate College

12-2019

A Reinforcement Learning Approach to Spacecraft Trajectory A Reinforcement Learning Approach to Spacecraft Trajectory

Optimization Optimization

Daniel S. Kolosa
Western Michigan University, danieljr1@aol.com

Follow this and additional works at: https://scholarworks.wmich.edu/dissertations

 Part of the Aerodynamics and Fluid Mechanics Commons, and the Mechanical Engineering Commons

Recommended Citation Recommended Citation

Kolosa, Daniel S., "A Reinforcement Learning Approach to Spacecraft Trajectory Optimization" (2019).

Dissertations. 3542.

https://scholarworks.wmich.edu/dissertations/3542

This Dissertation-Open Access is brought to you for free
and open access by the Graduate College at
ScholarWorks at WMU. It has been accepted for inclusion
in Dissertations by an authorized administrator of
ScholarWorks at WMU. For more information, please
contact wmu-scholarworks@wmich.edu.

http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/
https://scholarworks.wmich.edu/dissertations
https://scholarworks.wmich.edu/grad
https://scholarworks.wmich.edu/dissertations?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/222?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wmich.edu/dissertations/3542?utm_source=scholarworks.wmich.edu%2Fdissertations%2F3542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wmu-scholarworks@wmich.edu
http://scholarworks.wmich.edu/
http://scholarworks.wmich.edu/

A REINFORCEMENT LEARNING APPROACH TO SPACECRAFT TRAJECTORY

OPTIMIZATION

by

Daniel S. Kolosa

A dissertation submitted to the Graduate College

in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Mechanical and Aerospace Engineering

Western Michigan University

December 2019

Doctoral Committee:

Jennifer S. Hudson, Ph.D., Chair

Richard M. Meyer, Ph.D.

Kapsong Ro, Ph.D.

Robert G. Trenary, Ph.D.

c� 2019 Daniel S. Kolosa

ACKNOWLEDGMENTS

First, I would like to thank my advisor Professor Jennifer Hudson, for her patience, guid-

ance, and encouragement throughout my graduate career. I would also like to thank Professor

Richard Meyer and Professor Robert Trenary for their invaluable support and advice. I also want

to thank Professor Kapsong Ro for being a part of my education since my undergraduate career.

I would like to thank the Mechanical and Aerospace engineering department for providing

assistance and support throughout my graduate career. I am grateful to the Space Flight Dynamics

and Control Laboratory as well as Justin Rittenhouse and Chris Proctor for their insight, company,

and comradery.

I would like to thank my parents and siblings for their continued support and encourage-

ment to pursue a graduate career. Finally, I want to sincerely thank my wife Yihan, for encouraging

me to be persistent and keeping me grounded in moments when it is darkest before dawn.

Daniel S. Kolosa

ii

A REINFORCEMENT LEARNING APPROACH TO SPACECRAFT TRAJECTORY

OPTIMIZATION

Daniel S. Kolosa, Ph.D.

Western Michigan University, 2019

This dissertation explores a novel method of solving low-thrust spacecraft targeting prob-

lems using reinforcement learning. A reinforcement learning algorithm based on Deep Determin-

istic Policy Gradients was developed to solve low-thrust trajectory optimization problems. The

algorithm consists of two neural networks, an actor network and a critic network. The actor ap-

proximates a thrust magnitude given the current spacecraft state expressed as a set of orbital el-

ements. The critic network evaluates the action taken by the actor based on the state and action

taken. Three different types of trajectory problems were solved, a generalized orbit change maneu-

ver, a semimajor axis change maneuver, and an inclination change maneuver. When training the

algorithm in a simulated space environment, it was able to solve both the generalized orbit change

and semimajor axis change maneuvers with no prior knowledge of the environment’s dynamics.

The robustness of the algorithm was tested on an inclination change maneuver with a randomized

set of initial states. After training, the algorithm was able to successfully generalize and solve new

inclination changes that it has not seen before.

This method has potential future applications in developing more complex low-thrust ma-

neuvers or real-time autonomous spaceflight control.

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF ABBREVIATIONS . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Contributions . 2

2 LITERATURE REVIEW . 3

2.1 Low-thrust Trajectory Optimization . 3

2.2 Machine Learning Methods for Spacecraft Trajectory Analysis 4

2.3 Reinforcement Learning Approaches to Complex System Dynamics 5

3 ORBITAL MECHANICS REVIEW . 6

3.1 Orbital Elements . 6

3.2 Orbital Trajectory Problem . 9

4 REINFORCEMENT LEARNING . 12

4.1 Markov Decision Process . 12

4.2 Temporal Difference . 14

4.3 Q-Learning . 14

4.4 Policy Gradient Theorem . 16

4.5 Actor-Critic and Deep Deterministic Policy Gradients 16

iii

CHAPTER

Table Of Contents–Continued

4.6 Neural Networks . 18

5 IMPLEMENTATION . 22

5.1 Space Dynamics . 22

5.2 Actor-Critic Network . 23

5.3 Reward Function . 25

5.4 Experience Replay . 26

5.5 Reinforcement Learning Implementation . 28

5.6 Algorithm Validation . 31

6 STATIC MISSION RESULTS . 33

6.1 General Orbit Change . 35

6.2 Semimajor Axis Change and MEO to GEO Missions 39

7 PARAMETER VARIATION RESULTS . 48

7.1 Variable Inclination Change . 48

7.2 Variable Generalized Orbit Change . 53

8 CONCLUSION . 58

REFERENCES . 60

APPENDIX

A Reinforcement Learning Testing Environments . 63

.1 Pendulum Environment . 63

.2 Lunar Lander . 64

.3 Biped Walker . 66

iv

LIST OF TABLES

6.1 Spacecraft Parameters . 33

6.2 Algorithm hyperparameters, Algorithm 3 . 33

6.3 Memory hyperparameters Equations 5.11, 5.12 34

6.4 Orbital element tolerances . 34

6.5 General orbit change mission . 35

6.6 Neural Network hyperparameters . 36

6.7 General orbit element change reward function coefficients, Equation 5.7 37

6.8 Semimajor axis change mission . 39

6.9 Neural Network hyperparameters for semimajor axis change mission 40

6.10 MEO to GEO mission parameters . 43

6.11 Neural Network hyperparameters . 43

6.12 MEO to GEO reward parameters, , Equation 5.7 45

7.1 Inclination change mission parameters . 48

7.2 Generalized orbit change mission . 53

1 Neural Network parameters . 64

2 Pendulum neural network hyperparameters . 66

3 Lunar Lander network parameters . 67

v

LIST OF FIGURES

3.1 Keplerian Orbital Elements [12] . 7

3.2 Spiral Out Maneuver . 9

3.3 An Inclination Change Maneuver . 10

4.1 Markov Decision Process . 13

4.2 Diagram of McCulloch-Pitts Neuron Model [19] 19

4.3 Feed-forward Neural Network . 19

4.4 Neural Network Node with a Sigmoid Activation 20

4.5 Sigmoid Activation Function . 20

4.6 Hyperbolic Tangent Activation Function . 21

4.7 Rectified Linear Unit Activation Function . 21

5.1 Actor Network . 24

5.2 Critic Network . 25

5.3 Binary Heap Data Structure . 27

5.4 Software Architecture . 29

6.1 General Orbit Change Maneuver . 36

6.2 Orbital Elements of the General Orbit Change Maneuver 37

6.3 General Orbit Change Maneuver Thrust Profile 38

6.4 Reward Function Output for Generalized Orbit Change Mission 39

6.5 Orbital Elements for Semimajor Axis Change Maneuver 40

6.6 Thrust Output for Semimajor Axis Change Mission 41

6.7 Reward Function for a Semimajor Axis Change Mission 42

6.8 Trajectory of MEO to GEO Mission . 44

6.9 Orbital Elements for MEO to GEO Mission . 45

6.10 Thrust Output for MEO to GEO Mission . 46

vi

List of Figures–Continued

6.11 Reward Function Output for a MEO to GEO Mission 47

7.1 Inclination Change Mission Trajectory . 49

7.2 Inclination Change Mission . 50

7.3 Inclination Change Thrust Profile . 51

7.4 Inclination Change Seesaw Effect . 52

7.5 Reward Function Output for the Inclination Change Mission 53

7.6 General Orbit Change Maneuver Test Case 1 . 54

7.7 General Orbit Change Maneuver Test Case 2 . 55

7.8 Reward Function for General Orbit Change Maneuver Test Case 2 56

7.9 Reward for orbit raising Maneuver Test Case 2 . 57

1 Pendulum Environment . 63

2 Pendulum Reward Output . 65

3 Lunar Lander Environment . 66

4 Lunar Lander Reward Output . 67

5 Biped Walker Environment . 68

6 Biped Walker Reward Output . 69

vii

LIST OF ABBREVIATIONS

αm prioritized memory hyperparameter

α learning rate

αa reward value weight for semimajor axis

αex
reward value weight for first component of equinoctial eccentricity

αey
reward value weight for second component of equinoctial eccentricity

αhx
reward value weight for second component of equinoctial inclination

β prioritized memory selection hyperparameter

δ TD-error

ε priority replay value weight

γ discount factor

µE Gravitational constant of a central body

µ action

µ
l layer mean

Ω Right ascension of the ascending node

ω perigee

π policy

σ l layer standard deviation

τ target network soft update

θ̄ normalized angle

θ̇ angular velocity

θ
µ

t parameter policy

θ neural network weight parameter

θL Mean Longitude

A action value

a semimajor axis

ai action at a sampled state

at action at a given time

E Eccentric Anomaly

Eπ Environment given a policy

e eccentricity

et experience memory

ex first component of equinoctial eccentricity

ey second component of equinoctial eccentricity

FR Thrust in the radial direction

FS Thrust in the circumferential direction

Ft Thrust acceleration

viii

List of Abbreviations—Continued

FW Thrust acceleration in the normal direction

Gt Return following time t

h angular momentum

hx first component of equinoctial inclination

hy second component of equinoctial inclination

Isp specific Impulse

i inclination

J cost function

K normal direction unit vector

L Loss function

l length

M Mean Anomaly

m mass

mf fuel mass

N Node line unit vector

Nb batch size

Nt action noise

Nd decay rate

pt priority value

Q Q-value

qπ q-value from a policy

r position vector

R total reward

r Reward

ra reward value semimajor axis

rex reward value first component of equinoctial eccentricity

rey reward value second component of equinoctial eccentricity

rhx reward value third component of equinoctial inclination

rhy reward value fourth component of equinoctial inclination

St state at a given time

s state

T Torque

t time

V value function

v velocity vector

wi neural network weight

x state vector

yi expected reward

ix

CHAPTER 1

INTRODUCTION

Reinforcement learning has recently become an exciting topic in machine learning. With

recent advancements in computer hardware and architecture, it has become feasible to train rein-

forcement learning algorithms in a reasonable amount of time. Reinforcement learning algorithms

are being used in the development of self-driving cars, robotics, finance, medicine, games, and

mechanical systems.

