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Abstract—Automatic generation control (AGC) is an essential
functionality for ensuring the stability of power systems, and its secure
operation is thus of utmost importance to power system operators.
In this paper, we investigate the vulnerability of AGC to false data
injection attacks that could remain undetected by traditional detection
methods based on the area control error (ACE) and the recently
proposed unknown input observer (UIO). We formulate the problem of
computing undetectable attacks as a multi-objective partially observable
Markov decision process. We propose a flexible reward function that
allows to explore the trade-off between attack impact and detectability,
and use the proximal policy optimization (PPO) algorithm for learning
efficient attack policies. Through extensive simulations of a 3-area power
system, we show that the proposed attacks can drive the frequency
beyond critical limits, while remaining undetectable by state-of-the-art
algorithms employed for fault and attack detection in AGC. Our results
also show that detectors trained using supervised and unsupervised
machine learning can both significantly outperform existing detectors.

Keywords— Automatic Generation control, Reinforcement Learn-
ing, False Data Injection Attack, Power System Security, Unknown
Input Observer, Partially Observable Markov Decision Process

I. INTRODUCTION

Maintaining the balance between electric power generation and
demand is one of the main objectives in power system operation.
An imbalance between generation and demand can cause the grid
frequency to deviate significantly, which can cause physical damage
to generators, trigger remedial actions such as load shedding, or even
lead to nation-wide blackouts. To mitigate these effects, automatic
generation control (AGC) [1, 2] is a control loop that is used by
operators to set the generation output of generators in a power system,
based on power and frequency measurements taken across the
interconnected power system. In AGC, the power system is typically
divided into several areas, and a separate AGC controller is deployed
for each area. The AGC controller attempts to minimize the deviation
of the measured power flows across certain transmission lines and
the grid frequency from their expected values. This is typically
achieved by minimizing the area control error (ACE) metric, which
is a weighted sum of the two aforementioned quantities.

The operation of AGC is dependent on the accuracy and integrity of
the deployed sensor measurements. Nevertheless, since modern power
systems usually utilize insecure public communication networks,
the AGC control loop is vulnerable to a wide range of cyber-attacks.
One of the most studied attacks is the false data injection attack
(FDIA) [3], in which the attacker uses the communication network
to inject false measurements and transmit them to the control center,

where the AGC controller typically resides. The false measurements
could cause the AGC controller to issue incorrect dispatch commands
to the generators, potentially leading to catastrophic consequences
in the power system. Therefore, extensive surveillance of the AGC
control loop (including the sensor measurements) is an important
aspect of the security of any power system.

Conventional solutions for detecting FDIAs against AGC systems
depend on simply monitoring the ACE value at each area [1].
However, these methods do not utilize information from the AGC
system model. Therefore, a recent promising approach for FDIA
detection is utilizing the unknown input observer (UIO) [4], which
can accurately estimate the unknown system states affecting AGC
operation given (1) the observed sensor measurements and (2)
accurate knowledge of the power system topology and parameters. An
attack or a fault in AGC operation will usually lead to high estimation
residuals, which causes an alarm to be raised. This approach has
shown great potential in detecting naively computed FDIAs, such as
the scaling, ramp, and random attacks. Nevertheless, the vulnerability
of UIOs to targeted FDIAs has not yet been fully explored.

In this paper we investigate the vulnerability of state-of-the-art
FDIA detection methods in AGC systems using the framework of
reinforcement learning (RL). The contributions of this paper are as
follows.

1) We model the problem of finding stealthy FDIAs against AGC
from the perspective of the attacker as a multi-objective partially
observable Markov decision process (MO-POMDP) [5].

2) We develop a flexible reward function that allows the RL-based
attack to maximize the attack impact, while keeping the
detection metrics low.

3) We use extensive simulations to evaluate the proposed RL-based
attacks and showcase their superiority over several baseline
attacks in terms of attack impact and in terms of undetectability.

To the best of our knowledge, this is the first work that considers
computing FDIAs that bypass state-of-the-art AGC attack detectors
such as the UIO, and the first work that uses RL to compute such
attacks against AGC.

The rest of this paper is organized as follows. Section II
discusses previous work on attacks against AGC as well as their
countermeasures. Section III presents our model of the AGC system,
and the capabilities of the attacker. The problem of computing FDIAs
is formulated as a MO-POMDP in Section IV. Section V evaluates
the performance of the proposed attacks in terms of stability, impact
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detectability, as well as sensitivity to model inaccuracy. Finally,
Section VI concludes the paper.

II. RELATED WORK

Several recent works have investigated the security of AGC and its
vulnerability to attacks. One of these attacks is the time delay attack
(TDA), which delays the transmission of measurements sent from the
sensors to the control center, or the control commands from the control
center to the generators. Recent works have shown that TDAs can
degrade the performance of AGC or even disable it [6, 7]. Nonetheless,
the most studied attack is by far the false data injection attack (FDIA)
where the attacker can compromise the measurements (e.g., power
flows or frequency measurements), thus leading the AGC controller to
send incorrect dispatch commands to the generators [8]. Such FDIAs
have been shown to pose a severe threat to the system frequency [9].

A different line of work has developed improvements to FDIAs
against AGC systems. A ”mild” version of FDIA that gradually
changes the measurements was proposed in [10], and it was shown
that these attacks could still cause significant deviations in the system
frequency. Authors in [11] developed an FDIA that maximizes the sys-
tem frequency deviation, while keeping measurement perturbations
within limits. Authors in [3] proposed an FDIA against AGC based
on a model of the AGC system that minimizes the time until initiating
remedial actions by the system operator. Notably, the proposed attack
is able to bypass state-of-the-art bad data detection (BDD) methods
used in power system state estimation. Another attack that can bypass
BDD methods was proposed in [12]. In the first phase of the FDIA,
the false measurements are designed to look like un-attacked cases,
while the second phase finally drives the frequency beyond the safe
range. More recently, [13] designed an attack that minimizes both the
attack magnitude and the time until frequency violation, while keeping
the attacked measurements and the ACE values within normal limits.

In response to the rising threat of FDIAs against AGC, their detec-
tion and mitigation have recently attracted significant research interest.
The traditional approach is to monitor the ACE of each area [1], since
an increase in the ACE could be a strong indicator of a system fault or
an attack. Building on this simple intuition, other approaches utilized
the ACE signals for attack detection in more complicated ways. Most
notably, [9] proposed an anomaly detector that monitors the ACE val-
ues and compares them with predicted values based on load forecasts.
Similarly, [14] used load forecasts to predict a range of normal ACE
values, which can be used to both detect and compensate for FDIAs.
Moreover, [15] used pattern recognition and supervised classification
to predict whether the ACE signal is normal or attacked. Besides, [16]
proposed two methods based on long short-term memory (LSTM)
and discrete Fourier transform (DFT) to detect abnormalities in ACE
time series. A multilayer perceptron (MLP) combined with feature
selection was trained in [17] to distinguish between attacked and
non-attacked ACE signals. Recently, [18] proposed a combination of
fuzzy logic and neural networks for the detection of FDIAs, where the
input data consisted of the ACE values as well as other measurements.

