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A Reinforcement Learning Architecture That

Transfers Knowledge Between Skills

When Solving Multiple Tasks
Paolo Tommasino, Daniele Caligiore, Marco Mirolli, and Gianluca Baldassarre

Abstract—When humans learn several skills to solve multiple
tasks, they exhibit an extraordinary capacity to transfer knowl-
edge between them. We present here the last enhanced version
of a bio-inspired reinforcement-learning (RL) modular architec-
ture able to perform skill-to-skill knowledge transfer and called
transfer expert RL (TERL) model. TERL architecture is based
on a RL actor–critic model where both actor and critic have a
hierarchical structure, inspired by the mixture-of-experts model,
formed by a gating network that selects experts specializing in
learning the policies or value functions of different tasks. A key
feature of TERL is the capacity of its gating networks to accu-
mulate, in parallel, evidence on the capacity of experts to solve
the new tasks so as to increase the responsibility for action of
the best ones. A second key feature is the use of two different
responsibility signals for the experts’ functioning and learning:
this allows the training of multiple experts for each task so that
some of them can be later recruited to solve new tasks and avoid
catastrophic interference. The utility of TERL mechanisms is
shown with tests involving two simulated dynamic robot arms
engaged in solving reaching tasks, in particular a planar 2-DoF
arm, and a 3-D 4-DoF arm.

Index Terms—Autonomous robotics, bio-inspired modular neu-
ral architecture, catastrophic interference, cumulative learning,
functioning and learning responsibility signals, mixture-of-expert
networks, reaching tasks, transfer reinforcement learning (TRL).

I. INTRODUCTION

H
UMANS, in particular children, learn multiple skills

in a cumulative fashion, from simple to progressively

more complex ones [1]. A striking feature of this cumu-

lative learning process is its increasing speed. Thus, for

example, children initially learn basic reaching and grasping
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skills in months [2], [3], but later rapidly develop a reper-

toire of variants of the basic patterns in increasingly shorter

times [4], [5].

This paper is in part motivated by the aim to understand the

mechanisms through which children learn skills in an increas-

ingly fast fashion. In this respect, our leading hypothesis is

that the increasing learning speed observed in children relies

on the transfer of knowledge from already learned skills to

new skills to be acquired. The increasing learning rates might

thus result from the fact that, thanks to knowledge transfer,

learning processes can focus on acquiring only the aspects

of the new skills that are novel with respect to the already

acquired ones.

In particular, this paper describes a bio-inspired modeling

architecture, developed within a reinforcement learning (RL)

framework, that can be used to study skill-to-skill knowledge

transfer. The system is called Transfer Expert RL (TERL)

model. TERL has two capabilities that we deem essential for

obtaining an increasingly fast learning of multiple skills (note

that here we will use the term “skill” as a synonym of the RL

“policy”):

1) the capacity to transfer knowledge from already acquired

skills to new skills to be learned [6];

2) the capacity to store knowledge of the newly acquired

skills so that it does not damage the knowledge on

the already acquired ones; in other words, it can

avoid “catastrophic interference” (or “catastrophic for-

getting” [7], [8]).

The architecture, as further specified in Section II-A, is

“bio-inspired” in that it is based on principles suggested

by behavioral and brain mechanisms operating in organisms,

and at the same time meets some constraints also faced by

organisms when acquiring multiple skills.

The challenge faced here contributes to the developmental

robotics overall objective of endowing robots with “develop-

mental programs” supporting a prolonged autonomous devel-

opment [9]–[14]. In particular, within this overall objective we

face here the subproblem of how robots could acquire multiple

skills in increasingly efficient ways.

The model we illustrate and analyze here is related to the

machine learning literature on transfer RL (TRL) investigat-

ing how transferring knowledge between different domains and

tasks (see [6], [15] for two reviews). The architecture described

here focuses on a specific important problem of TRL concern-

ing the development of algorithms capable of automatically
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selecting already solved “source tasks” and the skills acquired

to solve them, and to use such skills as starting points to best

solve new “target tasks.” We will refer to this problem as

the “source-task selection problem.” Here we sought solutions

to the source-task selection problem for an important class

of tasks: the tasks share the same primitive actions and the

same environment transition function, but they involve differ-

ent reward functions depending on the tasks [6], [15]. This

class of tasks is biologically relevant as it reflects a common

situation faced by real animals where they have to satisfy dif-

ferent needs (e.g., hunger, thirst, etc.): these needs generate

different tasks in the same environment and these tasks are

solved using the same set of “primitive actions” (i.e., muscle

activations). Needs generate tasks as they represent reward

functions that produce a reward signal when a need is present

and is satisfied with the attainment of a suitable resource [16].

TERL architecture has been developed to its current form

through a series of predecessor models. The idea of using

the mixture-of-expert model to implement an actor–critic RL

model was first proposed in [17] who used it to compose

skills and to implement skill-based transfer between complex

tasks (see Section IV). The idea of using the mixture-of-

experts model principles and actor–critic models was also used

in [18] and [19] to implement automatic task decomposition

and multitask learning and was tested with a simple naviga-

tion task involving a 2-D scenario and discrete actions. The

architecture was successively developed to work with contin-

uous actions to control a 2-D dynamic simulated arm engaged

in solving multiple reaching tasks [20] but its capacity to

implement skill-to-skill transfer was not investigated. The lat-

ter system was further developped in [21] by decoupling the

responsibility signals of experts used for functioning and for

learning: this decoupling greatly enhances the capacity of the

system to face the skill-to-skill TRL problem (see Section IV).

Such work was the first to use the “TERL” acronym to indicate

the system. Two previous works [21], [22] used TERL to show

that the principles of the mixture-of-experts system applied

to RL can be used to model and investigate the processes

of assimilation and accommodation studied in developmental

psychology [1].