This dissertation proposes the use of a reinforcement learning algorithm to solve low-thrust

spacecraft targeting problems. The objectives of this research are as follows; apply a reinforcement

learning algorithm as a method to determine the piecewise continuous thrust of a spacecraft to

reach a desired target orbit using only the current state of the spacecraft at a given time, generalize

the algorithm to be able to solve different orbital targeting problems.

The methodological goal of this research is to approach spacecraft trajectory control and

optimization through a novel perspective. Low-thrust trajectory dynamics are nonlinear and solv-

ing these types of trajectories often requires optimization methods. The novel approach presented

here uses a set of neural networks to control the thrust vector of a spacecraft at a given time. Neural

networks are known as nonlinear function approximators, that only require an input and generate

a representation of a nonlinear function. Without training and tuning, a neural network will not

sufficiently be able to generate a meaningful output. This research uses model-free reinforcement

learning as the optimization model. Model-free reinforcement learning algorithms do not require

domain knowledge of the application. This approach allows for the representation of complex dy-

namics without having to compromise on fidelity by linearization. Linearization of the dynamics

are limited by the perspective of the designer whereas reinforcement learning can generate and

simulate complex control laws in a relatively short amount of time.

The method presented here is formulated as a Markov Decision Process. This process

1

has an agent (satellite), placed in an environment, given a set of goals, and propagated through

the environment according to a policy that attempts to maximize the reward obtained from the

environment. The policy is a function based on a form of the Bellman equations, which attempts

to maximize the reward or quality Q, given a current state and possible action. The quality function

Q, can be represented as a non-linear function in terms of the state-action pair and can be estimated

using a neural network. The neural network based policy is analogous to a non-linear thrust control

law. Using an iterative method of exploring the environment, the spacecraft can train the neural

network to find an optimal control law to allow the spacecraft to reach a target state.

There are many possible applications of this research within the domain of orbital trajectory

optimization. In a problem with a known solution, this method can allow for further optimization

of fuel usage by allowing a more complex thrust controller. The research presented here can also be

applied to real-time autonomous spacecraft navigation. Deep space missions with large time delays

or interference in communications could use this method to allow a spcecraft to safely navigate.

Also this algorithm can be used for satellites to re-route a trajectory for obstacle avoidance like

space debris.

1.1 Contributions

The primary contributions of this dissertation are:

• A generalized machine learning framework for solving low-thrust spacecraft trajectory opti-

mization problems.

• An algorithm that can be applied flexibly to any two-body space dynamics system regardless

of the complexity of the trajectory problem.

• An alogrithm to tune neural networks for common orbital targeting problems that can be

used for preliminary low-thrust mission design.

2

CHAPTER 2

LITERATURE REVIEW

The following sections discuss different approaches used to solving and modeling low-

thrust trajectory problems. The second section discusses machine learning methods for low-thrust

trajectory design. The final section discusses the use of reinforcement learning to solve complex

control problems.

2.1 Low-thrust Trajectory Optimization

For an optimization model, good initial guesses are more important for one type of opti-

mization problem than another to reach a good approximation. Two major approaches to solving

an optimization problem are by taking a direct or an indirect approach. A direct approach solves

a nonlinear programming problem using a penalty function or augmented Lagrangian functions to

find the control parameters. An indirect approach finds an approximate solution using an associ-

ated two-point boundary value problem. To obtain a good approximate solution, many people have

developed methods that generate good initial guesses.

For low-thrust trajectory optimization and control, many analytical and numerical approaches

exist. Methods like [1] use the sinusoidal logarithmic shape to represent the trajectory. Fang,

Wang, Sun, and Yuan [2], use a finite Fourier series to approximate a low-thrust trajectory. Eu-

ler [3], solves a power-limited low-thrust rendezvous problem using polar coordinates. Ocampo

[4] discusses the tradeoffs between scope and depth of designing a software system for spacecraft

trajectory optimization. He then designs two missions, one is an lunar-free trajectory implusive

maneuver, and the second mission is a low-thrust maneuver to place a spacecraft in a polar lunar

orbit. Using evolutionary algorithms is another popular approach to solving low-thrust optimiza-

tion problems. Zeng, Geng, and Wu [5], developed a shape-based method that can be applied to

3

both transfer and rendezvous problems. This method does not assume a fixed shape for the trajec-

tory and optimizes for minimum fuel consumption. Their approach may reduce computation time

by avoiding numerically integrating the motion equations. Vasile [6], implemented an evolutionary

and branching algorithm to solve two-body low-thrust optimization problems. Zhuang and Huang

use a combination of particle swarm optimization and Legendre pseudospectral method to find a

time-optimal low-thrust trajectory. The method switches between the two algorithms to mitigate

their individual disadvantages to find better global optimum solutions than using the algorithms

separately.

2.2 Machine Learning Methods for Spacecraft Trajectory Analysis

Work done by Yang, Xu, and Zhang[7], modeled low-thrust spiral trajectories of an elec-

tric propulsion system using Lyapunov-based guidance and an artificial neural network (ANN)

to implement control gains. The ANN used an evolutionary algorithm for learning and training.

The dynamic model used the orthogonal radial-horizontal frame (RSW) as the coordinate system.

Lyapunov-based guidance was used to model minimum-time and time-fixed minimum-propellant

low-thrust orbit transfers. For both minimum-time and time-fixed minimum-propellant models,

the satellite was within the threshold, concluding that this model can be used as an autonomous

guidance scheme.

Ampatzis and Izzo [8], integrated a neural network in an evolutionary algorithm to approx-

imate the objective function of a low-thrust trajectory. The neural network was adaptively trained

by employing the original objective function and collecting input/output data. The neural network

was created using feed-forward networks and trained using the Levenberg Marquardt algorithm.

The model was then benchmarked using a Multiple Gravity Assist (MGA) Problem, modeled after

the Cassini 1 trajectory to Saturn. The objective function was the total deltaV accumulated during

the mission. The second benchmark was modeled after the Cassini 2 mission. For this mission, the

target planet was Saturn and the planetary flyby sequence was Earth-Venus-Venus-Earth-Jupiter-

Saturn and deep space maneuvers(DSM) were allowed in between each one of the planets. The

third benchmark used a MGA-DSM mission to Mercury based on the Messenger mission. The

results showed that an objective function using an ANN gave accurate results.

4

Machine learning techniques were employed by [8], to optimize fuel usage of a spiral

low-thrust optimization problem. This research uses a simple optimal control problem to initially

calculate the fuel mass of an orbit transfer then further optimizes the result with a regression

algorithm. The method presented in this research does not implement an optimal control approach.

The reinforcement learning approach is a model-free approach which does not require any domain

knowledge of the problem to find an optimal solution. By not being restricted by the domain

knowledge of the problem, it is possible to generalize the algorithm to solve trajectory problem

where the domain may be very complex.

Izzo, Sprague, and Tailor[9], implement a similar approach where a simplified optimal tra-

jectory optimization problem is solved first then optimized using machine learning. Their method

uses a deep neural network represent the optimal guidance profile of an interplanetary mission.

Th test case implemented was a interplanetary trajectory problem from Earth to Mars. The neural

network was trained using a dataset of optimal trajectory problems that were solved as two-point

boundary value problems.

2.3 Reinforcement Learning Approaches to Complex System Dynamics

In the realm of control problems, reinforcement learning can be used to control complex

systems. Kumar, Paul, and Omkar designed a bipedal robot and used reinforcement learning train

it in a simulated environment to successfully walk 10 meters without falling[10]. Lingli, Xuanya,

yadong, and Kaijun used a deep deterministic policy gradient algorithm and a simulated environ-

ment to determine the optimal driving maneuvers of a land-vehicle [11]. Their trained model is

then transferred to another virtual environment calculated a sequence of trajectories. The trajecto-

ries are evaluated and the optimal is selected.

5

CHAPTER 3

ORBITAL MECHANICS REVIEW

In a restricted two-body problem, a small object with negligible mass orbits a central body

with no other bodies affecting the system. The dynamics of the restricted two body problem can

be described by Newton’s equation of planetary motion,

r̈ = µE

|r|3
r (3.1)

where r =
� rx

ry
rz

�

, is the position and µE is the standard gravitational constant of the central body.

In spacecraft trajectory analysis, the small secondary object is a spacecraft, which many have

an onboard propulsion system. In the case of general continuous thrust, thrust is modeled as a

continuous vector that changes its magnitude and direction over time. The dynamic model of a

continuous thrust maneuver can be modeled as,

ṙ =
µE

|r|3
r+Ft (3.2)

where Ft is the thrust acceleration. Over a long duration thrust arc, a small change in the magnitude

or direction of the thrust may result in a large change of the trajectory.

3.1 Orbital Elements

In orbital mechanics, several different coordinate systems are used. One method to express

the position and velocity of an orbiting object with respect to a central body is by using Cartesian

6

Figure 3.1: Keplerian Orbital Elements [12]

vectors defined in Equations 3.3-3.4.

r =
�

rx ry rz

�T

(3.3)

v =
�

vx vy vz

�T

(3.4)

The state vector at any point in time can be obtained by solving the two-body differential equations

for Newton’s equation of motion Equation 3.1.

Another coordinate system commonly used is the Keplerian orbital elements. These orbital

elements describe the shape, size, and orientation of the orbit using six elements as shown in Figure

3.1.