In contrast to the above ACE-dependent approaches, another
common approach is the use of a mathematical model of AGC to
detect FDIAs. The most commonly used models are the unknown
input observers (UIOs) [19, 20]. In these works, a mathematical
model of AGC is formulated and is used to perform a delayed
estimation of the system states by observing the sensor measurements.

By comparing the received measurements with the measurements
expected based on the estimated state, faults and attacks against AGC
could be detected. Developing on the basic idea of the UIO, [21]
includes the attack as a part of the UIO model (i.e., as an unknown
input) so that the model learns to estimate the system state as well
as the attack, which allows for correcting corrupted measurements.
Similarly, [22] designed a UIO for FDIA detection and combined
it with a robust adaptive observer and the H∞ technique to estimate
and correct the attacks. A similar idea was developed in [23] for
detecting attacks in a decentralized manner by building smaller
models that utilize only state variables from a single area.

Several works considered other model-based approaches for
detecting FDIAs in AGC systems. The approach in [24] combined
state and attack estimation with attack compensation using observer-
based output feedback control design. Authors in [25] considered
the slightly different AGC problem in hybrid AC/HVDC grids, and
designed a residual generator based on the system model to detect
and recover attacks. A recent approach is proposed in [26], where
the authors designed a set of sliding mode observers (SMOs) and
Luenberger observers to detect FDIAs and identify the location of the
attacks. Another model-based approach is investigated in [27], where
the Kalman filter is proposed for FDIA detection in AGC systems.
Moreover, [28] used the Kalman filter to estimate and correct the
effect of the attack. Finally, contrary to most works which consider a
linearized AGC system model, [29] took system non-linearities into
consideration and proposed using a particle filter to detect FDIAs.

Other approaches for detecting FDIAs in AGC systems
include [30], which applies dynamic watermarking to measurements
fed to the AGC system to detect attacks. More recently, an ensemble
method based on supervised machine learning applied to area-level
features has been proposed for detecting FDIAs in a decentralized
manner [31]. Similarily, authors in [32] proposed detecting FDIAs
by training an unsupervised generative adversarial network (GAN)
using historical measurement and load data. Another unsupervised
technique is presented in [33], where FDIAs are detected using an
autoencoder neural network with LSTM structured neurons.

Apart from the FDIA detection problem, many works focused
on the problem of fault-tolerant control in AGC systems. Authors
in [34] proposed FDIA-resilient control in AGC systems combining
a Luenberger observer, an artificial neural network (ANN), and an
extended Kalman filter. Moreover, [35] proposed an H∞ controller
for event-triggered AGC to control the system frequency under
DoS attacks and FDIAs. Besides, an LSTM-based regression model
was developed in [36] to predict and compensate for the FDIA
signals in AGC. Finally, several research works used a game-theoretic
approach to model the interaction between the system operator and the
attacker. In the game formulated in [37], the attacker chooses between
manipulating either half or all of the samples, and the operator chooses
between two different configurations of a FDIA detector. In the game
proposed in [38], the attacker could either attack both power and
frequency measurements or only the frequency, while the defender
could switch between two different FDIA detectors, namely support
vector machine (SVM) and k-nearest neighbours (KNN).

A significant limitation of most of the aforementioned works
studying AGC security is that they considered weak attack models.
Simple FDIAs such as ramp, pulse, step, scaling, sine, random,
and replay attacks [9, 10, 14, 17, 19, 23, 27, 28, 31] have been
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commonly utilized either (1) to quantify the impact of FDIAs on
AGC systems, or (2) to evaluate FDIA detection approaches. However,
several works proposed attacks that included a notion of stealthiness.
FDIAs constructed in [11, 13, 25, 33] satisfied simple constraints, e.g.,
upper and lower bound constraints on the attacked measurements.
The above naive attacks do not exploit any knowledge about the
attacked AGC system model, nor about the detectors deployed by
the system operator. Therefore, available detection methods in the
literature could very effectively detect these naive FDIAs. However,
it is unclear whether state-of-the-art detection methods could detect
more intelligent attacks that can leverage insider information about the
AGC system and the employed detectors. Therefore, a thorough study
of the security of AGC w.r.t. to a strong attack model is highly needed.

It is also worth to note that very few works [3, 12] proposed
attacks that can bypass bad data detection (BDD) techniques typically
employed with power system state estimation. Nevertheless, these
attacks are agnostic of any AGC-specific FDIA detectors, and should
thus be detectable by those. Besides, although [32] considered attacks
that are stealthy w.r.t. the AGC system model, computing those
attacks requires access to the unknown inputs (e.g., loads) and the
authors do not provide a clear FDIA computation procedure.

Going beyond the above works, constructing intelligent FDIAs
against AGC systems could be regarded as an optimal sequential
decision making problem, with the objective of maximizing
the attack impact and stealthiness. To this end, we utilize the
framework of reinforcement learning (RL) to compute FDIAs
because (1) computing optimal attacks using traditional mathematical
optimization tools could be infeasible for large and highly dynamic
AGC systems, and (2) the RL approach only requires the availability
of a system model and historical data, and the attack procedure could
in principle be applied against other cyber-physical control systems.

Moreover, RL has been extensively used in various power systems
optimization tasks. Several works have proposed AGC controllers
using RL or multi-agent RL (MARL) instead of the widely used
PI-controller [1, 2]. One of the first RL-based AGC controllers
was proposed in [39], where the authors used the Q-learning
algorithm [40] based on discretized actions (generation set points)
and observations of either (1) the ACE values, or (2) the power-
flow and frequency measurements. More recently, [41] treated AGC
as a decentralized multi-agent problem (i.e, each area controller is
considered as one agent) and utilized state and action discretization
to use the double deep Q-network (DDQN) [42] algorithm with
action discovery. MARL has also been used to solve the problem of
automatic voltage control (AVC) [43], using the multi-agent deep
deterministic policy gradient (MADDPG) [44] algorithm, which
leverages centralized training and decentralized execution, and is
able to deal with continuous actions and observations. Similarly, a
multi-agent actor critic RL algorithm was proposed in [45] to solve the
problem of voltage and frequency control in inverter-based microgrids.
Finally, Q-learning has been proposed to compute FDIAs against
power system state estimation [46]. Nevertheless, to the best of our
knowledge, our work is the first work to consider RL-based attacks
against AGC, including the question of detectability using state-of-
the-art detectors.