The system described in this paper represents the culmi-

nation of these previous efforts into a new architecture that

resembles the previous systems in many ways but also presents

relevant innovations:

1) a systematic justification of the model ingredients from

a computational perspective, and their link to relevant

features of brain (Section II-A);

2) a fully revised formal description of the model

(Section II-B);

3) a refinement of the new mechanism for decoupling

the experts’ responsibility signals used for function-

ing and for learning, and other improvements (e.g.,

noise generation and a best-expert freezing mecha-

nism; Section II-B): these mechanisms allow the system

to train multiple experts (that we call “background

copies”) for each task, so some of them can be later

recruited to solve new tasks while avoiding catastrophic

interference;

4) a systematic study and quantification of the skill-to-skill

transfer capabilities of TERL involving sequential tri-

als (Section III-B) or interleaved trials (Section III-D)

related to different tasks;

5) tests on the scalability of the system to a large number

of sequential tasks (Section III-C);

6) tests with the 4 DoF redundant robotic arm in addition

to the planar arm (Section III-E);

7) a throughout discussion of other systems related to skill-

to-skill transfer, from the option-framework systems to

systems belonging to the MOSAIC-model family, and a

clarification of their differences with respect to TERL

(Section IV).

The paper is closed with the summary of the main results

presented and the illustration of possible future developments

of the system (Section V).

II. TERL: RATIONALE, ARCHITECTURE,

FUNCTIONING, AND LEARNING

A. Principles Used to Build TERL

The principles followed to build TERL are inspired by the

way in which animals’ brain and behavior might solve the

source-task selection problem. At the same time, these prin-

ciples allow TERL to face such a problem by fulfilling some

constraints undergone by animals. This is intended to facilitate

the future use of TERL as a model of multiple-skill learning

in animals.

1) Continuous States and Actions, and Function

Approximation: TERL is a RL system using function

approximators. Function approximation is needed for RL to

work in realistic setups, e.g., with embodied models and

robots involving continuous state and action spaces [23]–[25].

The system described here is suitable to tackle such continu-

ous state and action spaces (but not discrete actions as it is

based on mechanisms mixing different actions). In particular,

TERL uses linear function approximators (here also called

experts) to encode policies and value function estimations.

Linear function approximators have the computational

advantages of simplicity of implementation, learning speed,

convergence properties, and stability [24], [26]. However,

they cannot solve linearly-separable problems: this limitation

is commonly solved, as here, by recoding the input space

with kernel functions [24], [27] and by leveraging modularity.

From a biological perspective, building systems capable of

working with continuous state and action spaces captures the

constraint faced by organisms that interact with the world

through sensors and actuators involving continuous output

and input signals. The use of linear function approximators

increases the biological plausibility of models as they can use

learning rules based on locally-available information [28].

2) Actor–Critic Architecture: TERL overall architecture is

based on the actor–critic RL model [24], [29]. Actor–critic

models use separate data structures for storing the action

policy and the value function learned on the basis of the

temporal difference (TD) algorithm [24]. The use of differ-

ent data structures to represent policies and value functions

was done as these often require different segmentations of the
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problem space. Moreover, since the system “compiles” the

gathered knowledge related to policies and evaluations into

neural-network data structures (respectively mapping states

into actions or into state-values), it is less memory demanding

and more computationally efficient than other transfer models

directly storing experience in the form of “state, action, state,

and reward” tuples (we will further explain this in Section IV

reviewing some examples of the latter models). Actor–critic

models, which explicitly represent policies, are also suitable

to face continuous action problems where drawing the policy

from value functions is costly or complex [26].

From a biological perspective, the actor–critic architecture

is considered one of the best models of the brain mech-

anisms underlying trial-and-error learning in organisms, in

particular of basal ganglia [30]–[33]. Moreover, the TD learn-

ing rule at the core of the architecture learning processes

accurately reproduces the dynamics of phasic dopamine, a neu-

romodulator playing a major role in trial-and-error learning of

organisms [34], [35].

3) Mixture-of-Experts to Solve the Source-Task Selection

Problem: The actor and the critic components of TERL

are each based on the mixture-of-experts neural-network

model [36], [37]. This model, proposed to solve super-

vised learning problems, was modified to work within a

RL framework in the models preceding TERL (starting

from [17] and [18]). The use of the modified principles of

the mixture-of-expert architecture is at the basis of the capac-

ity of TERL to solve the source-tasks selection problem. For

this purpose, the actor and the critic are each formed by a

hierarchy having two levels:

1) low-level “experts,” learning the policies or value func-

tions needed to solve the novel tasks;

2) a high-level “gating network,” learning to select the

experts (the term “hierarchy” is used here to refer to

the feature of the architecture for which a high-level

module controls the selection of lower-level modules).

The two gating networks of the actor and the critic select

experts encoding already acquired skills to solve a new task

on the basis of the accumulation of evidence related to their

actual capacity to solve such new task. This accumulation

of evidence is done in parallel for all available experts, so

it scales up well with the number of experts. We shall see

that this process results in an effective mechanism capable of

quickly identifying the best expert for a given task, so after

an initial phase of exploration the system will assign all the

responsibility for action to that expert.

4) No Prior Information About the Similarity Between

Source and Target Tasks: The scenario that was used here to

test TERL capacity to solve the source-task selection problem

has an important feature: the system is not given any prior

information about the similarity between the source and the

target tasks, so the only information it can use to solve the

source-task selection problem is to sample the performance

of the already acquired skills in the new target task. In par-

ticular, the model is tested here with robot arms that have to

learn to solve different reaching tasks where the target object

is located in different positions; these positions have differ-

ent degrees of similarity between them, so they offer different

opportunities for knowledge transfer: the robot is, however,

informed only on the task identity (i.e., at different trials it is

told “this is task 1” or “this is task 2,” etc.), but not on the

position of the target object, so the only way it has to select

for reuse the already acquired skills is to try them out in the

new target task. We adopted this demanding condition to be

sure to find algorithms that are able to best use the knowl-

edge on the performance of the already-acquired skills in the

new task. Indeeed, in some domains this is the only available

information. As we further discuss in Section IV, the mecha-

nisms examined here to exploit this type of information can be

integrated with other mechanisms capable of exploiting infor-

mation about the similarity between tasks that is available in

some domains.