The semi-major axis (a), is the average of the periapsis and apoapsis radii. The eccentricity

(e), describes the shape of the orbit, with an eccentricity of zero being a circular orbit and as the

eccentricity approaches 1 the orbit becomes more elliptical. Beyond an eccentricity of one, the

orbit is then hyperbolic. The inclination (i) is the vertical tilt of the orbit. The longitude of the

ascending node (Ω) is the intersection point between the Earth’s equatorial plane and the orbit

plane. The argument of perigee (ω) is the angle from the node line to the eccentricity vector in

the orbital plane. The node line is a line where the orbit intersects a point of reference where

the orbit is inclined. The true anomaly θ , is the angle of the position of a body measured in the

7

plane of the orbit from periapsis. A state vector (r,v) described in Cartesian coordinates can be

described equivalently by the set of six orbital elements (a,e, i,Ω,ω,θ). Appendix B details the

transformation from Cartesian to Keplerian orbital elements. Continuous thrust maneuvers can be

represented in the RWS coordinate frame, where R is along the radial direction of the orbit, W is

the circumferential direction, and S along the angular momentum vector. The non-linear dynamics

of low-thrust maneuvers can be expressed using Gauss’s Variational equations [13] (3.5 - 3.10).

da

dt
= 2

�

a

µE
[FR

ae
√

1− e2
sinθ +FS

a2
√

1− e2

a(1− ecosE
] (3.5)

de

dt
=

h

µE
sinθFR +

1

µEh
[(h2 +µEr)cosθ +µEr]FS (3.6)

di

dt
=

r

h
cos(ω +θ)FW (3.7)

dΩ

dt
=

r

hsin i
sin(ω +θ)FW (3.8)

dω

dt
=−

1

eh
[
h2

µE
cosθFR − (r+

h2

µE
)sinθFS]−

r sin(ω +θ)

h tan i
FW (3.9)

dθ

dt
=

h

r2
+

1

eh
[
h2

µE
cosθFr − (r+

h2

µE
)sinθFs] (3.10)

Where FR,FW ,FS are the thrust acceleration, in the R̂,Ŵ , Ŝ directions. One disadvantage of using

Keplerian orbital elements are singularities at zero inclination or eccentricity for Equation 3.8

and Equation 3.9. By transforming Keplerian orbital elements to equinoctial elements shown in

Equations (3.11 - 3.15), singularities can be avoided.

a = a (3.11)

ex = ecos(Ω+ω) (3.12)

ey = esin(Ω+ω) (3.13)

hx = tan(
i

2
)cos(Ω) (3.14)

hy = tan(
i

2
)sin(Ω) (3.15)

8

Equations (3.5 - 3.10) can also be expressed in equinoctial form [14]

da

dt
=

2a2

h
{(ex sinθL − ey cosθL)FR + f racprFs} (3.16)

dex

dt
=

r

h
[−

p

r
cosθLFR +{ey +(1+

p

r
)sinθL}Fs − ex(hy cosθL −hx sinθL)Fw] (3.17)

dey

dt
=

r

h
[−

p

r
sinθLFR +{ey +(1+

p

r
)cosθL}Fs +hy(hy sinθL −hx cosθL)Fw] (3.18)

dhx

dt
=

r

2h
(1+h2

y +h2
x)sinθLFw (3.19)

dhy

dt
=

r

2h
(1+h2

y +h2
x)cosθLFw (3.20)

3.2 Orbital Trajectory Problem

Two types of low-thrust orbit maneuvers will be discussed: the spiral out maneuver, the

plane change maneuver. A spiral out maneuver, is defined as an orbit maneuver where the semi-

major axis changes while keeping the eccentricity and inclination constant. Figure 3.2, shows an

example of spiral out maneuver.

����� ����� ����� ����� � ����� ����� ����� �����

������

�����

�����

�����

�����

�

�����

�����

�����

�
��
�
�
�

������������������������������

Figure 3.2: Spiral Out Maneuver

A plane change maneuver is where only the inclination changes, while the other orbit

elements are held constant. Figure 3.3, shows an example of a plane change maneuver.

The low-thrust spacecraft targeting problem is formulated as follows: Given an initial

9

������

�����
�����

����
�

����
�����

�����

������
�����

�����

����

�

����

�����

�����

�
��
�
�
�

����

����

����

�

����

����

����

���������������������������

Figure 3.3: An Inclination Change Maneuver

spacecraft state

xo =

r(to)

ṙ(to)

A target state

x f =

r(t f)

ṙ(t f)

and a transfer time

t = t f − to

10

find the piecewise-continuous thrust acceleration control

Ft =

FR1 Fw1 Fs1

FR2 Fw2 FS2

...
...

...

FRn Fwn FSn

such that −→x (t f) =
−→x f , where the trajectory dynamics are given by Equations 3.5 - 3.10

where i = 1, . . .n, and t
n

is the time duration of each time interval.

11

CHAPTER 4

REINFORCEMENT LEARNING

In machine learning, three major types of learning strategies exist; supervised, unsuper-

vised, and reinforcement learning. For supervised learning, a model is trained given a set of inputs

and expected responses. Then the model is evaluated by only giving the model a set of inputs and

comparing the response from the model with the true response. For unsupervised learning, a data

set for a model is given where the response is not known. The model then uses pattern matching

or other techniques to find associations between the features. Both supervised and unsupervised

learning algorithms are trained on large sets of data. Reinforcement learning differs from the pre-

vious two learning strategies because the learning algorithm is trained in an environment. The

goal of a reinforcement learning algorithm is to maximize the final reward in a given environment.

Reinforcement learning is more closely related to unsupervised learning than supervised learning

because the target value of every possible state is not known.

4.1 Markov Decision Process

The Markov Decision Process (MDP) is a framework used to define reinforcement learning

problems. In reinforcement learning, an agent is placed inside an environment with the goal of

maximizing a reward value. The agent interacts with the environment by performing an action

determined by a policy. A policy is a general term used to describe a function that an agent follows

to take an action in an environment. A reward is then given by the environment to the agent when

particular state is attained. A reward value is a number that indicates to an agent how good an

action is in a good stae transition. The Markov Decision Process is detailed in Figure 4.1.

The state describes the current situation that an agent is in at a particular point of time.

For this project the state is defined as the satellite’s current position and velocity expressed as

12

Figure 4.1: Markov Decision Process

equinoctial orbital elements. The action is the possible operation that an agent can perform a

particular point in time to transition from one state to another. The actions that can be taken by

the satellite are a set of discrete throttle points in the radial, tangential, and normal directions. To

determine the effect of an action at a particular state, a value function is used to estimate the reward

of a state-action pair.

The value is defined as the expected return in a state s when following a policy π . The

value function is derived from the Bellman equation, which is taken from dynamic programming

expressing the total reward given by taking an action at a particular state. In terms of a MDP, the

value function can be defined as[15]

vπ(s) = Eπ

�

Gt |St = s
�

= Eπ [
∞

∑
k=0

γkRt+k+1|St = s] (4.1)

where the policy π , defines which action the agent will take at a given state. Eπ is the expected

value of a random variable when an agent follows a particular policy π , R is the reward value at a

state at time t, and γ is a discount factor whose value is between zero and 1. The discount factor is

an indication of how much influence future rewards have on the value function. For the spacecraft,

the value function is a function of the difference between the current and target spacecraft state.

13

Value functions can be represented by a linear or non-linear function.

When an agent reaches a particular termination state, the current episode terminates. The

agent replays multiple episodes until a reward value, maximum number of episodes, or a particular

final state is obtained. With RL, the agent does not have to be aware of the dynamics of the

environment to reach its goal, making RL algorithms capable of solving problems too complex to

model analytically.

4.2 Temporal Difference

Temporal difference (TD) is a method of reinforcement learning that predicts the value of

a variable based on the values of an input signal at every time step. This method is a combination

of both dynamic programming and Monte Carlo methods. Dynamic programming is a method

for solving problems by breaking one problem up into multiple subproblems. With dynamic pro-

gramming, the model of the dynamics of the environment must be known. Monte Carlo methods

are algorithms that learn using experience and then update their value function at the end of each

episode but they do not require a model of the environment to be known. Temporal difference uses

a model-free base of learning. A model-free system can learn from experience and without a model

of the dynamics of the environment. Unlike Monte Carlo methods, which update the value function

at the end of every episode, TD methods update the value function at every time step, which may

result in faster convergence. The value function for a TD model looking one step ahead, TD(0), is

shown in the equation below:

V (S)←V (S)+α[R+ γV (S�)−V (S)] (4.2)

where α is the learning rate, and γ is the discount factor that affects the impact of the reward value

over time. V (s) is the value of the current state and V (S�) is the value of the next state.

4.3 Q-Learning

Q-learning is an off policy TD control algorithm. An off-policy algorithm learns the opti-

mal policy that is different from the policy that is used to generate data. Q-learning algorithms are

14

used in discrete action-space environments. Instead of a value function, Q-learning uses expected

reward values called Q values to predict the future reward. Where the value function is defined in

terms of only the state of the agents, the Q-function is defined in terms of the state and action of

the agent. The Q action-value function is defined as [15]:

Q(St ,At)← Q(St ,At)+α[Rt+1 + γmaxaQ(St+1,a)−Q(St ,At)] (4.3)

The Q function is determined by using the current Q value, the reward of the next state and the

maximum value of the difference between the Q-value of the current and next state-action pair.

The Q-values are stored in a table for every possible state-action pair. The rows of the table are all

the possible states and the columns are all the possible actions. The Q-learning algorithm is shown

below[15].

Initialize Q;

for each episode do

Initialize S;

while S is not terminal do
Choose an action given the current state using the policy π derived from max

Q;

Take action A;

Observe Reward R and S’;

Q(St ,At)← Q(St ,At)+α[Rt+1γmaxaQ(St+1,a)−Q(St ,At)];
S = St+1 ;

end

end

Algorithm 1: Q-Learning

The first step of the algorithm initializes all q-table values with zero. The episode begins

by initializing the state of the environment. The while loop is used to check for a terminal state.

The terminal state can be a maximum number of iterations or a particular state. This prevents the

agent from exploring a policy that steers too far from reaching the target state or takes too long to

reach the target state. The next step is to select an action. The action selection process is based

on the maximum Q-value at the given state. To prevent the algorithm from always taking a path

that yields the same value, a random action can be taken based on a random chance percentage.

The action is taken and the state and the reward for the next time step is updated. Then the q-value

15

is updated, the next state is set to the current state, and the next iteration begins. This process

continues until the termination criteria is met and the next episode begins. At the beginning of the

next episode the state and agent are reset and the q-table remains persistent.

4.4 Policy Gradient Theorem

Unlike Q-learning, policy gradient methods do not use a value function to select an action;

policy gradients select an action based on a parameterized policy without learning a value function.