III. SYSTEM MODEL

A. Automatic Generation Control

We consider an interconnected power system consisting of N
areas, connected by power transmission lines called tie lines. We
denote by P sch

i,j the scheduled (planned) power flow from area i to
area j across their corresponding tie line(s), by P tie

i,j the actual power
flow from area i to area j, and by ∆P tie

i,j =P tie
i,j −P sch

i,j the deviation
from the scheduled values. We denote by fi the AC frequency of area
i, and its deviation from the nominal grid frequency (e.g., f0=60 Hz)
by ∆ωi=

fi−f0
f0

. Each area has one or more electric power generators
whose generation levels are controlled by the AGC in order to keep
the deviations of both the frequency and the tie line power flows close
to zero, despite changes ∆PL in the electrical loads in each area.

At time instant t, the evolution of the frequency deviation ∆ωi

is given by the differential equation

∆ω̇i(t)=
1

2Hi

(
∆Pm

i (t)−∆P tie
i (t)−∆PL

i (t)−Di∆ωi(t)
)
, (1)

where Hi is the inertia constant of generator i, ∆Pm
i is

the deviation in the mechanical power output of generator i,
∆P tie

i (t) =
∑N

j=1∆P tie
i,j (t), and Di is the damping coefficient of

generator i. The power flow on a tie line can be approximated by

˙∆P tie
i,j (t)=P s

ij(∆ωi(t)−∆ωj(t)), (2)

where P s
ij is the synchronizing power coefficient between areas i

and j [2].
To drive the power and frequency deviations back to zero, each

area’s generator governor adjusts the position of the turbine’s steam
valve Pv

i based on the differential equation

∆Ṗv
i (t)=− 1

τgi

(
1

Ri
∆ωi(t)+∆Pv

i (t)−∆P ref
i (t)

)
, (3)

where τgi is the time constant of the governor in area i, Ri is the speed
regulation (droop) coefficient of the generator, and∆P ref

i is the input
reference power generation of area i supplied by AGC. Changing
∆Pv will in turn control the output mechanical power ∆Pm as

∆Ṗm
i (t)=− 1

τti
(∆Pm

i (t)−∆Pv
i (t)), (4)

where τti is the turbine time constant of area i.
To regulate the frequency and the tie line power flows, the AGC

controller is typically implemented as a PI-controller that controls
∆P ref using

∆Ṗ ref
i (t)=−kiACEi(t), (5)

where ki is the integrator gain of the PI-controller, and ACEi is the
area control error in area i, computed as

ACEi(t)=∆P tie
i (t)+βi∆ωi(t), (6)

where βi is the frequency bias of area i computed as

βi=Di+
1

Ri
. (7)

A block diagram of the above equations for two areas is shown
in Figure 1, where the transfer function of each block is given in the
Laplace domain.
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Figure 1: Block diagram of automatic generation control of a 2-area
power system using ACE, including the locations of FDIAs.

The above equations can be converted into the state space model

ẋi(t)=Ac
iixi(t)+Bc

iui(t)+

N∑
j=1

Aijxj(t), (8)

where

xi=[∆P tie
i ,∆ωi,∆Pm

i ,∆Pv
i ,∆P ref

i ]T ,

ui=∆PL
i ,

Ac
ii=


0

∑N
j=1P

s
ij 0 0 0

−1
2Hi

−Di

2Hi

1
2Hi

0 0

0 0 −1
τt
i

1
τt
i

0

0 −1
Riτ

g
i

0 −1
τg
i

1
τg
i

−ki −kiβi 0 0 0

,

Bc
i =[0,

−1

2Hi
,0,0,0]T ,

and Ac
ij, i≠j is a 5×5 matrix whose only non-zero element is -P s

ij

in the first row and the second column.
Combining the equations for all areas we obtain

ẋ(t)=Acx(t)+Bcu(t), (9)

where x∈R5N ,u∈RN ,A∈R5N×5N ,B∈R5N×N s.t.

x=[xT1 ,...,x
T
N ]T , u=[uT1 ,...,u

T
N ]T ,

Ac=

Ac
11 ... Ac

1N
...

. . .
...

Ac
N1 ... Ac

NN

, Bc=


Bc

1 0 ... 0
0 Bc

2 ... 0
...

...
. . .

...
0 0 ... Bc

N

.

The above continuous time model can be converted to discrete time
with a discretization time step Ts using the zero-order hold (ZOH)
method [47] to obtain

x[t+1]=Ax[t]+Bu[t], (10)

where A and B are obtained by the ZOH discretization of Ac and
Bc respectively.

B. Fault and Attack Detection in AGC

As mentioned in Section II, the most commonly used methods
for fault and attack detection in AGC are (1) monitoring the ACE
values, which is a model-free method, and (2) developing unknown
input observers, which is model-based.

1) Area Control Error: The ACE can be computed for each
area as in (6), based on the received power-flow and frequency
measurements. Since the main objective of AGC is to keep the ACE
values small, an increase in ACE could be a strong indicator for
a system fault or malicious activity [9]. The simplest ACE-based
detector would then monitor the ACE values, and raise an alarm if

max
i

|ACEi[t]|>ρa, (11)

where ρa is a predefined detection threshold. In what follows, we
refer to the detector based on (11) as the ACE detector.

2) Unknown Input Observer: Another commonly used method for
fault and attack detection for AGC is based on the idea of the delayed
unknown input observer (UIO) for discrete-time linear systems [4, 19].
The UIO is based on the discrete-time state space model of the system,

x[t+1]=Ax[t]+Bu[t]

y[t]=Cx[t], (12)

where y∈R3N ,C∈R3N×5N s.t.

y=[y1,...,yN ]T , C=


C1 0 ... 0
0 C2 ... 0
...

...
. . .

...
0 0 ... CN

,

yi=[∆P tie
i ,∆ωi,∆P ref

i ], Ci=

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

.
Note that the output y includes only the variables that could be
measured by the operator. For ease of notation we let n = 5N ,
m=N , p=3N denote the total number of states, inputs, and outputs
of the system, respectively. Assuming knowledge of the initial state
of the system (i.e, x[0]), a UIO with a detection delay α can be used
to estimate the system state at time t after observing the system
measurements y from time t to t+α, making use of the relation

y[t :t+α]=Θαx[t]+Mαu[t :t+α], (13)

where y[t : t + α] ∈ Rp(α+1), u[t : t + α] ∈ Rm(α+1),Θα ∈
Rp(α+1)×n,Mα∈Rp(α+1)×m(α+1) s.t.

y[t :t+α]=
[
y[t]T ,y[t+1]T ,...,y[t+α]T

]T
,

u[t :t+α]=
[
u[t]T ,u[t+1]T ,...,u[t+α]T

]T
,

Θα=
[
CT ,(CA)T ,...,(CAα)T

]T
,

Mα=


0 0 ... 0

CB 0 ... 0
...

...
. . .