Biologically, the condition where the agent has no prior

knowledge on the similarity between the source and target

tasks captures the situations in which animals have informa-

tion about their internal needs but have no clue on the external

world conditions where they have to satisfy them [38], [39]. In

these cases, the animals know that they have to solve different

tasks (as they have to satisfy different needs, e.g., extinguish

hunger or thirst), but they do not know if the behaviors to learn

to solve them have to be similar or different (for example,

if they have to perform similar behaviors to “collect” fruits

with high content of nutrient or water; or if they have to

perform very different behaviors to collect nutrient fruits or

water from a lake). Instead, the condition in which the agent

has information about the similarity between source and target

tasks reflects situations where the tasks are defined in terms

of “goals” (i.e., desired states of the external world) rather

than “needs”: in this case, the similarities between the goals

of tasks can be heuristically used to infer that the behaviors

to learn to solve them might be similar or different [40]. Note

that the restrictive condition faced here, where the system has

no information about the similarity between tasks, is also rel-

evant for robots as it reflects situations where the robot tasks

are defined in terms of very abstract goals or in terms of inter-

nal variables of the robot (e.g., “satisfy the user’s request to

drink” or “increase your energy level”), rather than specific

goals (e.g., “reach the glass located in position x1, y1 on the

table” or “reach the glass located in position x2, y2 on the

table”): indeed, abstract goals and internal variables give little

or no information about the similarity between the behaviors

needed to solve the tasks, a situation captured by the restrictive

condition used here.

5) Redundant Experts to Face Catastrophic Interference:

The system is based on multiple possibly redundant, low-level

experts, which are individually very simple but collectively

capable of solving multiple, complex tasks. Computationally,

this solution has several advantages such as fault tolerance

and the possibility of using simple linear experts [41]–[43]. A

further important advantage of this solution, exploited here,

is the possibility to reduce catastrophic interference. Here

the problem of catastrophic interference is generated by the

requirement that the system has to use the same experts during

its whole learning life, so knowledge of new tasks can disrupt

knowledge of already solved tasks. This requirement captures

an important constraint undergone by brain, namely the fact
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that it cannot generate “new experts” (new neural resources) to

face new tasks (note that for simplicity here we do not consider

the developmental processes involving the physical structuring

of the brain in time guided by epigenetic programs).

TERL faces the catastrophic interference problem on the

basis of a novel mechanism: the decoupling of the responsi-

bility signals used to select the experts for functioning and

the responsibility signals used to modulate their learning.

This innovation, introduced by TERL models and departing

from other models based on the mixture-of-experts principles,

allows the regulation of the learning rate of experts as desired,

in particular independently of the size of their responsibility

for acting, or evaluating states, in the task (the decoupling is

explained in detail in Section II-B). This decoupling allows the

formation of copies of the best policy expert and value expert

trained when solving a given task. These “copy experts” can

then be used to solve new tasks without disrupting the capacity

of previously-trained experts to solve previous tasks.

In this respect, we mentioned above that the system is

informed on the “identity” of the task being faced, so the

reader might wonder what are the advantages of duplication

with respect to a straightforward solution creating one new

expert for each new task. These advantages are several (see

also [42]). First, the system could be used to model the brain

as this has most neural resources since birth and so it must

be endowed with mechanisms to use them when learning an

increasing number of tasks. Second, having all modules since

the beginning allows the system to use experts already trained

with similar tasks to solve new tasks rather than starting from

scratch: this is at the basis of the transfer learning capabilities

of the system. Third, the presence of copy experts gives robust-

ness to the system, e.g., in case of failure of some experts.

Fourth, although not done here, using the same set of experts

from the beginning might allow the system to progressively

organize them in space (e.g., within a 2-D grid) on the basis

of their specialization and temporal activation [43].

We also anticipate that since the task tackled by the system

changes repeatedly the model has to suitably regulate the

exploratory noise. Indeed, noise should progressively decrease

with the learning of a task and increase again in correspon-

dence to new tasks. Since this problem was not central for

this paper, we solved it with a simple approach that uses high

levels of noise only in correspondence to tasks that the system

finds difficult to solve and where a high degree of exploration

is needed, and a low level of noise for tasks that are readily

solved by the system.

From a biological perspective, although we do not have

direct empirical evidence for neural duplication (i.e., the fact

that a piece of knowledge encoded in a neural structure is

reproduced in another neural structure; see [44]) we do have

evidence for the partially modular organization of some areas

of brain [41]:

1) motor cortex is based on neural columns, where differ-

ent assemblies of columns might participate to encode

multiple repertoires of skills, from very similar to very

different [45], [46];

2) basal ganglia are organized in channels supporting the

trial-and-error learning and selection of different actions

and mental contents [47], [48].

B. TERL Architecture and Functioning

1) Architecture Components: The architecture of TERL,

shown in Fig. 1, is based on two main components: 1) the

actor, responsible for learning the action policy and 2) the

critic, responsible for learning to approximate the value func-

tion. Each of the two components is formed by a number of

expert networks, learning the policy or the value function, and

a gating network, learning to select the experts given the task

(note that here for simplicity the number of experts of the

actor and of the critic is the same but it could be different).

The functioning and learning processes of the architecture are

now explained in detail (the Appendix gives its parameters).