With policy gradient methods, the policy must be continuous and differentiable; this allows for

policy gradients methods to be applied in continuous action-spaces. The performance of a policy-

gradient algorithm can be measured by Equation 4.4,

J(θ) = vπθ (s0) (4.4)

Where v is the value function determined by following the policy π with parameters θ at an initial

state s0. The cost function J can be difficult to determine, but the effect of the policy on the state

given a set of parameters can be determined by applying the gradient policy theorem as shown by

Sutton and Barto [15],

∇J(θ) ∝ ∑
s

µ(s)∑
a

qπ(s,a)∇π(a|,s,θ) (4.5)

The policy gradient theorem uses gradient ascent to maximize the performance value. The two

major algorithms that apply policy gradients are REINFORCE, a Monte Carlo based policy gradi-

ent and actor-critic methods. These algorithms can be applied to continuous action spaces, but the

policy does not update until the episode is completed.

4.5 Actor-Critic and Deep Deterministic Policy Gradients

Temporal difference algorithms have demonstrated promising results when applied to low-

dimensional discrete action-spaces[16]. When scaling to higher dimensional action-spaces or con-

tinuous action-spaces, they can become computationally expensive. In contrast, policy gradient

methods perform well in continuous action-spaces, but can lead to difficulties in computing a good

performance function. Actor-critic algorithms combine temporal difference and policy gradient

16

methods to mitigate the drawbacks of the two algorithm types.

Actor-critic algorithms extend from policy gradient methods and temporal difference[15].

Actor-critic algorithms consist of an actor that selects an action based on a policy while the policy

is evaluated by the critic using a value function. Deep Deterministic Policy Gradients (DDPG) is

one of the many actor-critic algorithms.

The DDPG algorithm is an extension of the deterministic policy gradient algorithm[17],

which use a combination of Q-learning and policy gradients to train a critic and actor model. The

critic model, is represented as a neural network whose inputs are the state and action of an agent

and the output is a single q-value. The loss function for the critic is defined in Equation 4.6 - 4.7,

yi = ri + γQ�(st+1,µ
�(si+1|θ

µ
�
)|θ Q�

(4.6)

L =
1

N
∑

i

(yi −Q(si,ai|θ
Q))2 (4.7)

where Q�, µ
�, and θ � denote the target critic, target actor, and target neural network parameters, re-

spectively. Target networks are used in Q-learning to stabilize neural networks by providing a fixed

point preventing the estimated q-values from diverging. The actor network is also represented by a

neural network with current agent state as the input. To encourage exploration, a noise parameter is

added to the policy. The actor network is updated using the policy gradient method shown below.

∇θ µJ ≈
1

Nb
∑

i

∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ)|si
(4.8)

DDPG updates the target networks using a conservative update, τ << 1 to allow the target networks

to change slowly to stabilize learning shown in Equations 4.9 - 4.10.

θ Q�
← τθ Q +(1− τ)θ Q�

(4.9)

θ µ
�
← τθ µ +(1− τ)θ µ

�
(4.10)

Using a deep-q network allows the use of techniques such as replay memory and target

networks. The algorithm for DDPG is shown below[18].

17

Initialize actor and critic networks and respective target networks;

Initialize replay buffer ;

for each episode do

Initialize S;

while S is not terminal do

Choose an action according to the current policy;

Take action A;

Observe Reward R and S’;

Store in memory buffer (s,a,r,d,s’) ;

Sample a random mini-batch of Nb transitions;

Update the critic by minimizing the loss

Q(St ,At)← Q(St ,At)+α[Rt+1γmaxQ(St+1,a)−Q(St ,At)];
update the actor policy using policy gradient;

update actor and critic target network ;

end

end

Algorithm 2: Deep Deterministic Policy Gradient

4.6 Neural Networks

Neural networks are computational units inspired from biological neurons. An artificial

neural network is a combination of interconnected artificial neurons or nodes that take in an input

and produce an output. The output of an artificial neuron is calculated by an activation function

which is a linear or non-linear function of the sum of the artificial neuron’s inputs. An output

is generated and sent the other nodes connected to it. Artificial neural networks were originally

inspired by biological neural networks.

Artificial neural networks began as a system that can perform NOT, OR, and AND logical

operations. The simplest of neural networks is the McCulloch-Pitts Neuron Model. The output of

this model can be expressed in the equation 4.11 and Figure 4.2.

Ok+1 = r

1 i f Σn
i=1wix

k
i ≥ T hreshold

0 i f Σn
i=1wix

k
i ≤ T hreshold

(4.11)

A feed-forward neural network is made up of layers connected to each other via weights.

It is generally composed of an input layer, one or multiple hidden layers, and an output layer as

shown in Figure 4.3. The outputs of the neural network are determined by the weights of the

18

Figure 4.2: Diagram of McCulloch-Pitts Neuron Model [19]

Figure 4.3: Feed-forward Neural Network

input to the nodes. A node is composed of the sum of the incoming weights of the node and an

activation function as seen in Figure 4.4. where x is the sum of the input weights and y is output

of the sigmoid function For a 2x2 example, the sum of the weights take the matrix form of,

y = Wx

W =

w11 w12

w21 w22

 x =

x1

x2

(4.12)

where I is the input vector and W is the weight matrix.

There are three common activation functions used for neural networks; sigmoid, hyperbolic

tangent (tanh), and the rectified linear unit (RELU). Cybenko showed that any continuous function

of n real values be approximated by adding a sigmoid function to a continuous feedforward neural

network with one hidden layer and a sigmoid activation function[20]. The sigmoid function, Figure

4.5, is a popular choice with neural networks because it is asymptotic, where outputs can not be

19

Figure 4.4: Neural Network Node with a Sigmoid Activation

either zero or one, and differentiable. Similar to the sigmoid function, tanh, shown in Figure 4.6

Figure 4.5: Sigmoid Activation Function

has a similar shape to sigmoid but has a range between -1 and 1 as shown in Figure 4.6. The

activation functions above can run into the vanishing gradient problem. This can occur during the

training phase of the neural network when the weight values are updated. As the number of hidden

layers increase, the update of the weights along the layers decrease. This results in exponentially

small updates during training causing the first layers in the hidden layer to update exponentially

slower than the layers closer to the output layer.

20

Figure 4.6: Hyperbolic Tangent Activation Function

Recently, the RELU activation function has become one of the most popular activation

functions for neural networks as shown in Figure 4.7. Relu is also referred to as the ramp input

and is expressed as

f (x) = max(0,x) (4.13)

The gradient of this activation function is either 0 or 1, reducing the computational complexity and

unlike sigmoid or tanh, relu has no upper limit preventing the vanishing gradient problem during

training.

Figure 4.7: Rectified Linear Unit Activation Function

21

CHAPTER 5

IMPLEMENTATION

The work with this dissertation uses existing machine learning and space dynamics libraries

because they have been tested and verified with other applications. Also this research aims to

provide a general framework that can be applied to any space dynamics and machine learning

library.

This section begins by discussing implementation of the spacecraft dynamics problem pro-

posed in Chapter 3 in the machine learning framework described in Chapter 4. First the high-

fidelity space dynamics simulation environment will be introduced.

Then we discuss how the reinforcement learning algorithm is implemented in the simu-

lated space environment. Next we discuss the neural network architecture, the reward function,

and the memory buffer used. Then we discuss how the reinforcement learning algorithm was vali-

dated using other environments. Chapters 6 and 7 discuss the three missions implemented and the

conclusions drawn from the results.

5.1 Space Dynamics

This dissertation uses the Orekit space dynamics library. Orekit is a free and open-source

software developed and maintained by the CS Group, a software company based out of France.

This library is currently being used by Airbus Defense and Space, US Naval Research Laboratory,

the Swedish Space Corporation, Thales Alenia Space, and the European Space Agency. The library

contains both high and low-fidelity models for forces, propagation, and central bodies, and allows

users to quickly and easily setup complicated space dynamics models.

Orekit defines a spacecraft as an object with many properties. The spacecraft properties

used in this research are, date, inertial frame, mass, and specific impulse (ISP). The mass of the

22

spacecraft is defined as the total mass. The user cannot change the mass after the spacecraft is

defined, but Orekit does reduce the mass based on the ISP and thrust applied when a maneuver

is implemented. The initial state is defined as a set of Keplerian orbital elements with an Earth-

centered inertial frame. This inertial frame is defined as the x-axis aligned with the mean equinox,

the y-axis rotated 90 degrees east along the Earth’s equator, and the z-axis is aligned with the

Earth’s spin axis.

Orekit provides many different propagators with varying levels of fidelity. Propagators are

used to calculate the dynamics of the spacecraft. The keplarian propagator uses a simple two-body

model. The Eckstein-Hechler propagator is used in situations where the eccentricity is near zero.

The Draper Semi-analytical Satellite Theory (DSST), is a combination of fast computation and

accuracy. The propagator used here is the numerical propagator. This propagator uses numerical

integration to approximate the system dynamics. The integrator is a Dormand–Prince Runge-Kutta

method modified by Hairer, Norsett and Wanner[21]. The numerical propagator was selected

because it has the largest selection of force models available.

Orekit also provides various force models to simulate different forces that a spacecraft may

experience. The force models are implemented as perturbing accelerations and must be defined

before propagation. To model central body forces, Newtonian central body attraction and a more

complex Holmes and Featherston model is available. The force model selected is an implementa-

tion developed by Holmes and Featherstone[22]. This model approximates the Earth as a gravity

field based on the shape of the Earth rather than the restricted two-body model 3.1. To implement

the thrust, the constant thrust force model is used. This force model takes an input of thrust in

Newtons, ISP in seconds, thrust start date as a date object, thrust duration in seconds, and a thrust

direction as a vector. The attitude model uses the local vertical local horizontal (LVLH) frame

which is similar to the RSW frame discussed in Chapter 3.

5.2 Actor-Critic Network

The reinforcement learning algorithm uses a total of four neural networks but two on them

are unique. The actor network is a feed-forward neural network whose input is spacecraft’s state

at a given time and its outputs are three thrust values as seen in Figure 5.1. There are two hidden

23

layers, each use the RELU activation function and layer normalization.

Figure 5.1: Actor Network

The RELU activation function, Figure 4.7, is used to prevent the vanishing gradient prob-

lem and the output from becoming saturated. Vanishing gradient occurs as the number of layers

increase throughout the neural network as the gradient of the activation function is reduced to zero.