...
CAα−1B CAα−2B ... 0

,

The estimated system state x̂[t] by the UIO can then be given by

x̂[t+1]=Ax̂[t]+L(y[t :t+α]−Θαx̂[t]), (14)
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where L∈Rn×p(α+1) is the UIO gain matrix that should be designed
in order to ensure the accuracy and stability of the UIO. It has been
shown [19, 48] that for α≥2, the accuracy and stability of the UIO
can be ensured when the following procedure is followed [4, 19]:

1) Choose α s.t. rank(Mα)−rank(Mα−1)=N
2) Find the matrix Q∈Rαm×(α+1)p that satisfies

QMα=

[
0 0
Im 0

]
3) Compute [ST

1 ST
2 ]

T = QΘα s.t. S1 ∈ R(α−1)m×n and
S2∈Rm×n

4) Find L1∈Rn×(α−1)m s.t. the eigenvalues of (A−BS2)−L1S1

are stable (i.e., ∈ [−1,1])
5) Compute L=[L1 B]×Q

After estimating the system state x̂ using (14), the residual can
be computed as

r[t]=y[t]−Cx̂[t], (15)

and an alarm is raised if

∥r[t]∥2>ρr, (16)

where ρr is a predefined detection threshold. Recall that despite
being the residual of the estimated state for time t, r[t] cannot be
computed by the UIO before time t+α. Furthermore, observe that
the knowledge of the load changes (i.e., u[t]) is not required to
compute r[t]. In what follows we refer to the detector based on (16)
as the UIO detector.

C. Attack Model

We consider an attacker that has knowledge of the system
matrices A, B, and C. This means that the attacker either knows
or can accurately estimate the parameters of each area (i.e.,
Hi, Di, Ri, βi, τ

g
i , τ

t
i , P

s
ij). Furthermore, the attacker is able to

eavesdrop on the system measurements (i.e., y[t]) at each AGC cycle.
We assume that the attacker knows whether the system operator is
using an ACE detector, a UIO detector, none, or both. If the operator
is using a UIO, the attacker knows the parameters α and L of the UIO,
and can thus predict the effect of its attack on the UIO residual r.

We consider that the attacker can inject false measurements of
the tie-line power flows as well as the area frequencies, and can thus
manipulate ∆P tie and ∆ω as

∆P tie
i,a [t]=∆P tie

i [t]+aPi [t],

∆ωi,a[t]=∆ωi[t]+aωi [t], (17)

where aPi and aωi represent the perturbation (attack) of the tie-line
power flows and frequency in area i. Observe that in practice,
manipulating the frequency measurements might be harder than
manipulating power flow measurements since (1) power flow
measurements are typically greater in number than frequency
measurements, and are thus harder to secure, and (2) the grid
frequency is a variable that can be verified by the system operator
from neighbouring buses in the same area [3]. The attacked
power-flow and frequency measurements would then affect the ACE
computation in (6), and thus the output of the PI-controller in (5).

In practice, the attacker could eavesdrop and inject false measure-
ments through network intrusion. The attack could directly manipulate

messages transmitted using communication protocols such as Modbus,
DNP3 or IEC 61850 [49, 50], as these protocols do not mandate either
authentication or encryption of messages. Although security recom-
mendations exist for these protocols [51], their use is not mandatory.
Even if message authentication is used, eavesdropping and injection
of measurements would be feasible through the compromise of end
devices. An end device (e.g., a remote terminal unit (RTU) or a phasor
measurement unit (PMU)) could be compromised by stealing cryp-
tographic credentials or by exploiting software or hardware vulner-
abilities, and state estimates based on PMU measurements could also
be compromised by time synchronization attacks [52]. Finally, infor-
mation regarding the system parameters and the used detectors could
be obtained by insiders, or could be estimated by an adversary that
can eavesdrop the measurements during an extended period of time.

Overall, the advantage of such a strong attack model is that it allows
us to consider the worst case attacks and their potential impact on the
system’s performance. Such a strong model is not uncommon in the
security literature, given the recent success of cyber attacks with high
level of attacker knowledge, e.g., Stuxnet [53] and FDIAs against
power system state estimation [54, 55]. We further assume that the
attack is constrained by ∣∣∆P tie

i,a [t]
∣∣≤aP+,

|∆ωi,a[t]|≤aω+, (18)

where aP+ and aω+ denote the respective maximum allowed attack
magnitudes. The reason for constraint (18) is that an attack that
sets the power-flow or frequency measurements too far from their
expected values should be easily detectable. Moreover, the attacker is
constrained by that

∑N
i=1∆P tie

i,a and
∑N

i=1a
P
i must be kept close to

zero for any attack. As a result of the attack, the state-space model
becomes [20]

x′[t+1]=Ax′[t]+Bu[t]+Ea[t], (19)
y′[t]=Cx′[t]+Fa[t], (20)

where a∈R2N .E∈Rn×2N ,F ∈Rp×2N s.t.

a=
[
aP1 ,a

ω
1 ,...,a

P
N ,aωN

]T
, (21)

E=


E1 0 ... 0
0 E2 ... 0
...

...
. . .

...
0 0 ... EN

, F=


F1 0 ... 0
0 F2 ... 0
...

...
. . .

...
0 0 ... FN

,

Ei=


0 0
0 0
0 0
0 0

−ki −kiβi

, Fi=

1 0
0 1
0 0

.
Observe that the only state variable that is directly affected by the
attack is ∆P ref , due to the manipulated ACE value. The considered
attack model is illustrated in Figure 2.

The attacker’s goal is to maximize the deviation of the frequency
from its nominal value f0 in a certain target area i∗. Ideally, the
attacker would like to cause the frequency to drift beyond its secure
limit, which might cause load shedding schemes to take effect, or
in the worst case cause blackouts.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3288676

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

Figure 2: Block diagram of the AGC system, including the physical
power system, the communication network, the control center, and
the attacker.

We consider that the adversary aims to find a sequence
π=(a[1],a[2],...,a[T ]) for some time horizon T that maximizes the
frequency deviation without being detected by either the UIO or the
ACE. This corresponds to solving the optimization problem

max
π

1

T

T∑
t=1

|∆ωi∗[t]|,

s.t. ∥r[t]∥2≤ρr, t=1,2,...,T

max
i

|ACEi[t]|≤ρa, t=1,2,...,T. (22)

An important feature of this seemingly simple problem is that the
attacker has limited information about the system at every time step
and has no knowledge of the future evolution of the system. Thus, (22)
is essentially a sequential decision problem under uncertainty, and
hence we propose to adopt a multi-objective POMDP formulation.

IV. RL-BASED ATTACKS ON AGC
In what follows we formulate the problem of computing attacks

against AGC that are undetectable w.r.t. the UIO and the ACE
as a multi-objective partially observable Markov decision process
(MO-POMDP) [5], and propose to use reinforcement learning for
obtaining an attack policy. Although we present a solution that
specifically targets the two detectors discussed in Section III-B,
the proposed approach can easily be extended to target any other
model-based or model-free fault and attack detection method that
is based on a hypothesis test in the form (11) or (16).