2) Inputs and Outputs of the Architecture Components:

The experts receive as input the current environment state

encoded in an expanded space of features (here Gaussian

basis functions with centers equally distributed over the input

space, see below for details) and have no information about

the goal or task. In particular, each environmental state is

encoded with an I-dimensional vector of continuous variables

s = <s1, s2, . . . , si, . . . , sI>. In the experiments reported here,

s encoded the arm joint angles, so I = 2 in the 2-D pla-

nar arm simulations, and I = 4 in the simulations involving

the 3-D humanoid robot arm. The state vector is expanded

into a D-dimensional vector of continuous variables (features)

f = <f1, f2, . . . , fd, . . . , fD> where D >> I. Features are

computed through normalized Gaussian basis functions

fd =
e
−

||s−sd ||

σ 2
f

∑D
d=1 e

−
||s−sd ||

σ 2
f

(1)

where sd is the preferred state vector of feature d and σ 2
f is

the width of the Gaussians (in degrees). The preferred vectors

of the features lay on the vertices of a regular grid overlapped

with the state space. Notice that the experts are not informed

on the task to solve but only on the posture of the arm, so dif-

ferent tasks require different experts. This limited input eased

the analysis of the transfer capabilities of the system, and

reflects the organization of the brain where primary motor cor-

tex is mainly informed as to the limb posture but not as to the

overall tasks the system is accomplishing [49]–[51]. This issue

is further discussed in Section V.

The output of the actor experts is a J-dimensional vector

a = <a1, a2, . . . , aj, . . . , aJ> encoding the controlled contin-

uous variables. Here, the vector encoded the angles of the arm

joints, so J = 2 in the 2-D planar arm simulations, and J = 4

in those involving the 3-D humanoid robot arm. As further

explained below, these desired angles, varying at each time

step, are used as the equilibrium points (EPs) of proportional

derivative (PD) controllers that produce the torques controlling

the dynamic-arm joints.

The gating networks are informed only as to the iden-

tity of the task to pursue. The tasks used here are of the

type “reach and touch object A in space” through a dynamic

arm. This tells the gating networks which task is being

solved (e.g., task A, task B, etc.) but it does not furnish any

information about the similarity between tasks. Formally, the

current task identity is encoded as a K-dimensional vector
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Fig. 1. Architecture of TERL, formed by a modular critic and a modular actor. The figure gives an overview of the elements composing the system that
are explained in detail in the main text. The critic is formed by a gating network (CG) and a number of experts (Ce). Also the actor is formed by a gating
network (AG) and a number of experts (Ae). Thin arrows: one-to-one or many-to-one hardwired connections set to one (for information relay); dotted bold
arrow: all-to-all hardwired connections (for computing features); thin dashed arrows: learning signals that cause the update of all crossed connections (notice
how the TD-errors of the critic experts are locally used to train themselves, whereas the critic selector does not need any TD-error to learn as it learns based
on the mixture-of-experts supervised learning rule; the general TD-error is used to train the actor experts and the actor selector); bold arrows: trained all-to-all
connections; and flat-head arrows: one-to-one hardwired multiplicative gating connections set to one (for carrying the responsibility signals). Letters indicate
the symbols used in the mathematical description of the system in the text. Bold letters represent vectors (for simplicity, the vectors of biases are omitted).

z = <z1, z2, . . . , zk, . . . , zK>. The z vectors, as many as the

tasks, are orthogonal and are formed by binary elements all

activated with 0 with the exception of one element, activated

with 1, corresponding to the current task. As mentioned above,

the gating networks are only informed on the task but not on

the posture of the arm. As for the input to the experts, this

limited input eased the analysis of the transfer capabilities of

the system and reflects the organization of the brain where

higher cortical areas are mainly informed on abstract goals

and overall motivations [52]–[54].

The output of the gating networks are two E-dimensional

vectors, where E represents the number of experts: gCG =

<gCG
1 , gCG

2 , . . . , gCG
e , . . . , gCG

E > for the critic gating network

and gAG = <gAG
1 , gAG

2 , . . . , gAG
e , . . . , gAG

E > for the actor gat-

ing network. These vectors encode the responsibility signals

of the respective experts.

Finally, the system receives a reward r = 1 when the task

is accomplished with success (here when the arm succeeds to

touch the target object). The system receives a reward r = 0

at any other time step.

3) Actor Gating Network—Functioning: The actor gating

network, denoted with AG, receives as input the task iden-

tity z and returns as output the responsibility signals of the

experts. These are encoded in the vector gAG with elements

gAG
e corresponding to experts e = 1, 2, . . . , E. The responsi-

bility signal of an expert represents the “prior probability” that

such expert is the best one to solve the current task among the

actor experts. The priors are used: 1) to set the contribution

of each expert to produce actions and 2) to establish, after

a suitable transformation (see below), the size of its learning

update.

The activation potential of the output units of AG, denoted

with the vector pAG with elements pAG
e , is computed as

pAG = WAG · z (2)

where WAG is the matrix of the connection weights of the

network. The gating networks of the model do not have a bias

as they should not have a tendency to select specific default

experts.

As in the mixture-of-experts model, the prior responsibilities

gAG
e are computed with the soft-max function

gAG
e =

e
pAG

e

/

κ

∑E
e=1 e

pAG
e

/

κ
(3)

where κ is the temperature regulating the slope of the soft-

max. The soft-max guarantees that
∑E

e=1 gAG
e = 1 so the

responsibility signals can be interpreted as probabilities.

4) Actor Experts—Functioning: The actor experts, denoted

with Ae, are a set of E neural networks each of which gets as

input the state features f and encodes a possible action with

logistic output units. The activation potential of the output

units of expert Ae, denoted with the vector pA
e with elements pA

ej
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(e.g., corresponding to the robot joint angles), is computed as

pA
e = WA

e · f + bA
e (4)

where WA
e is the connection weight matrix of the expert Ae

and bA
e the vector of biases. The activation of the output units

of expert Ae, denoted with the vector aA
e with elements aA

ej,

are computed with a logistic function

aA
e =

1

1 + e−pA
e

. (5)

As we shall see below, aA
e is mixed with noise and so should

be interpreted as the mean of a probability distribution of the

system action.