Inputs to a neural network may consist of values of different dimensions and scales. In the

case of orbital elements, the semi-major axis is given in meters, the eccentricity is dimensionless,

and the other elements are in radians. Normalization techniques are used to scale the weights and

inputs in neural networks. Layer normalization normalizes the values across nodes of a hidden

layer by the mean and standard deviation of the node values as shown below,

µ
l =

1

H

H

∑
i=1

al
i σ l =

�

1

H

H

∑
i=1

(al
i −µ l)2 (5.1)

where H is the number of nodes in the hidden layer, and a is the value of a hidden layer node. This

method shows improved performance to batch normalization as demonstrated by Ba, Kiros, and

Hinton [23], due to the reduction of covariate shift. The phenomenon is due to the potential for

high output values from an activation layer. Also layer normalization can be used with any batch

size. The batch size is the number of smaples that will be passed through the neural network at a

given time.

24

The output layer consists of three nodes, each one representing a thrust direction defined

in the radial, tangential, and normal directions. The hyperbolic tangent function, Figure 4.6, is

used as the activation function to give an output between -1 and 1. Each of the three outputs are

multiplied by a scale factor representing the maximum thrust value.

The second neural network used is the critic network. The architecture of the critic network

is similar to the one developed in by [18]. The critic network takes the state and action as the input,

but the action input connects to the second hidden layer directly whereas the state input connects

to the first hidden layer as shown in Figure 5.2. For the critic network only the first hidden layer

Figure 5.2: Critic Network

uses layer normalization and both hidden layers use the RELU activation function. The output

of the critic network is a single node with a linear activation function, meaning the output is not

multiplied by a value.

5.3 Reward Function

The reward function can be one of the most challenging choices when designing an en-

vironment. The quality of the reward function can dictate how quickly the agent converges to

a solution. Making a reward function too specific will cause the agent to quickly converge to a

solution, but it will prevent the agent from adequately exploring the environment and achieve a

more optimal solution. Giving the agent a sparse reward may significantly increase the runtime,

making it difficult for the agent to converge to a solution. Using a negative based reward function,

25

the agent will tend to try to obtain a less negative reward value as fast as possible. For a positive

based reward function, the agent will try to accumulate as much reward as possible per time step.

The reward function in this research is based on the squared difference between the target state and

current state shown below,

ra =

�

(atarg −a(t))2

atarg
(5.2)

rex =
�

(ex,targ − ex(t))2 (5.3)

rey =
�

(ey,targ − ey(t))2 (5.4)

rhx =
�

(hx,targ −hx(t))2 (5.5)

rhy =
�

(hy,targ −hy(t))2 (5.6)

r =−(raαa + rey
αex

+ rex
αey

+ rhx
αhx

+ rhy
αhy

) (5.7)

the orbital element corresponding to the semi-major axis a is normalized by the target state to

scale accordingly with the other orbital elements. The variables αa, αex
, αey

, αhx
, αhy

are scaling

factors to scale the relative weights of the orbital elements. Proper scaling of the reward function

is required for the agent to learn a good policy.

When the agent reaches the target state the episode terminates and the agent is reward with

a value of 1. Giving a high positive reward value when the agent reaches a target state would result

in the agent never reaching the target state in the following episodes. A high positive reward value

when the agent releases the target state, cause the q-values to become unstable and continuously

increase regardless of the action taken in future episodes.

5.4 Experience Replay

Replay memory is used in the training of deep-q neural networks. It is used to break the

correlation between consecutive samples improving learning efficiency. The experiences of the

agent are stored as a tuple in a double-ended queue describing the state-action at a time t.

et = (st ,at ,rt ,st+1, terminal) (5.8)

26

A simple method to implement replay memory is to uniformly sample experiences from the replay

memory buffer. Uniform sampling is done by randomly selecting a batch of experiences from

the memory buffer. The drawbacks of this approach is that it is not an efficient way to sample

experiences; the chance of sampling positive experiences is the same as the chance of sampling

negative experiences, which reduces efficiency of training.

A more efficient method to sample experiences is with prioritized experience replay devel-

oped by Schaul, Quan, Antonoglou, and Silver [24]. This method organizes experiences based on

a priority value pt , and the experiences with higher values have a greater chance of being sampled

more often.

et = ((st ,at ,rt ,st+1, terminal), pt) (5.9)

The priority values are stored in a binary heap for efficient sorting and selection. The priority value

Figure 5.3: Binary Heap Data Structure

for the experience is updated according to the TD-error,

pt =|δt |+ εδt = R+ γQ(St+1,a)−Q(St ,At) (5.10)

where ε is a constant to ensure no priority has a value of zero. The priority values are then sorted

27

and stored in the heap binary. During training, the priority values are sampled according to a

probability value given as,

P(i) =
pα

t

∑k pα
k

(5.11)

where α is a hyperparameter to introduce randomness in the selection process where a higher value

encourages sampling higher priority values and a lower value encourages random sampling, and k

is the batch size. The probability sampling introduces a bias to replay high priority experiences; to

reduce the bias, importance sampling weights are used shown in Equation 5.12,

wt = (
1

Nb

. . .
1

P(i)
)β (5.12)

where N is the memory buffer size and β is a hyperparameter that determines how much the

weight value effect learning. As training progresses, β should increase to one because near the end

of training the q values begin to converge, making the weight value more important. The weight

value is passed into the critic network’s loss function during training as shown in Equation 5.13,

L =
1

Nb
∑

i

wiδ
2
i (5.13)

where Nb is the batch size.

5.5 Reinforcement Learning Implementation

The reinforcement learning algorithm used in this research is based on the DDPG algorithm

discussed in Section 4.5. This version of the algorithm differs from Algorithm 2 by implementing

actor noise decay and prioritized experience replay. Figure 5.4, shows a high level overview of the

algorithm.

Initially, an instance of Orekit is started and loaded. The spacecraft specifications, propa-

gator, central body force model, and initial and target orbits are initialized. The neural networks

and their respective target networks are initialized. The memory buffer is initialized by allocating

a double ended queue (deque) with a maximum memory buffer size.

The episode begins by setting the current orbit state to the initial orbit state. A thrust value

is obtained by passing the current state into the actor network according to its policy and a noise

28

Figure 5.4: Software Architecture

value is updated as shown in Equation 5.14,

µt(s) = at(s)+NdNt (5.14)

where Nt is the exploration noise based on the Ornstein-Uhlenbeck process[25], and Nd is a decay

rate. A decay rate was introduced to reduce noise as the agent explores the environment. The

thrust value is then passed into a step function where it is added as a constant thrust force. Orekit

then propagates the orbit for over a specified time step and returns a new spacecraft state. The

new state along with the thrust value is passed into a reward method to compute a reward value

and determine if a terminal state is reached for the current state-action pair. The step is completed

and returns the state, reward value, and terminal state status back to the reinforcement learning

algorithm.

29

The algorithm then adds these values into its replay buffer and assigns a priority value.

A batch of experiences are then sampled from the replay buffer and the TD-error is computed.

The critic is updated by minimizing the loss function which using equation 4.6. The loss is then

backpropagated through the neural network using the adaptive momentum estimation (adam) al-

gorithm. The TD-error is the difference between the actual reward and the expected reward, in the

case of the spacecraft, the TD-error decreases as the spacecraft takes actions that will lead it closer

to the target state.

The actor is then updated by sampling the gradient of the actor’s policy and the gradient of

the critic network output. The target critic and actor networks use a soft update method according

to the updated versions of the actor and critic networks and a hyperparameter τ .

This process repeats itself until a terminal state is reached. A terminal state occurs if the

spacecraft reaches the target state, or if the maximum duration of the mission is exceeded. When a

new episode begins. A maximum duration was selected as a terminal state to prevent the agent from

exploring portions of the environment where it will never reach the target state. The spacecraft and

the propagator is reset to the initial state. Algorithm 3 illustrates the modified DDPG algorithm.

30

Initialize Orekit environment ;

Initialize actor µ and critic Q neural networks with weights θ µ , θ Q ;

Initialize respective target network µ
� and Q� weights θ �µ ← θ µ , θ �Q ← θ Q ;

Initialize priority replay buffer ;

for each episode do

Initialize State s;

while t < tmax or not terminal do

Choose an action at(s) according to the current policy π(θ µ);
Take action µt(s) = µt(st)+NdNt ;

Observe Reward r and new state st+1;

Set the priority queue value pt = |rt |+ ε ;

Store in memory buffer ((st ,at ,rt ,s
�
t+1, terminal), pt) ;

Sample from memory a batch of Nb transitions based on importance sampling

wi ((si,ai,ri,si+1, terminal),wi);
Calculate TD-error ;

yi = ri + γQ�(si+1,µ
�(si+1|θ

µ
�
)|θ Q�

) ;

δi = yi −Q(si,ai|θ
Q) ;

Update the critic by minimizing the loss: ;

L = 1
Nb

∑i(δ)
2wi ;

Update the priority values based on the TD-error: ;

p(i) = |δi|+ ε ;

update the actor policy using policy gradient;

∇θ µJ ≈ 1
Nb

∑i ∇aQ(s,a|θ Q)|s=si,a=µ(si)∇θ µ µ(s|θ µ)|si

update actor and critic target network parameters ;

θ Q� ← τθ Q +(1− τ)θ Q�
;

θ µ
� ← τθ µ +(1− τ)θ µ

�
;

s = st+1;

end

end

Algorithm 3: Modified DDPG Algorithm

5.6 Algorithm Validation

Testing to ensure all components are working correctly is a vital step in ensuring accurate

results. A difficult task in reinforcement learning is model validation. Model validation is testing

to ensure that neural networks and the algorithm are setup correctly. Proper validation ensures that

both the critic and actor are learning correctly, which may save time by not training an incorrect

model. Validation of a neural network is difficult because currently the weight values can not be

interpreted or predicted. One validation method is to run the algorithm in a known environment

31

and monitor its performance during training. The metric used to measure the performance the total

reward per episode. If the maximum reward steadily increases over each episode, it can be assumed

that the agent is learning the correct policy since the goal of the agent is to attain the maximum

reward.

When developing the algorithm, multiple test environments were used to validate proper

training. The test environments are part of OpenAI gym, a Python package that contains environ-

ments for testing reinforcement learning algorithms. The environments are standardized to easily

interchange the environments and test reinforcement learning algorithms. Three test environments

were used in testing the algorithm developed in this paper; the pendulum, lunar lander continuous,

and bipedal-walker environments.