A. Multi-objective POMDP Formulation

We formulate the problem by first introducing a tuple M and then
showing that it is a POMDP. Let M≜(S,A,R,P,O,γ), where:

• S is the state space, and s[t]∈S is the state at time step t. For
our problem, this includes the state of the AGC system, the
load demand, the current estimated state by the UIO, as well
as the delayed measurements needed for estimating the next
state. Therefore,

s[t]≜(x[t],u[t],x̂[t−α],y′[t−α−1:t−1]). (23)

• A is the set of the attacker’s possible actions, and a[t] ∈ A
denotes the action at time step t as defined in (21).

• R[t] is the reward function. We propose a reward function that
rewards an increase of the frequency deviation at the target area
and at the same time includes punishment terms for the UIO
residual and the ACE. Particularly, we use a weighted sum of the
frequency deviation, the norm of the residual, and the maximum
of the ACE values among different areas as the reward,

R[t]≜|∆ωi∗[t+1]|−
λr∥r[t−α+1]∥2−λamax

i
|ACEi[t]|, (24)

where λr and λa are regularization coefficients (note that
∆ωi∗[t + 1], r[t − α + 1], and ACEi[t] are the resulting
frequency deviation, residual, and ACE, when the transition
(s[t],a[t])→s[t+1] occurs). The values of (λr,λa) can be used
for setting the relative importance of the impact (∆ωi∗) and
(un)detectability (r and ACE). Observe that the reward function
essentially converts three objectives into a scalar objective,
which is a widely used approach for dealing with MO-POMDPs.

• P(s[t + 1]
∣∣s[t], a[t]) represents the conditional transition

probability between states.
• O denotes the attacker’s observation space. At each time step
t the attacker obtains the observation o[t]∈O about the state.
We define this observation as

o[t]≜(y[t],y′[t−α−1:t−1]). (25)

Note that we assumed that the vector y is observable by the
attacker, and y′ is the result of the attacker’s actions on y and
accordingly, is observable by the attacker.

• γ∈ [0,1) is a discount factor.

Proposition 1. The tuple M with the definitions in (23), (24), and
(25) is a POMDP.

Proof. To prove this, we need to show that

(i) s[t] as defined in (23) is indeed Markovian.
(ii) The transition (s[t],a[t]) → s[t+1] contains all information

needed for computing the reward.

In order to prove (i), we need to show that s[t+1] only depends
on s[t] and a[t] and not the entire history, i.e., we have to verify that

p
(
s[t+1]

∣∣s[t],a[t])=p
(
s[t+1]

∣∣s[t],s[t−1],...s[0],a[t]
)
. (26)

Equations (14), (19), and (20) show that x̂[t−α+1], x[t+1], and
y′[t] (and accordingly, y′[t−α :t]) are independent of s[t−1],...,s[0]
given s[t] and a[t]. Assuming that u[t] has the Markov property (e.g.,
a random walk), then the state s[t] has the Markov property as well.

Regarding (ii), notice that the term ∆ωi∗[t+ 1] is an entry of
x[t+1], which itself is a part of s[t+1]. In addition, r[t−α+1] can
be obtained as

r[t−α+1]=y′[t−α+1]−Cx̂[t−α+1],

and both y′[t− α+ 1] and x̂[t− α+ 1] are included in s[t+ 1].
Finally, ACEi[t] is computed based on y′[t] using (6), and y′[t] is
determined by s[t] and a[t]. Hence, writing the reward in (24) as
R[t]=R(s[t],a[t],s[t+1]) is well-justified.
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B. Attacker’s Policy

To solve the above-mentioned POMDP, the attacker seeks to find
a policy π :O→A that maximizes the expected discounted average
reward. That is, the attacker’s objective is finding the solution to the
following problem:

argmax
π

E

[ ∞∑
t=0

γtR[t]

]
(27)

Note that maximizing the objective in (27) corresponds to solving
the following optimization problem:

max
π

E

[
∞∑
t=0

γtR[t]

]

=max
π

E

[
∞∑
t=0

γt
(
|∆ωi∗ [t+1]|−λr∥r[t−α+1]∥2−λamax

i
|ACEi[t]|

)]

=max
π

E

[
∞∑
t=0

γt|∆ωi∗ [t+1]|

]
−λrE

[
∞∑
t=0

γt∥r[t−α+1]∥2

]

−λaE

[
∞∑
t=0

γtmax
i

|ACEi[t]|

]
,

which can be regarded as a relaxed approximation of the problem
in (22). This justifies our definition of the reward function in (24).

Finding the optimal policy is an RL problem with continuous state
and action spaces. We thus propose to use deep RL for finding good
policies. In what follows we refer to the attack based on this policy
as the deep RL attack DRLA(λr,λa).

V. NUMERICAL RESULTS

In this section we evaluate the proposed RL-based attacks
and compare them to state-of-the-art FDIAs against AGC. All
experiments were carried out on a server with AMD 7543P CPU
with 32 cores @ 2.8 GHz and 64 GB of RAM.

A. Simulation Methodology

We simulated an N=3-area power system operating at a nominal
frequency of 60 Hz. The parameters for areas 1 and 2 are the same
as for the examples in [2, Ch. 12] and the parameters for area 3
were obtained by slightly perturbing the values for area 1, as shown in
Table I. Each area is connected to the other two areas through a tie line.
Although seemingly simplistic, the simulated 3-area system can model
a wide-range of practical systems, since each area does in reality
include many generator and load buses. To simulate the dynamics of
the system, we assumed a discretization time step of Ts=2 seconds,
which is a reasonable value considering the AGC cycle [2]. The load
for each area is assumed to follow a random walk given by

∆PL
i [t+1]=∆PL

i [t]+vLi [t], (28)

where vLi follows a zero-mean Guassian distribution with a standard
deviation σL

i = 0.02 p.u. for all areas. Furthermore, state noise
and measurement noise are added to (12) according to zero-mean
Gaussian distributions with a standard deviation of 0.03 Hz for
frequency variables and

√
0.03 MW for power variables [19, 56]. The

above three factors (i.e., load fluctuation, state and measurement noise)
are thus the main sources of randomness in our experiments. For the
evaluation we implemented a UIO with an estimation delay of α=2,

Parameter Area 1 Area 2 Area 3
Hi 5 4 5.5
Di 0.6 0.9 0.7
τti 0.5 0.6 0.51
τgi 0.2 0.3 0.25
Ri 0.05 0.0625 0.0525
Ki 0.3 0.3 0.3

BaseMVA 1000 1000 1000
Ps
i 2 2 2

Table I: Parameters of the considered three-area power system.

which is the smallest value that ensures the accuracy and stability of
the UIO [48]. To choose the UIO gain matrixL, the eigenvalues of the
matrix (A−BS2)−L1S1 were chosen to be equidistant values in the
range [−0.5,0.5], which was observed to improve the UIO accuracy.