5) Global Actor Action: The global action aA of the actor

(before the addition of noise) is formed by mixing the actions

aA
e of experts based on their priors

aA =

E
∑

e=1

[

gAG
e · aA

e

]

. (6)

To foster exploration, the action of the system to be exe-

cuted, denoted with a, is obtained by mixing the global actor

action aA with a noisy action, denoted with aN , produced by

the noise generator component explained below. Thus, at a

specific time t

at = ut · aA
t + (1 − ut) · aN

t (7)

where ut is a variable regulating the exploitation-exploration

level in different moments of the trial and explained below in

the paragraph on the noise generator. This equation implies

that with high values of ut the performed action is strongly

based on the actor action, whereas with low values it is

strongly based on noise.

6) Critic Gating Network—Functioning: The critic gating

network, denoted with CG receives as input the task identity z

and returns as output the responsibility signals of the experts

of the critic. These responsibility signals are encoded in the

vector gCG with elements gCG
e corresponding to the experts e.

Similar to what happens for the actor, these responsibility sig-

nals represent the prior probability that each expert is the best

one in estimating the value function, given the current task

and the current policy, and are used for the critic functioning

and, after a suitable transformation illustrated below, for its

learning.

The activation potential of the output units of CG, encoded

in the vector pCG with elements pCG
e , is computed as

pCG = WCG · z (8)

where WCG is the matrix of connection weights of the

network.

As with the actor, the prior responsibilities gCG
e are com-

puted with the soft-max function

gCG
e =

e
pCG

e

/

κ

∑E
e=1 e

pCG
e

/

κ
. (9)

7) Critic Experts—Functioning: The critic experts, denoted

with Ce, are a set of E neural networks each of which gets

as input the state features f and returns the state value with

a linear output unit. The activation vC
e of the output unit of

expert Ce is computed as

vC
e = wC

e · f + bC
e (10)

where wC
e is a row vector encoding the connection weights of the

expert and bC
e its bias. Note how the actor experts use a logistic

function to produce the output so this can be mapped to a limited

range of the robot’s joint angles (see Sections III-B and III-E).

The critic experts instead use a linear output unit so they can

produce state values outside the (0, 1) range.

8) Critic—Global Value: The global value of the critic,

denoted with v, is computed by mixing the values vC
e of the

experts based on their priors

v =

E
∑

e=1

[

gC
e · vC

e

]

. (11)

C. TERL Learning

1) Critic—Global TD-Error: The global value vt at time t

is used to compute the global TD-error δt of the critic

δt =

⎧

⎪

⎨

⎪

⎩

0 if t = 0

(rt + γ · vt) − vt−1 if 0 < t < T

rt − vt−1 if t = T

(12)

where rt is the reward at time t, and γ is a discount factor. In

this formula, vt is set to zero at the end of the trial (t = T)

to take into account the episodic nature of the RL problems

considered here. As we shall see below, δt, related to the per-

formed actions, is used to train the actor experts and the actor

gating network.

2) Critic Experts—TD-Error: The TD-error of each critic

expert, denoted with δC
et

, is computed as follows on the basis

of the expert value vC
et

at time t:

δC
et

=

⎧

⎪

⎨

⎪

⎩

0 if t = 0
(

rt + γ · vC
et

)

− vC
et−1

if 0 < t < T

rt − vC
et−1

if t = T.

(13)

This value represents the expert error in estimating the current

state value and so it is computed on the basis of the expert

current and past values and the experienced reward. For this

reason, as we shall see below, it is used both to train the critic

experts and to update the prior probability estimate gCG
e that

each critic expert is the best to evaluate the actor policy used

to solve the current task.

3) Actor Gating Network—Learning: We now show how

the estimate of the goodness of experts in solving the new

task is updated on the basis of a process of accumulation of

information and the TD-error. At each time step, each expert’s

responsibility signal is updated on the basis of the new evi-

dence (likelihood) that the expert contributed to determine the

executed action a in the current task (recall that such action is

noisy due to the aN component). Formally, the likelihood lAG
et

is computed on the basis of a Gaussian function: this makes
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the likelihood of each expert inversely related to the distance

between that expert action aA
e and the executed noisy action a

lAG
et

= e
−

1

2·σ 2
AG

∣

∣

∣

∣

∣

∣
a

t−1
−aA

et−1

∣

∣

∣

∣

∣

∣

2

(14)

where σ 2
AG is the Gaussian width parameter. Thus, the more

similar the expert action to the executed action, the higher the

likelihood that it had a large responsibility in generating it.

The likelihood is then used to compute the posterior prob-

abilities with the Bayes rule

hAG
et

=
lAG
et

· gAG
et−1

∑E
e=1

[

lAG
et

· gAG
et−1

] . (15)

Notice that this formula implies that
∑E

e=1 [hAG
e ] = 1 and that

hAG
et

> gAG
et−1

for experts whose action aA
e was more similar to

the executed action a relative to the action of all other experts.

The update of the connection weights of the actor gating

network AG, and hence the responsibility signals of the actor

experts, is based on the difference between the posteriors and

the priors but also on the overall TD-error δ

wAG
ekt

= wAG
ekt−1

+ ηAG · δt ·
(

hAG
et−1

− gAG
et−1

)

· zkt−1
(16)

where ηAG is a learning rate. The formula, which is based on

the mixture-of-expert formula changed to take into considera-

tion the RL framework used here (in particular, the TD-error),

changes the connection weights so that the prior responsibility

signal of experts, gAG
et−1

, gets closer to or away from the pos-

terior responsibility signal, hAG
et−1

, depending on the sign and

size of the TD-error, δt. In particular, the formula implies that

the responsibility signals of experts whose actions are similar

to the executed action (hence have a high hAG
et−1

) are increased,

but only if the executed action produced a positive TD-error,

i.e., if the executed action had positive effects. The respon-

sibility signals of experts that produced an action dissimilar

from the executed one are instead decreased. On the contrary,

in the case of a negative TD-error the responsibility signals are

updated in the opposite direction, yielding a lower responsibil-

ity for experts whose action was more similar to the executed

one as the latter had negative effects. The responsibility sig-

nals of experts that produced an action dissimilar from the

executed one are instead increased. Overall, the rule ensures

that the responsibility signals are progressively increased for

the experts that contribute to achieve the highest reward in the

current task as the effect of an accumulation of evidence on

the fact that they are better than the other experts in solving

such task.