These three environments were chosen because of their increasing complexity and they are

continuous. In the first steps of algorithm development, the pendulum environment was used to

quickly test development. When making changes to the algorithm or neural networks, the pendu-

lum environment was used extensively to ensure the algorithm can converge to a solution. When

the algorithm became more complex, the other two environments were used to test the perfor-

mance. The test environments are described in Appendix A.

32

CHAPTER 6

STATIC MISSION RESULTS

Three representative spacecraft targeting problems are defined to test the algorithm: a

generalized orbit raising maneuver, a semimajor axis change a Medium-Earth (MEO) to Geo-

synchronous Earth orbit (GEO) transfer.

These three problems were selected because they encompass some of the missions that a

low-thrust spacecraft might perform. It is assumed that the thruster on the spacecraft can pro-

duce the given thrust instantaneously and with high efficiency. For all three scenarios, the same

spacecraft parameters shown in Table 6.1 are used.

Table 6.1: Spacecraft Parameters

Dry Mass (kg) 750

Fuel Mass (kg) 150

Isp(s) 3100

Max Thrust (N) 0.6

To ensure best potential results for all three missions, three different models are trained.

Each model is optimized to solve a particular type of mission, but parameters in Table 6.2 of the

RL algorithm parameters remain the same.

Table 6.2: Algorithm hyperparameters, Algorithm 3

step size (seconds) 500.0

ε 0.01

ε̇ 0.0001

γ 0.99

τ 0.01

The propulsion system is based on ion thrusters that have a moderate Isp but a higher level

of thrust similar to High Power Electric Propulsion (HiPEP) or magnetoplasmadynamic thruster

33

(MPDT) experimental ion thrusters [26]. For each mission, the agent was updated at an interval

of 500 seconds per step, approximately 8.33 minutes per step. The value ε , The replay memory

parameters in Table 6.3 remain the same among all missions. The parameters α and β defined in

the experience replay section, are selected based on the paper by Schaul, Quan, Antonoglou, and

Silver [24].

Table 6.3: Memory hyperparameters Equations 5.11, 5.12

Memory buffer 1,000,000

α 0.10

β 0.01

In Table 6.3, the memory buffer is the maximum number of experiences stored, and α and

β are hyperparameters to determine the probability of selecting higher value experiences. The true

anomaly orbital element θ , is not targeted or included in the reward function in any of the missions.

Since there are no rendezvous maneuvers and only the orbit state is considered, θ can be omitted.

It is necessary to establish a tolerance values for the orbital elements being targeted. When the

difference between the target orbit state and current orbit state are within the tolerance values, the

episode terminates successfully. The orbit element tolerances are listed in Table 6.4.

Table 6.4: Orbital element tolerances
a km 10

ex (rad) 0.01

ey (rad) 0.01

hx (rad) 0.001

hy (rad) 0.001

The duration set for all missions is not the target date, but rather the maximum duration

the agent is given to reach the target state. If the episode exceeds the maximum duration or if the

agent reaches the target state before the maximum duration, the current episode terminates. The

maximum duration is estimated by applying a constant thrust in the radial, tangential, or normal

directions until the current semimajor axis or inclination reaches or exceeds the corresponding

target orbital element. This process does not solve the orbit maneuver problem since only two

elements are tested. An additional day is added to the estimated maximum duration to prevent the

agent from applying only a maximum thrust.

34

To determine which thrust direction to apply to reach a target orbital element, Gauss’s

Variational Equations (3.5-3.10), are used to determine which thrust acceleration influences which

change in Keplerian orbital elements. By inspection of Gauss’s Variational equations in the equinoc-

tial frame (3.16 - 3.20), we can form an understanding on how the thrust direction relates to the

change in each orbital element.

da

dt
= f (FS,FR) (6.1)

dex

dt
= f (FR,FS,FW) (6.2)

dey

dt
= f (FR,FS,FW) (6.3)

dhx

dt
= f (Fw,FR,FS) (6.4)

dhy

dt
= f (FW ,FR,FS) (6.5)

where the magnitude of the first thrust direction listed has the largest influence on the correspond-

ing orbital element.

6.1 General Orbit Change

A general orbit change maneuver includes changes in all of the orbital elements a,ex,ey,hx,hy.

Table 6.5: General orbit change mission

Orbit

Parameters

Keplerian Orbit

Parameters

Equinoctial

Initial State Target State Initial State Target State

a (km) 5500 6300 a (km) 5500 6300

e 0.20 0.23 ex (rad) 0.766 0.669

i (deg) 5.0 5.3 ey (rad) 0.642 0.743

ω (deg) 20.0 24.0 hx (rad) 0.041 0.042

Ω (deg) 20.0 24.0 hy (rad) 0.014 0.018

Duration (day) 4 Duration (day) 4

Table 6.5 is a Low-Earth orbit (LEO) mission with a slight eccentricity and inclination

change. For this mission, the agent has the following hyperparameters shown in Table 6.6 The

number and size of the hidden layers are the same for both the actor and the critic networks. The

algorithm terminated when the agent successfully reached the target state consecutively, which

35

Table 6.6: Neural Network hyperparameters

layer 1 500

layer 2 450

learning rate (actor) 0.0001

learning rate (critic) 0.001

τ 0.01

took 600 episodes. A 3D figure of the trajectory can be seen in Figure 6.1, the blue line shows the

������

�����
�����

����
�

����
�����

������
�����

�����

����

�

����
�����

�
��
�
�
�

����

����

����

�

����

����

����

��������������������

�����������������

Figure 6.1: General Orbit Change Maneuver

trajectory of the spacecraft and the red shows the target orbit state. Figure 6.2, shows a successful

episode of the agent trained to perform the general orbit change maneuver.

Figure 6.2 shows the trajectory of the spacecraft in equinoctial orbital elements. The agent

reached the target a, hx, and hy around step 350. An interesting observation is that the semimajor

axis remained near the initial value until the agent reached the target ey, hx, and hy states. More

36

� ��� ��� ���

�����

�����
�

� ��� ��� ���

�����

�����

�
�

� ��� ��� ���

����

����

�
�

� ��� ��� ���

���������

�����

�����

�
�

� ��� ��� ���

���������

�����

�����

�
�

Figure 6.2: Orbital Elements of the General Orbit Change Maneuver

insight on this behavior can be seen in Figure 6.3 showing the thrust profile. When setting the

weights α as shown in Table 6.7 for the reward function, the values are adjusted to ensure that

each change in orbit element has the same scale.

Table 6.7: General orbit element change reward function coefficients, Equation 5.7

αa 1

αex
1

αey
1

αhx
10

αhy
10

The reward weight values are used to prevent the agent from ignoring the orbital elements

that have a small delta in the targeting problem. The results of the reward function can be seen

in Figure 6.4. Initially, the reward values are very low, then there is a jump in the reward values

37

� ��� ��� ���

���

���

���

���

��������������������

� ��� ��� ���

���

���

���

���

�����������������

� ��� ��� ���

���������

���

���

���

���

��������������������������

� ��� ��� ���

���������

���

���

���

���

�����������������

Figure 6.3: General Orbit Change Maneuver Thrust Profile

around 100 episodes. From episode 100 to 350, the agent nears the target state but does not reach

that state. After around 350 episodes, the agent is learning the policy well because there is a jump

in the reward function.

38

� ��� ��� ��� ��� ��� ���

�������

���

���

���

���

���

���

��

��
�
�
�
�
�
�
�

Figure 6.4: Reward Function Output for Generalized Orbit Change Mission

6.2 Semimajor Axis Change and MEO to GEO Missions

A semimajor axis change maneuver increases the semimajor axis of an orbit while keeping

other orbital elements fixed. The first semimajor axis change example demonstrates a smaller

semimajor axis change of 5000 km as shown in Table 6.8. The neural network model for this

Table 6.8: Semimajor axis change mission

Orbit

Parameters

Keplerian Orbit

Parameters

Equinoctial

Initial State Target State Initial State Target State

a (km) 5000 10000 a (km) 5000 10000

e 0.10 0.10 ex (rad) 0.939 0.939

i (deg) 1.0 1.0 ey (rad) 0.342 0.342

ω (deg) 10.0 10.0 hx (rad) 0.00859 0.00859

Ω (deg) 10.0 10.0 hy (rad) 0.00151 0.00151

Duration (day) 10 Duration (day) 10

mission was enlarged to using three hidden layers instead of two to allow the agent to converge

to the target state, and the number of nodes was increased as shown in Table 6.9. When training

39

Table 6.9: Neural Network hyperparameters for semimajor axis change mission

layer 1 1028

layer 2 850

layer 3 200

learning rate (actor) 0.0001

learning rate (critic) 0.001

τ 0.01

for small semimajor axis change maneuvers, the reward function parameters are the same values

used in Table 6.7. The semimajor axis changes linearly over the mission duration while it is

� ��� ���� ����

�����

�����

�����

�

� ��� ���� ����

�����

�����

�
�

� ��� ���� ����

������

������

������

�
�

� ��� ���� ����

���������

�����

�����

�����

�
�

� ��� ���� ����

���������

�����

�����

�����

�
�

Figure 6.5: Orbital Elements for Semimajor Axis Change Maneuver

attempting to maintain all other orbit elements near the target state as shown in Figure 6.5. The

thrust output for this mission is given in Figure 6.6. The spacecraft applies a maximum thrust in

the tangential direction for the duration of the mission time, while the radial and normal directions

heavily fluctuate between ± 0.6 N to maintain the other orbital elements. The reward function for

40

� ��� ���� ����

���

���

���

���

���

��������������������

� ��� ���� ����

���

���

���

�����������������

� ��� ���� ����

���������

���

���

���

���

��������������������������

� ��� ���� ����

���������

���

���

���

�����������������

Figure 6.6: Thrust Output for Semimajor Axis Change Mission

the semimajor axis change steadily increases with training time as shown in Figure 6.7.

41

� ��� ��� ��� ��� ���� ���� ����

��������

���

���

���

���

���

�
�
�
�
�
�

Figure 6.7: Reward Function for a Semimajor Axis Change Mission

42

For a MEO to GEO mission, the orbit periods are longer, making it possible to perform a

larger orbit change during each revolution. The mission parameters for the MEO to GEO orbit is

given in Table 6.10 below, For this mission, the maximum duration is significantly higher than the

Table 6.10: MEO to GEO mission parameters

Orbit

Parameters

Keplerian Orbit

Parameters

Equinoctial

Initial State Target State Initial State Target State

a (km) 26000 41000 a (km) 26000 41000

e 0.10 0.10 ex (rad) 0.939 0.939

i (deg) 1.0 1.0 ey (rad) 0.342 0.342

ω (deg) 10.0 10.0 hx (rad) 0.00859 0.00859

Ω (deg) 10.0 10.0 hy (rad) 0.00151 0.00151

Duration (day) 15 Duration (day) 15

other previous missions, but e, i, ω , and Ω, remain the same as the LEO semimajor axis change.