Next, to compute DRLAs, we considered that the maximum
allowed deviation of the power-flow is aP+=0.3 p.u. =300 MW,
and the maximum allowed deviation of the frequency (in the case
frequency measurements are attacked) is aω+ =0.006 p.u. =0.36
Hz, as in (18). The aforementioned values were chosen based on
preliminary experiments s.t. the deviations in attacked measurements
are large enough to affect the AGC system, but not too large to
raise alarms and initiate remedial actions by the operator. The attack
objective was to maximize the frequency deviation in area 1, i.e,
i∗=1. Since the states and actions are continuous, popular discrete-
space RL algorithms such as deep Q-network (DQN) [57] could
not be used. Instead, the RL attacks were trained by the proximal
policy optimization (PPO) algorithm [58]. PPO was chosen based on
the results of preliminary experiments comparing its performance
to other state-of-the-art continuous-space RL algorithms such as
deep deterministic policy gradient (DDPG) [59], and soft actor-critic
(SAC) [60]. Due to its simplicity, ease of tuning, and state-of-the-
art performance in various RL tasks, PPO is currently one of the
most used RL algorithms. It belongs to the class of actor-critic policy
gradient algorithms. The PPO algorithm consists of two interacting
neural networks: an actor network which learns to produce actions
based on observations, and a critic network which learns to evaluate
the actions generated by the actor network. The actions produced
by the actor NN are optimized by maximizing the clipped value of
the advantage function, which quantifies the advantage of taking an
action compared to the average behavior. The optimization objective
could possibly include minimizing the KL-divergence [61] between
the policies followed in subsequent optimization steps. In our PPO
implementation, we used the default PPO parameters from the RL-
lib Python library [62]. The discount factor used was γ = 0.99.
The advantage function was estimated using generalized advantage
estimation (GAE) [63] with λGAE = 1. The KL-divergence was
included in the objective with a coefficient of 0.2 and a target of
0.01. The PPO clip parameter used was ϵ = 0.3. The actor and
critic NNs were implemented in the Tensorflow Python library [64],
and each network included 2 hidden layers with 256 neurons, and
tanh activation functions. The NNs were optimized using stochastic
gradient descent (SGD) [65] with 30 epochs of training per batch, and
a mini-batch size of 128 samples. The number of episodes needed to
train each RL agent was 80,000. Each episode’s length was 150 AGC
cycles (i.e., 300 seconds given Ts=2s), and the attacks started at the
51st cycle, resulting in Te=100 attacked AGC cycles per episode.
The initial 50 unattacked cycles were simulated to avoid any undesired
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Figure 3: Trade-off between attack impact and detection metrics for DRLAs and baselines, when only power-flow measurements are attacked.

Figure 4: Trade-off between attack impact and detection metrics for DRLAs and baselines, when both power-flow and frequency
measurements are attacked.

interaction between the attack and the initial transient behavior of the
UIO. We used three attack schemes as baselines for comparison.

a) Random Attack: At each time step, the attack is
randomly chosen according to a uniform distribution,
i.e., ∆P tie

i,a ∼U(−aP+,aP+) and ∆ωi,a∼U(−aω+,aω+).
b) Regression Attack: proposed in [3], the attacker develops a

linear regression model of the attack impact (i.e., |∆ω1|) as
a function of the change in the area loads ∆PL[t], and the
attacker’s action a[t]. The optimal attack can then be computed
based on the learned model.

c) DRLA(0,0): the attacker attempts to maximize the impact,
without taking neither the UIO residual nor the ACE into
consideration, and uses RL for this purpose. This is achieved
by setting λr=λa=0 in (24).

For each attack scenario, the simulation procedure is as follows
at each time step:

1) Compute the attack a[t] according to the attack policy.
2) Compute the attacked measurements y′[t] as in (20).

3) Compute the UIO residuals r based on y′[t].
4) Simulate the state-space model of the AGC system according

to (19).
5) Compute the un-attacked measurements y[t+ 1] from (12),

which will be part of the observation o[t+1] for the attacker.

B. Attack Impact and Detectability

In what follows we present the results of the evaluation of our
proposed DRLAs against AGC. Figure 3(left) and (right) shows the
attack impact measured as the maximum frequency deviation in the
target area (i.e., Area 1) during an episode vs. the maximum ℓ2-norm
of the UIO residual over one episode, and the attack impact vs. the
maximum maxi|ACEi| over one episode, respectively, when attack-
ing only the power-flow measurements with (aP+=0.3). Figure 4
shows corresponding results for the case when attacking both power-
flow and frequency measurements with (aP+ =0.3,aω+ =0.006).
Each point in the figures represents one episode and a total of 1000
episodes were simulated per scenario. We identified non-zero λr
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Figure 5: Reward curves during training.

and λa values by numerically exploring the Pareto frontier, and then
choosing parameter pairs with significant impact while retaining
undetectability. Focusing on Figure 3, we can first observe that the
baselines can typically achieve slightly higher impact compared to the
proposed DRLAs. For example, the maximum impact achieved by
the baselines is around 0.5 Hz, compared to slightly over 0.4 Hz for
DRLAs. However, DRLAs (with non-zero regularization coefficients)
can greatly reduce the values of the detection metrics compared
to baselines (e.g., by around two orders of magnitude for the UIO
residual and around one order of magnitude for the ACE), and bring
the detection metrics close to their values in the no-attack scenario.
Furthermore, as expected, DRLA(0.0145, 0) which penalizes high
UIO residuals succeeds in achieving a good balance between impact
and UIO residuals. However, it clearly fails in keeping the ACE
values low (similar to the baselines). The exact opposite is observed
for DRLA(0,0.02736). Comparing the two aforementioned attacks,
it can be observed that attacking the UIO residual seems to be easier
than attacking the ACE, which indicates that the ACE might be a
better metric for detecting attacks than the UIO residuals in this case.
On the contrary, DRLA(0.0052, 0.022) succeeds in keeping both
detection metrics low, at the cost of lower attack impact.

Comparing the above results with Figure 4, we can observe that
attacking the frequency measurements can allow the attacker to
slightly increase both the attack impact and stealthiness. For example,
DRLA(0.018,0) can have an impact reaching 0.6 Hz, which is above
the security limit of many applications. Furthermore, the same attack
yields UIO residuals that are on average much lower than the corre-
sponding attack in Figure 3. Note the discrepancy between the values
of (λr,λa) in Figures 3 and 4, since these values were chosen empiri-
cally. The vertical line in the figures shows the detection threshold cor-
responding to a false positive rate (FPR) of 0.1%. The FPR is defined
as the fraction of non-attacked episodes for which the detector raises
an alarm, and can be controlled by changing the detection threshold,
and FPR=0.1% corresponds to a time between false alarms TBFA=
TeTs/FPR=100×2/0.001=200,000 seconds (<0.5 false alarms
per day). Figure 4 shows that the UIO detector can detect 27.6% of
the DRLA(0.005,0.022) attacks and 28.2% of the DRLA(0.018,0)

attacks. For the same FPR, the ACE detector can detect only 1.1%
of the DRLA(0.005,0.022) attacks and 8.3% of the DRLA(0,0.029)
attacks. This suggests that the UIO detector is better than the ACE
detector for this case. In general, Figure 4 confirms the earlier observa-
tion that DRLA is successful in terms of impact and (un)detectability.
We have also evaluated the performance of an additional detector
based the cumulative sum (CUSUM) [66] of the UIO residuals. The
results, shown in the appendix, suggest that CUSUM does not provide
a significant improvement over the above detectors, especially for the
case when both power-flow and frequency measurements are attacked.