4) Actor Experts—Learning: The mixture-of-experts model

uses the posterior probabilities to scale the learning rate of

each expert so that the best experts are not only assigned the

highest responsibility during functioning, but also an update

proportional to such posteriors. One of the most important

departures of the current system from this strategy is based

on the decoupling of the responsibility signals used for func-

tioning and those used for learning. Indeed, a number of pilot

experiments using several variants of the mixture-of-experts

strategy showed that the classical strategy leads not only to a

desirable rapid increase of the responsibility of the best expert

toward the maximum possible value of one, but also to a rapid

decrease to zero of the learning rate of all other experts. In

our case, the latter outcome is detrimental because when the

system has to learn a new task similar to a previously acquired

one, it recruits the expert trained to solve the latter, modifies it,

and so loses the capacity to solve it (catastrophic forgetting).

Instead, the use of fixed responsibilities for learning allows the

training of multiple experts similar to the best one: the size

of those responsibilities allows the regulation of the number

and learning rate of the copy experts. These copy experts can

be later recruited to solve similar tasks without destroying the

capacity to solve the previously solved source tasks.

To implement this idea, we ranked the experts on the basis

of the decreasing value of their priors gAG
e and then assigned

them fixed learning rates based on the ranks. In particu-

lar, here we used the experts’ ranks, encoded with grAG
e ∈

{0, 1, 2, . . . , E − 1}, to compute their learning responsibility

signals glAG
e as follows:

glAG
e =

ζ−grAG
e

∑E
e=1

[

ζ−grAG
e

] (17)

where ζ was a coefficient. For example, setting ζ = 6, as

done here, implies that the learning responsibility signals glAG
e

are, when ordered by rank, equal to the following values:

(0.834, 0.139, 0.023, 0.004, 0, 0, 0, 0, ...)

Note that:

1) the algorithm will train one main expert and a given

number of copies (here three) of it, whereas other

experts will not be trained so avoiding disrupting their

knowledge;

2) the experts that are trained are those that have the highest

priors, i.e., those that are the best in solving the current

task;

3) responsibility signals different from those used here can

be used, including some with
∑E

e=1 [glAG
e ] �= 1, to obtain

a desired number of background expert copies and set

their learning rates. For example, one might establish

a fixed learning rate for the first k experts. The higher

the number of background experts copies are formed,

the higher the redundancy of the system and all related

advantages and disadvantages.

The connection weights of experts are then updated on the

basis of glAG
e as follows:

mA
ejdt

=
(

ajt − aA
ejt

)

·
(

aA
ejt

·
(

1 − aA
ejt

))

· fdt

wA
ejdt

= wA
ejdt−1

+ ηA · δt · glAG
et−1

· mA
ejdt−1

(18)

where (aA
ejt

· (1 − aA
ejt

)) is the derivative of the logistic trans-

fer function, and ηA is a learning rate. The rule is based on

the gradient-descent formula of the mixture-of-experts model

applied to neural logistic output units, but the size of the

update is also weighted by the RL TD-error. The rule implies

the following:

1) the size of the update is higher for experts that produce

an action more similar to the action actually executed

(i.e., a higher |ajt − aA
ejt

|);

2) aA
e moves toward a when 0 < δt as the noisy action a

has been better than expected;
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3) aA
e moves away from a when δt < 0 as the noisy action

a has been worse than expected;

4) if δt is close to zero, for example when the system has

converged to good solutions, the action is not updated

because the noisy action a did not perform better or

worse than expected;

5) if some of the expert copies developed for the task are

later recruited to learn a similar new task, the capacity

to solve the current task tend to not be impaired as the

main expert used to solve it will not be recruited (see

also the subsection “additional mechanisms to preserve

the best experts” below).

5) Critic Gating Network—Learning: We now show how

the responsibility signals of the experts of the critic are updated

on the basis of mechanisms that accumulates evidence on the

capacity of experts to face the given task similarly to what is

done in the mixture-of-experts model for supervised learning

problems. This is possible as the problem of learning the value

function can still be seen as a supervised learning problem

with the difference being that the value to use as the desired

output is not given and so, as common in RL [24], it has to be

formulated on the basis of the reward signal and the estimate

of the next state value.

The new evidence (likelihood) that an expert is the best

one to estimate the value function is computed as a Gaussian

function of that expert TD-error, δC
e , as this represents its error

in predicting the incoming rewards

lCG
et

= e

−

⎛

⎝

(

δC
et

)2

2·σ 2
CG

⎞

⎠

(19)

where σ 2
CG is the Gaussian width.

Similarly to the actor gating network, the likelihood is used

to compute the posterior probabilities with the Bayes rule

hCG
et

=
lCG
et

· gCG
et−1

∑E
e=1

[

lCG
et

· gCG
et−1

] . (20)

The formula implies that hCG
et

is higher than gCG
et−1

for experts

that have a low TD-error in comparison to the TD-error of the

other experts. Also here
∑E

e=1 [hCG
e ] = 1.

The update of the connection weights of the critic gating

network is then computed as in the mixture-of-expert model

wCG
ekt

= wCG
ekt−1

+ ηCG ·
(

hCG
et

− gCG
et−1

)

· zkt−1
(21)

where ηCG is a learning rate. The formula implies that

the responsibility signals of experts with relatively smaller

TD-errors are increased while those of experts with larger

TD-errors are decreased, leading to larger responsibilities for

experts that produce more accurate estimates of the state val-

ues for the current task. Overall, as for the actor experts, the

rule ensures that the responsibility signals are progressively

increased for the experts that contribute to achieving the high-

est reward in the current task as the effect of an accumulation

of evidence that they are better than the other experts in solving

such task.