The neural network hyperparameters were kept constant as in the semimajor axis change maneuver,

except for the third hidden layer which was increased from 200 to 500 nodes as shown in Table

6.11 below. The agent was trained for 1000 episodes, with the successful mission trajectory shown

Table 6.11: Neural Network hyperparameters

Hyper parameters

layer 1 1028

layer 2 850

layer 3 500

learning rate (actor) 0.0001

learning rate (critic) 0.001

τ 0.01

in Figure 6.8. In Figure 6.9, the agent was attempting to maintain the target ex, ey, hx, and hy

elements while linearly increasing the semimajor axis. This can be better observed in the thrust

output in Figure 6.10. For the entire mission duration, the agent applies a near maximum thrust

in the tangential direction, increasing the semimajor axis, and then attempts to stabilize the other

orbital elements by thrusting in bursts in the radial and normal directions. The coefficients for the

reward function are given in Table 6.12. All the components except for hy are weighted by 10.

From testing various weight values, giving a small weight value to the eccentricity components

would cause the orbit to reach the correct semimajor axis but the target orbit would have a high

43

������

�����
�����

�
�����

�����

������
�����

�����

�

�����

�����

�
��
�
�
�

����

����

����

�

����

����

����

��������������������

�����������������

Figure 6.8: Trajectory of MEO to GEO Mission

eccentricity value. Figure 6.11 shows large spikes in the reward values, this was due to the agent

reaching a small semimajor axis at the end of the mission. Around episode 900, the agent begins

to converge to the target state.

44

� ��� ���� ����

�����

�����

�

� ��� ���� ����

����

����

����

�
�

� ��� ���� ����

����

����

�
�

� ��� ���� ����

���������

�����

�����

�����

�
�

� ��� ���� ����

���������

������

������

������

�
�

Figure 6.9: Orbital Elements for MEO to GEO Mission

Table 6.12: MEO to GEO reward parameters, , Equation 5.7

Reward function coefficients

αa 10

αex
10

αey
10

αhx
10

αhy
1

45

� ��� ���� ����

���

���

��������������������

� ��� ���� ����

���

���

�����������������

� ��� ���� ����

���������

���

���

��������������������������

� ��� ���� ����

���������

���

���

�����������������

Figure 6.10: Thrust Output for MEO to GEO Mission

46

� ��� ��� ��� ��� ����

��������

����

����

����

����

����

�
�
�
�
�
�

Figure 6.11: Reward Function Output for a MEO to GEO Mission

47

CHAPTER 7

PARAMETER VARIATION RESULTS

In the previous chapter, only static missions where a new model per mission was created.

In this chapter, missions with changing orbit states are discussed. These more complex problems

demonstrates the robustness of this method. The first problem will introduce the inclination change

maneuver with a new initial orbit state at each episode. The second problem revisits the generalized

orbit change maneuver.

7.1 Variable Inclination Change

The inclination change maneuver keeps all of the orbital elements constant except the in-

clination. This maneuver can be difficult due to the high ∆v requirement, so large changes of

inclination are generally avoided. This mission differs slightly from the other two missions pre-

sented earlier. Similar to the pendulum test environment described in Appendix A, the initial state

will vary for each episode. The parameters of the inclination change maneuvers are given in table

7.1 below,

Table 7.1: Inclination change mission parameters

Orbit

Parameters

Keplerian Orbit

Parameters

Equinoctial

Initial State Target State Initial State Target State

a (km) 20000 20000 a (km) 20000 20000

e 0.10 0.10 ex (rad) 0.939 0.939

i (deg) 13.0 ± 0.3 14.3 ey (rad) 0.342 0.342

ω (deg) 10.0 10.0 hx (rad) 0.109-0.115 0.123

Ω (deg) 10.0 10.0 hy (rad) 0.0193-0.202 0.0217

Duration (day) 4 Duration (day) 4

During training, only the inclination varies by ±0.3 degrees with random values based on a

normal distribution. By varying the initial orbit state, this allows the policy to become more robust,

48

allowing it to solve a more generalized set of mission parameters.

The same neural network hyperparameters were used in this mission as were used for the

orbit raising mission, Table 6.7. The model was trained for 1400 episodes it was determined that

the agent to adequately trained. Figures 7.1 and 7.2 below, shows the trajectory of the spacecraft

during a successful mission. It can be seen from Figure 7.2, that the satellite reached all the target

������

�����
�����

�����
�

�����
�����

������
�����

�����

�

�����

�����

�
��
�
�
�

����

����

����

�

����

����

����

��������������������

�����������������

Figure 7.1: Inclination Change Mission Trajectory

states with the specified tolerances. An interesting observation is the behavior of the semimajor

axis. The semi-major axis begins to increase during the episode and then decreases to the target

state. An efficient way to raise inclination is to increase the semimajor axis and inclination simulta-

neously and then decrease the semimajor axis; the agent learned this behavior through exploration.

Another interesting behavior involves the thrust as shown in Figure 7.3. It can be seen in Figure

7.3, that the agent attempts to reduce the oscillating behavior of the inclination change maneuver

by applying a thrust in a normal direction in a step-wise behavior. When performing inclination

49

� ��� ��� ���

�����

�����
�

� ��� ��� ���

����

����

�
�

� ��� ��� ���

����

����

�
�

� ��� ��� ���

���������

�����

�����

�����

�
�

� ��� ��� ���

���������

������

������

������

�
�

Figure 7.2: Inclination Change Mission

change maneuvers oscillations can be introduced in the orbit change by applying a thrust in the nor-

mal direction as shown in Figure 7.4. This ”see-saw” effect may result in more fuel consumption

since inclination is decreasing in the tough portion on the oscillation. The reward function used for

50

� ��� ��� ���

���

���

��������������������

� ��� ��� ���

���

���

�����������������

� ��� ��� ���

���������

���

���

��������������������������

� ��� ��� ���

���������

���

���

�����������������

Figure 7.3: Inclination Change Thrust Profile

the inclination change is the same one used for the orbit raising maneuver, Table 6.7. Figure 7.5,

shows performance of the agent during training. At approximately episode 700, the agent reaches

a maximum reward value which is also the time when the target state was reached consistently.

51

� �� ��� ��� ��� ��� ��� ���

�����

�����

�����

�����

�
�

� �� ��� ��� ��� ��� ��� ���

��������������������������������������

�����

�����

�����

�����

�����

�
�

Figure 7.4: Inclination Change Seesaw Effect

52

� ��� ��� ��� ��� ���� ���� ����

�������

��

��

��

��

��

��

��

��

�
�
�
�
�
�
�

Figure 7.5: Reward Function Output for the Inclination Change Mission

7.2 Variable Generalized Orbit Change

The following section looks at the flexibility of the generalized orbit change model. In the

following cases, the trained generalized orbit change model discussed in Section 6.1 is applied to a

new set of target states. When the pre-trained actor and critic models are loaded, only the weights

and architecture of the actor and critic networks are saved. Table 7.2, show the target states of

maneuver. After running the test cases, we can see from Figures 7.6 and 7.7 the agent reaches the

Table 7.2: Generalized orbit change mission

Orbit

Parameters

Keplerian Orbit

Parameters

Equinoctial

Initial State Test 1 Test 2 Initial State Test 1 Test 2

a (km) 5000 6300 6500 a (km) 5000 6300 6500

e 0.2 0.23 0.24 ex 0.766 0.615 0.500

i (deg) 5.0 5.4 5.6 ey 0.642 0.788 0.866

ω (deg) 20.0 26.0 30.0 hx 0.0410 0.0423 0.0423

Ω (deg) 20.0 26.0 30.0 hy 0.0149 0.0206 0.0244

Duration (day) 4 Duration (day) 4

53

target state for all test cases using the same base model. Referring back to Figure 6.4, the reward

function for the base model, it took approximately 350 episodes for the agent to be trained. When

looking at the reward function for test case 1 and 2, the agent was trained in about 100 episodes.

� ��� ���

�����

�����

�

� ��� ���

����

����

�
�

� ��� ���

����

����

�
�

� ��� ���

���������

�����

�����

�
�

� ��� ���

���������

�����

�����

�
�

Figure 7.6: General Orbit Change Maneuver Test Case 1

The reward functions for both test cases, Figure 7.8 and Figure 7.9 show that the agents converge

to the target states faster than in the initial orbit change maneuver case.

When a third test case was attempted with a higher eccentricity value, the agent was not

able to converge to a target state after 500 episodes. Possible methods to hae the model converge

for the third test case would be to increase the size of the model or increase the duration.

54

� ��� ���

�����

�����

�

� ��� ���

�����

�����

�
�

� ��� ���

����

����

����

�
�

� ��� ���

���������

�����

�����

�
�

� ��� ���

���������

�����

�����

�
�

Figure 7.7: General Orbit Change Maneuver Test Case 2

55

� �� ��� ��� ��� ���

��������

���

��

��

��

��

�
�
�
�
�
�

Figure 7.8: Reward Function for General Orbit Change Maneuver Test Case 2

56

� �� ��� ��� ��� ���

��������

���

���

���

��

��

�
�
�
�
�
�

Figure 7.9: Reward for orbit raising Maneuver Test Case 2

57

CHAPTER 8

CONCLUSION

A novel method was developed to train a reinforcement learning model to control the thrust

magnitude and direction of a low-thrust spacecraft. A simulated space environment was created

using a low-level space dynamics library to allow the reinforcement learning model to traverse

the environment. The reinforcement learning model is based on the actor-critic deep deterministic

policy gradient algorithm. An actor-critic model consists of an actor that takes an action in an

environment based on the current state agent, and the critic evaluates the actor based on state and

action taken by the actor. Both the actor and critic models are represented using feed-forward neu-

ral networks with RELU activation functions in the hidden layers, and hyperbolic tangent functions

in the output layers.

Three unique low-thrust maneuvers were analyzed: generalized orbit change, semimajor

axis change, and inclination change maneuvers. The generalized orbit change maneuver increases

all orbital elements to a higher orbit state. The agent was shown to reach a given target within

the mission duration time. The same model was used to solve two new generalized orbit change

maneuvers. For each new maneuver, the pre-train model was able to adpat two solve each of the

two new maneuvers in a smaller number of episodes than the original baseline general orbit change

maneuver.