C. Training Stability

To assess the stability of DRLA, we further trained 10 separate
agents for each (λr,λa) tuple, excluding the baseline DRLA(0, 0),
and computed the minimum, mean, and maximum reward per
episode over the 10 agents as the training progresses. Figure 5 shows
the so-called reward curves for the trained agents, with and without
attacking frequency measurements. To facilitate the comparison,
the rewards were scaled over the 10 trained agents using min-max
scaling. The figure shows that most agents do converge with very
low variance after around 10,000 episodes of training, with the only
exception being DRLA(0, 0.029) (when attacking both ∆P tie and
∆ω), which indicates that the agents might need further training. To
conclude, the trained agents show in general very stable performance.

D. Immediate Response

We further consider the hypothetical scenario that the operator
immediately reacts to the attacks detected by either the UIO or the
ACE detectors (e.g., through neglecting suspected measurements, or
initiating load shedding schemes). For this case, it is reasonable to
evaluate the attacks in terms of the highest impact caused until detec-
tion, instead of the highest impact over the whole episode. For brevity,
all upcoming results concern the scenario where both power-flow and
frequency measurements are attacked (i.e., aP+=0.3,aω+=0.006),
unless otherwise stated. Figure 6 shows the relation between the
attack impact before detection, and the average TBFA. Every point
is computed by using a different value for the detection thresholds
(ρr or ρa). The figure shows that the effective impact of the baseline
attacks is always negligible irrespective of the chosen TBFA, since
those attacks are always detected at the beginning of an episode,
before they can achieve any significant impact. Interestingly, this is
also the case for DRLAs targeting the wrong detection metrics, e.g.,
DRLAs with λr=0 have negligible effective impact when the UIO
detector is used, and vice versa. Among DRLAs, the effective impact
of the attacks with non-zero regularization coefficients increases with
the TBFA until it approaches the average impact shown in Figure 4.
The results in this figure and the previous figures emphasize the
importance of the attacker’s knowledge of the detector employed by
the defender. They also show that even if the operator decides to use
both detection metrics, DRLAs with λr>0 and λa>0 are expected
to be undetected, even if somewhat less impactful.

E. Data-Driven Detectors

To further investigate the detectability of the proposed DRLAs,
we examine the use of two machine learning (ML) based detection
approaches: (1) an unsupervised autoencoder (AE) neural network,
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Figure 6: Trade-off between the highest achieved attack impact before detection and the time between false alarms.

and (2) a supervised deep neural network (DNN) classifier. For both
approaches, we consider that the input features at each timestep are: (a)
the measurements y[t], (b) the UIO residuals r[t−α], (c) the norm of
the UIO residuals ∥r[t−α]∥2, and (d) the ACE in all areas. Thus, for
our 3-area system this corresponds to a total of nf =9+9+1+3=22
features. The dimensions of the AE layers werenf ∗[1,0.7,0.5,0.7,1]
(i.e., three hidden layers), and the dimensions of the DNN layers were
nf ∗[1,4,0.5,1] (i.e., two hidden layers). Both approaches used ReLU
as the activation function for the neurons, used the Adam optimization
algorithm, and were implemented using PyTorch. To evaluate the
data-driven detectors, we used the same simulation data described in
Section V-B. The data (7 attack scenarios× 1000 episodes× 100 time
steps) were split into 800 training episodes and 200 test episodes. The
unsupervised AE was trained on non-attacked training data only, while
the supervised DNN was trained using the whole labelled training data.
The detection was then done on the test data using a hypothesis test
similar to (11) and (16), where the test statistics for AE and DNN were
the MSE of the AE reconstruction error (the difference between input
and output layers), and the scalar output of the DNN, respectively.

To compare the performance of the ML detectors to the UIO and
ACE detectors, we utilize the receiver operating characteristic (ROC)
curves. The ROC curve shows the trade-off between the fraction of
attacked episodes for which a detector raises an alarm (true positive
rate, or TPR) on the vertical axis, and the FPR on the horizontal
axis, and is obtained by varying the detection threshold (e.g., ρr
in (16) for the UIO detector). The area under the ROC curve is a
commonly-used evaluation metric that summarizes the performance
of the detector. An ideal detector would have AUC = 1, while a
detector with AUC = 0.5 would correspond to a performance that
is as good as random guessing.

Table II shows the AUC achieved by each of the detectors, as
well as the mean impact of each attack. Observe that the impact was
defined as the maximum observed frequency deviation in area 1, and
hence the no-attack scenario has non-zero impact. From the table, we
can generally see that the ML detectors (especially the DNN) have
significantly higher AUC values than the UIO and ACE detectors.
Nonetheless, the unsupervised AE performs surprisingly poor against
DRLA(0.005, 0.022), even though the attack was not specifically

Scenario Impact UIO ACE AE DNN
No attack 0.1422 - - - -
Random attack 0.4056 1 1 1 1
Regression attack 0.5857 1 1 1 1
DRLA(0,0) 0.7947 1 1 1 1
DRLA(0.018,0) 0.4987 0.5694 1 1 1
DRLA(0,0.029) 0.3412 1 0.6743 1 1
DRLA(0.005,0.022) 0.2417 0.5610 0.5388 0.7753 0.9995

Table II: Comparison of the attacks w.r.t. their impact and
corresponding AUC scores by the different detectors.

Scenario Impact UIO ACE AE DNN
No attack 0.2270 - - - -
Random attack 0.6084 1 1 1 1
Regression attack 0.8300 1 1 1 1
DRLA(0,0) 1.1280 1 1 1 1
DRLA(0.018,0) 0.5917 0.3670 1 1 1
DRLA(0,0.029) 0.4566 1 0.1317 1 0.9997
DRLA(0.005,0.022) 0.3445 0.3841 0.0514 0.6531 0.9989

Table III: Comparison of the attack impacts and corresponding AUC
scores, in the presence of 20% parameter misestimation.

trained to bypass it. This result interestingly indicates the potential
generalization power of DRLA against unseen detectors. Finally, it is
worth noting that although the supervised DNN can effectively detect
all considered attacks, the performance of supervised ML typically
degrades against unseen and zero-day attacks [67, 68]. Moreover,
the acquisition of accurately labelled data in real scenarios might not
always be feasible [69, 70].