6) Critic Experts—Learning: Due to the same reasons

explained for the actor experts, we also implemented a decou-

pling between the functioning and the learning responsibility

signals of the critic experts. The expert ranks grCG
e were

computed as for the actor and used in the same way (17)

to compute the learning responsibility signals glCG
e used to

modulate the learning rate of the experts.

Each expert was then trained using the TD-learning RL for-

mula and its own TD-error, δC
e , to enforce the self-consistency

of the value estimates produced by the expert

wC
edt

= wC
edt−1

+ ηC · δC
et

· glCG
e · fdt−1

. (22)

7) Additional Mechanisms to Preserve the Best Experts:

Note that in some conditions that are more challenging for

catastrophic forgetting, additional mechanisms can be used to

further reduce interference between tasks. For example, in the

“sequential conditions” tested here (Section III-B) we found

it very useful to use a mechanism for which when the prior

of an expert overcomes a certain (high) threshold, indicating

that much evidence has been accumulated that such expert is

the best for the current task, its learning rate is reduced to

low values (here to zero for simplicity). Such low learning

rate facilitates the preservation of the best experts found for

previous tasks thus leading the system to update especially the

background copies to solve the new tasks. Notice that alterna-

tive mechanisms might be investigated in the future to preserve

the best expert found for a given task.

8) Noise Generator and Executed Noisy Action: One of

the major problems of RL is the regulation of exploratory

noise, also known as the exploration-exploitation dilemma.

The heuristic solution most commonly used in the literature

is to progressively lower exploration noise with learning so

as to augment the exploitation versus exploration while the

system becomes progressively more skilled (i.e., progressively

better at achieving reward) [24]. Here we adapted a very sim-

ple mechanism that is based on this idea, but note that the

other mechanisms of TERL could work with any other method

one might use for noise generation. The mechanism takes into

consideration the fact that the new task to solve can be very

similar, or even identical, to already solved tasks: in these

cases, exploratory noise has to be very low since the initial tri-

als of learning of the new task because the system already has

some experts that can be readily used to solve it. For this pur-

pose, we started each trial with low noise and then increased it

during the trial. In this way, if the system is capable of solving

the task quickly, it is not disturbed by noise; instead, if it takes

a long time to solve it during the trial, then noise increases

causing high exploration. Overall, the mechanism implies that

with not-yet-learned tasks noise decreases progressively, on

average, over the tasks (as in standard RL problems). Instead,

with already-learned or easy tasks, for example with tasks very

similar to already solved ones, noise is immediately low or

decreases fast, on average over the trials, with learning.

To implement this idea in detail, we divided each trial into

two phases. In a first “exploitation phase” (t = 0, 1, . . . , M)

noise is very low. In a second “exploration phase” (t =

M + 1, M + 2, . . . , T ′, where T ′ is the trial timeout; note

that T , the trial duration, is possibly shorter than T ′ in case

of reward accomplishment) noise gets progressively higher.

Notice that M should be set to a value equal or higher than

the time assumed to be sufficient to solve the task (a similar
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parameter has to be set when using the progressive decrease

of noise mechanism commonly employed in the RL literature

and that could not be used here). In detail, the mechanism

is implemented by setting the value of ut regulating the mix-

ture between the noisy action and the actor action [see (7)] as

follows:

ut =

{

υ if 0 < t ≤ M

ut−1 − βut−1 if M < t ≤ T ′

where υ is the value of u in the exploitation phase and β is a

time constant regulating the dynamics of u in the exploration

phase. A small amount of noise is still present in the initial

exploitation phase to have some refinement of the policy even

during such phase, whereas β is set to a value that implies that

noise rapidly increases during the second exploration phase.

As done in [55], using a noise filter is important to control

dynamic robotic arms because their physical inertia tends to

cancel out white noise and also avoids issuing jerky commands

to the robot. For this reason, the noisy action aN that is mixed

with the actor action to produce the executed action (7) is

produced by a noise generator component, denoted with N,

through a first order filter

aN
t

= aN
t−1

+ τ

(

−aN
t−1

+ nt

)

(23)

where τ represents the filter time constant ranging in (0, 1)

and nt is a vector having each element randomly drawn on

the basis of a uniform probability distribution in [−ǫ,+ǫ] at

each time step.

III. RESULTS

A. Measuring Transfer Quality

To measure the potential for transfer of TERL, its

performance was compared with two alternative systems fur-

nishing the upper and lower bounds of learning speed curves

(see [6]):

1) a system that learns to solve the new task based on a

certain source task: this may result in an advantage or

a disadvantage for learning the new task depending on

its similarity to the source task;

2) a system that learns to solve any new task from scratch,

without the possibility of skill transfer.

The two systems are also important as they view the multiple-

task problem as either a set of separated Markov decision

processes (MDPs; [24]), each corresponding to a single task, or

as a whole MDP, where the problem is to maximize the reward

given multiple tasks. The possibility of viewing the problem

in these two ways is important for distinguishing the system

discussed here from other related systems (see Section IV).

The first system, called “SIM” (which stands for “simple

system”), is simply formed by one critic expert and one actor

expert and no gating networks (each of the two experts is

a linear function approximator getting as input the Gaussian

features f used to encode the arm posture). SIM is capable

of learning only a policy mapping πk : S × A → [0, 1] to

solve one specific MDP problem k denoted with <S, A, T, Rk>

(where S denotes the set of states, A the set of actions, T

the transition function mapping the current state and action

to a probability distribution over the next states, and Rk the

reward function of task k mapping the current state, action and

resulting state to a reward value). This, and the fact that SIM

did not receive an input on the solved task, implies that when

it learns a new task it fully forgets the previously learned one.