The semimajor axis change mission increased the only the semimajor axis of the orbit.

It was shown that it took four days for the agent to change the semimajor axis by 10,000 km.

Another model tested the algorithm’s capability for an agent to go from a MEO to a GEO orbit.

After training the agent, it was successfully able to reach its target state within the allotted mission

time.

The final mission demonstrated was the inclination change maneuver. This mission ran-

domly placed the agent in a different initial inclination that is within ± 0.3 degrees of a baseline

58

orbit state. After training for 1400 episodes, the agent was able to generalize and successfully

reach the target orbit from any initial inclination within the given range.

These solutions demonstrated that a single algorithm can be used to solve a variety of

trajectory problem with various levels of complexity. A framework using machine learning models

and a simulated space environment to solve low-thrust optimization problems was created. Four

neural network models were tuned to provide a preliminary low-thrust mission.

Future work in this area can focus on many different applications. One aspect is mission

trajectory planning, this algorithm can be used as a preliminary analysis tool. In the same way the

trained network was designed to solve generalized inclination change problems in Section 7.1, this

approach can be applied to various other missions. This can allow a quick way to generate a suc-

cessful mission trajectory without having to formulate and solve many unique control optimization

problems.

Another future work can explore autonomous real-time control in deep space and interplan-

etary flight. Due to the vast distances between planets, and the limitations of the speed of light,

communication delays may occur. To ensure the spacecraft is moving along the correct trajectory,

a pre-trained model can loaded onto flight computer and activate if there are any communication

failures or system malfunctions.

Other future work can include exploring novel types of neural network architectures or rein-

forcement learning algorithms. Recurrent neural networks and Long-short term memory (LSTM)

networks store previous weights within the nodes of the network. These types of neural networks

work well with long time histories and may perform more complex orbital maneuvers. Distributed

Distributional Deep Deterministic Policy Gradient (D4PG) uses multiple parallel actors to gener-

ate more data for the replay buffer, calculates multiple steps of the TD-error and uses a distribution

parameter for the critic.

59

REFERENCES

[1] B.J. Wall and B.A. Conway. Shape-based approach to low-thrust rendezvous trajectory de-

sign. Journal of Guidance, Control, 32, 2009.

[2] Q. Fang, X. Wang, C. Sun, and J. Yuan. A shape-based method for continuous low-thrust

trajectory design between circular coplanar orbits. International Journal of Aerospace Engi-

neering, 2017.

[3] E. A. Euler. Optimal low-thrust rendezvous control. AIAA Journal, 7, 1969.

[4] Ocampo C. Elements of a software system for spacecraft trajeectory optimization. In Space-

craft Trajectory Optimization. Cambridge University Press.

[5] Q. Zeng, X. Geng, and C. Wu. Shape-based analytic safe trajectory design for spacecraft

equipped with low-thrust engines. Aerospace Science and Technology, 2017.

[6] M. Vasile, editor. A Global Approach to Optimal Space Trajectory Design, 2003.

[7] D. Yang, B. Xu, and L. Zhang. Optimal low-thrust spiral trajectories using lyapunov-based

guidance. Acta Astronautica, 2016.

[8] C. Ampatzis and D. Izzo. Machine learning techniques for optimization of objective functions

in trajectory optimization. European Space Agency, 2017.

[9] D. Izzo, S. Sparague, and D. Tailor. Machine learning and evolutionary techniques for inter-

planetary trajectory design. Optimization in Space Engineering, 2018.

[10] A. Kumar, N. Paul, and M. Omkar, S. Bipedal walking robot using deep deterministic policy

gradient. arXiv:1807, 2018.

[11] Lingli Y., Xuanya S., Yadong W., and Kaijun Z. Intelligent land-vehicle model transfer

trajectory planning method based on deep reinforcement learning. arXiv:1807, 2018.

60

[12] H.D. Curtis. Orbital Mechanics for Engineering Students. Elsevier Butterworth-Heinemann,

2 edition, 2005.

[13] Danby J. Fundamentals of Celestial Mechanics. Willmann-Bell, Richmond, Virginia, 2

edition, 2003.

[14] Ozawa Y. An analytical solution for multi-revolution transfer trajectory with periodic thrust

and non-singular elements. International Symposium on Space Flight Dynamics, 2017.

[15] R.S Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2 edition,

2018.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-

miller. Playing atari with deep reinforcement learning. Deepmind Technologies, 2013.

[17] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic policy

gradient algorithms. Google Deepmind, 2014.

[18] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.

Continuous control with deep reinforcement learning. Google Deepmind, 2015.

[19] J.M. Zurada. Introduction to Artificial Neural Systems. West Publishing Company, 1992.

[20] Cybenko G. Approximations of superpositions of a sigmoidal function. Mathematics of

Control, Signals, and Systems, 1989.

[21] Hairer E., P. Norsett, S., and G. Wanner. Solving Ordinary Differential Equations I Nonstiff

Problems, volume 1. Springer, 2 edition, 1993.

[22] A. Holmes, S. and E. Featherstone, W. A unified approach to the clenshaw summation and

the recursive computation of very high degree and order normalised associated legendre func-

tions. Journal of Geodesy, 2002.

[23] J. Ba, J. Kiros, and G. Hinton. Layer normalization. arxiv:1607, 2016.

[24] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arxiv:1511,

2015.

61

[25] Uhlenbeck G. E. and Ornstein L. S. On the theory of the brownian motion. Physical review,

1930.

[26] NASA Glenn Research Center. Magnetoplasmadynamic thrusters. NASA Facts, 2013.

62

APPENDIX

Reinforcement Learning Testing Environments

.1 Pendulum Environment

The pendulum environment consists of a swinging pendulum that starts at random initial

positions as shown in 1.

Figure 1: Pendulum Environment

The goal is for the agent to apply a continuous torque value until the pendulum is at a

90 degree angle with no angular velocity. The agent is penalized until it either achieves the goal

or reaches the maximum number or steps. This environment can be expressed as the following

optimization problem:

Given a pendulum that is allowed to freely move subject to:

θ̇t+1 = θ̇ +
−3g

2l
sin(θ +π)+

3

mL2T
dt

θt+1 = θt + θ̇dt

63

where g is the gravitational force, T is the input torque, L and m are the length and mass of

the pendulum, respectively.

Find a control control law that maximizes the reward function:

r = θ̄
2 + .1θ̇

2 + .001u2

θ̄ =
θ +π

2π
−π

where θ̄ is the normalized angle. This environment with the algorithm under these hyperparame-

ters.

Table 1: Neural Network parameters

Hyperparameters

layer 1 128

layer 2 80

learning rate 0.001

τ 0.01

The pendulum environment ran for 200 episodes, the reward function output over the train-

ing time is shown in the plot below.

.2 Lunar Lander

The second test environment is the lunar lander continuous. In this environment the agent

must land the lunar lander in between the two flagpoles with almost zero vertical velocity. The

lander is constrained in two dimensions, x and y , and can move the thruster at an angle and thrust

magnitude.

The agent receives a high negative reward if it crashes into the ground, a positive reward if

lands on the ground without going too fast or if one of the two legs touches the ground, and a high

positive reward if the successfully lands in between the flags. The lander is also penalized based on

the time it takes to land and applying too much thrust simulating fuel loss. This agent uses reward

shaping where the reward is based on a function of the position and velocity of the lander.

64

Figure 2: Pendulum Reward Output

Given a lunar lander whose dynamics are subject to:

F = mẍ

Find a control law that maximizes the reward function:

r = −100
�

x2 + y2
−100

�

ẋ2 + ẏ2
−100|θ |+10leg1 +10leg2 −0.3u

where θ is the orientation angle of the spacecraft, and leg1 and leg2 are either 1 or 0 if the

lander’s legs touch the ground or not, respectively. The dynamics of the environment are dictated

by Newton’s 2nd law of motion.

The reinforcement learning algorithm was tested using the hyperparamters shown in Table

2.

The algorithm ran for 500 episodes and the values of the reward function are shown in

Figure 4. The results demonstrate that the algorithm is capable of learning a targeting problem

given an initial state and a target state, where the target state must meet velocity requirements i.e.

the agent can’t crash.

65

Figure 3: Lunar Lander Environment

Table 2: Pendulum neural network hyperparameters

Hyperparameters

layer 1 300

layer 2 250

learning rate 0.0001

τ 0.01

.3 Biped Walker

The most complex of the three test environments is the biped walker. In this environment,

a two-legged robot must traverse the ground without falling over as shown in Figure 5 below.

The agent has 24 states, the angles and velocities of all the joints, and the body, ground

contact, and lidar information. There are four possible actions, the torque values of of the two

hip and knee joints. The agent is penalized for the body touching the ground and applying motor

torque, and it is rewarded for walking across the environment. The environment episode ends when

the agent falls of when the end of the environment is reached. The reward function for the biped

walker is given in Equation 1

r =
130x

SCALE
−5.0|θ |−0.00035Tmaxu (1)

where SCALE is the scaling factor of how fast the environment runs, x is the horizontal

distance traveled, Tmax is the maximum input torque allowed, u is the applied torque, and θ is the

66

Figure 4: Lunar Lander Reward Output

angle of the head position, encouraging the agent to maintain a head position parallel with the

ground. The hyperparamters for the reinforcement learning algorithm are shown in Table 3.

Table 3: Lunar Lander network parameters

Hyperparameters

layer 1 500

layer 2 450

learning rate 0.001

τ 0.01

The number of layers in each of the hidden layers have increased dramatically compared

to the other two environments. A larger number of nodes per layers allows for the neural networks

to better capture the dynamics but it comes at a cost of computation speed and increased statistical

variance.

After running the algorithm for 800 episodes, the results of the reward function are shown

in Figure 6. It can be seen from Figure 6, that the agent requires a significantly longer period of the

time to successfully navigate the environment compared to the previous two environments. When

67

Figure 5: Biped Walker Environment

inspecting the agent during training, it was observed that the agent was walking successfully but

would gain too much momentum and fall over, or would attempt to conserve the applied torque by

hopping on one leg.

68

Figure 6: Biped Walker Reward Output

69

	A Reinforcement Learning Approach to Spacecraft Trajectory Optimization
	Recommended Citation

	tmp.1582298123.pdf.6zxt8