F. Impact of Parameter Misestimation

We now consider the case when the operator’s model of the AGC
system (i.e., H,D,τt,τg,R) is slightly inaccurate. Model inaccuracy
would affect the control accuracy of the PI-controllers and the UIO
residuals, making an attack potentially more difficult to detect. To
simulate this scenario, we consider that the real system parameters
are 20% higher than those in Table I, and are used for evaluating the
attack and the detection schemes. We consider the case of symmetric
information availability, i.e., the operator and the attacker have access
to the same inaccurate parameters. The parameters available are the
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ones shown in Table I, and are used for computing the UIO matrices,
the residuals, for training DRLAs. There is thus 20% estimation error,
which would not drastically increase the frequency deviations or UIO
residuals without an attack, but is large enough to affect detectability.

Table III presents the attack impact and the AUC achieved by the
detectors in this scenario. Surprisingly, even though the attacker uses
the same inaccurate parameters as the operator, the attack impact is
significantly increased for DRLAs compared to Table II, while remain-
ing completely undetectable w.r.t. most detectors. Observe that the
AUC for the UIO and ACE detectors are significantly smaller than 0.5
for some attacks. This means that DRLA learns to yield UIO residuals
and ACE values that are on average smaller than the no-attack case.

Overall, our results indicate that DRLAs are powerful w.r.t.
both the inflicted impact to the power grid, and the stealthiness
against a wide range of detectors. However, the results also suggest
potential methods to enhance the security of AGC, including (1)
obtaining more accurate system models and information, (2) utilizing
supervised ML detectors with rich training data, and (3) securing
measurements from physical and network intrusions, by e.g., utilizing
redundant frequency measurements.

VI. CONCLUSION

In this paper we investigated the vulnerability of state-of-the-art
AGC to attacks against power and frequency measurements. We
formulated the problem of attacking an AGC system equipped
with multiple fault and attack detection methods as a POMDP. We
proposed an RL solution based on the proximal policy optimization
algorithm to compute the attacked sensor measurements. Our results
show the superiority of the proposed RL-based attacks compared to
several baseline attacks in terms of stealthiness and attack impact,
and show that sophisticated attacks could bypass existing detection
schemes and could lead the grid frequency to critical trajectories. One
direction for future work could be to analyze the practical feasibility
of the proposed attack when considering weaker attack models, e.g.,
attackers without knowledge of the system parameters, or those
manipulating measurements in only one area.
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“Decentralized automatic generation control based on a stochastic
inclusion principle,” in Proc. of IFAC/IFORS/IMACS/IFIP Symposium
on Large Scale Systems: Theory and Applications, 1998, pp. 241–248.

[57] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[58] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[59] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
CoRR, 09 2015.

[60] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proc. of ICML, 2018.

[61] S. Kullback, “Information theory and statistics,” 1951.
[62] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg,

J. Gonzalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for
distributed reinforcement learning,” in Proc. of Intl. Conf. on Machine
Learning, 2018, pp. 3053–3062.

[63] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proc. of the Intl. Conf. on Learning Representations (ICLR), 2016.

[64] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in Proc. of {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 16), 2016,
pp. 265–283.

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3288676

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

Figure 7: Trade-off between attack impact and the CUSUM
detection metric for DRLAs and baselines, when only power-flow
measurements are attacked.

[65] S. Ruder, “An overview of gradient descent optimization algorithms,”
ArXiv, vol. abs/1609.04747, 2016.

[66] C. Murguia and J. Ruths, “CUSUM and chi-squared attack detection of
compromised sensors,” in Proc. of IEEE Conf. on Control Applications
(CCA), 2016, pp. 474–480.

[67] A. Nisioti, A. Mylonas, P. D. Yoo, and V. Katos, “From intrusion
detection to attacker attribution: A comprehensive survey of
unsupervised methods,” IEEE Communications Surveys Tutorials,
vol. 20, no. 4, pp. 3369–3388, 2018.

[68] M. Z. Alom and T. M. Taha, “Network intrusion detection for cyber
security using unsupervised deep learning approaches,” in Proc. of IEEE
National Aerospace and Electronics Conf. (NAECON), 2017, pp. 63–69.

[69] J. Zhang and M. Zulkernine, “Anomaly based network intrusion
detection with unsupervised outlier detection,” in Proc. of IEEE Intl.
Conf. on Communications, vol. 5, 2006, pp. 2388–2393.

[70] J. Zhang, L. Pan, Q.-L. Han, C. Chen, S. Wen, and Y. Xiang, “Deep
learning based attack detection for cyber-physical system cybersecurity:
A survey,” IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 3, pp.
377–391, 2022.

APPENDIX

A. FDIA Detection using UIO and CUSUM
In what follows we consider that the system operator is using a

combination of the UIO detector and CUSUM (i.e., referred to as the
CUSUM(UIO) detector). The detection metric for the CUSUM(UIO)
detector is computed as [66]

Sr[t]=max(0,Sr[t−1]+∥r[t]∥2−br), (29)

where ∥r[t]∥2 is the ℓ2-norm of the UIO residual at time t, br is
the bias term chosen to be equal to the mean UIO residual in the
normal (unattacked) case, and Sr[0]=0. An alarm is then raised by
the detector if

Sr[t]>ρc, (30)

where ρc is a predefined detection threshold.
Using the same simulated data described in Section V-B, we

evaluated the CUSUM(UIO) detector against the baseline FDIAs
and our proposed DRLAs, and the results are shown in Figure 7
and Figure 8. The figures show the trade-off between the attack

Figure 8: Trade-off between attack impact and the CUSUM detection
metric for DRLAs and baselines, when both power-flow and
frequency measurements are attacked.

impact, and the maximum CUSUM detection metric (Sr) during an
episode. For the case when only power measurements are attacked,
Figure 7 shows that using CUSUM can improve the separability of
the attacked and the non-attacked measurements, compared to the
UIO-detector which directly uses the raw residuals (c.f., Figure 3).
To the contrary, when both power and frequency measurements are
attacked, Figure 8 shows that the CUSUM(UIO) detector did not
bring any performance improvement compared to the UIO detector
(c.f., Figure 4). Observe that in the former case, the attacked UIO
residuals were on average higher than the non-attacked ones. Using
CUSUM in that case allows this difference to accumulate over time,
and thus boosts the detection performance. On the other hand, the
attacked UIO residuals were on average less than or equal to the
non-attacked residuals in the latter case. Thus, using CUSUM makes
little to no difference in the detection performance.

Note that the DRLAs in Figure 8 were capable of bypassing the
CUSUM(UIO) detector despite the fact that they were trained to
minimize ∥r[t]∥2 and not Sr[t]. Training DRLAs that target Sr[t]
should yield even stealthier attacks. Furthermore, one could also
implement a CUSUM(ACE) detector, but our results suggest that such
a detector would provide little improvement in detection performance,
especially for the case when both power and frequency measurements
are attacked.
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