Most tests illustrated below required the solution of tasks in

sequence: in this condition, SIM allows the identification of

the advantages and disadvantages of attempting to solve each

new task starting from the previous one. SIM used identical

parameters as the experts of TERL.

The second system, called “EXP” (which stands for “system

with an input expanded with information about the identity of

the task”), as SIM is again formed only by one actor expert

and one critic expert and no gating networks. However, in EXP

such experts have enough computational capabilities to solve

all tasks. In particular, in EXP the two experts receive infor-

mation not only on the arm posture (features f), but also on

the task identity (z): EXP uses the information about the task

identity as an additional input to the experts together with the

posture features (hence forming an “expanded” input) rather

than as information sent to the gating networks (not present

in EXP) as in TERL. Technically, the task identity is used as

a further dimension of the input problem space so that the

Gaussian basis functions encoding the features (f) are repro-

duced for a number of times equal to Z (the number of tasks)

and activated only when the corresponding feature z is active.

For this reason, in the tests EXP allows the identification of

the advantages/disadvantages of solving new tasks starting

from scratch without any opportunity of transferring knowl-

edge from previously acquired ones (no generalization). At

the same time, the system allows the measure of performance

in complete absence of catastrophic interference. EXP used

identical parameters as the experts of TERL.

Differently from SIM, but the same as EXP, TERL is

informed of the task at hand. However, unlike EXP, TERL uses

the information regarding the task identity to take advantage

of the fact that different tasks share the same states, actions,

and transition function to transfer knowledge from acquired

tasks to new tasks to be learned.

The minimal performance that we require from TERL is that

it converges toward the best MDP solution, i.e., performance

optimality [56]. The core of the skill-transfer problem is, how-

ever, captured by learning optimality [56], namely the fact that

an algorithm achieves a high (in theory the best) learning speed

on new tasks thanks to the previously acquired ones. The liter-

ature on TRL measures this capacity for transfer through three

metrics [6], [15]:

1) the jumpstart—i.e., a higher initial performance when

learning a new task based on transfer with respect to a

nontransfer condition;

2) the learning speed—i.e., a faster learning with respect

to a nontransfer condition;

3) the asymptotic improvement—i.e., an improvement in

asymptotic performance (i.e., the performance when the

learning process achieves its maximum after a suffi-

ciently long training). This is relevant only when a

difficult task can be learned only after having previously

learned other tasks, otherwise this criterion is not distinct

from performance optimality.
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TABLE I
EXPECTED PERFORMANCE OF SIM AND EXP, AND DESIRED

PERFORMANCE OF TERL, WHEN LEARNING A NEW TASK AFTER

HAVING PREVIOUSLY LEARNED A TASK REQUIRING THE Same SKILL, A

Similar SKILL, OR A Different SKILL. IN PARTICULAR, SIM STARTS FROM

THE PREVIOUS SKILL, SO IT HAS AN ADVANTAGE IF TRANSFER IS

POSSIBLE BUT AT THE SAME TIME ALWAYS LOSES THE CAPACITY TO

SOLVE THE PREVIOUSLY SOLVED TASK (CATASTROPHIC FORGETTING).
EXP LEARNS EACH TASK FROM SCRATCH, SO IT CANNOT HAVE ANY

ADVANTAGE OF TRANSFER NOR ANY DISADVANTAGE IN TERMS OF

CATASTROPHIC INTERFERENCE. TERL WAS DESIGNED TO PRODUCE THE

BEST OUTCOME IN ALL CONDITIONS: THAT IS, TO TAKE ADVANTAGE OF

TRANSFER WHENEVER POSSIBLE, TO AVOID WASTING TIME WHEN

TRANSFER IS NOT POSSIBLE, AND TO ALWAYS AVOID CATASTROPHIC

FORGETTING. L: EXPECTED LEARNING SPEED; C.f.: EXPECTED EFFECTS

OF CATASTROPHIC FORGETTING; N : “NEUTRAL” PERFORMANCE, AS IN

LEARNING FROM SCRATCH (WITHOUT TRANSFER); G: GOOD

PERFORMANCE, BENEFITING OF TRANSFER OR HAVING NO

CATASTROPHIC FORGETTING; AND B: BAD PERFORMANCE, WORSE

THAN STARTING FROM SCRATCH, OR PRESENCE OF CATASTROPHIC

FORGETTING. A BOLD LETTER INDICATES THE BEST

OUTCOME IN THE GIVEN CONDITION

Here we required not only that TERL approaches

performance optimality (solution of the tasks), but also that

it approaches the performance of SIM when transfer is advan-

tageous and the performance of EXP when starting from

scratch is the best thing to do, while at the same time

avoiding catastrophic forgetting. A comparison between the

expected performance of SIM and EXP and the desired

performance of TERL in different conditions is summarized

in Table I.

B. Tests With the Planar Arm: Sequential Learning of Tasks

TERL was tested with two setups requiring simulated

robotic dynamical arms to reach targets positions in space.

These setups were chosen because of the following:

1) they involve continuous state and action spaces and the

control of dynamical plants;

2) they allow a useful visualization and analysis of the

performance of the system, in particular the parallel

visualization of the postures/movements of different

actor experts;

3) they involve limb movements, a category of biologi-

cal phenomena that could be investigated with TERL

in future work.

The first set-up involved a 2-D 2 DoF simple simulated

dynamic arm working on a plane containing four “object”

goals each having a radius of 3 cm (Fig. 2). The planar

arm was very useful for developing the algorithm and also

facilitates the explanation of its functioning (see examples

below). The second setup involves a 3-D, redundant, 4 DoF

simulated dynamic robotic arm and allowed the test of the

capacity of the system to scale up to more complex tasks

(Section III-E).

Fig. 2 shows the 2-D arm used to test the model. The arm

was formed by two links: an upper arm measuring 25 cm

Fig. 2. Dynamic 2-D arm and the four target objects A, B, C, and D
(A = B indicates that the location of A coincides with the location of B).
Dots represent the borders of the workspace established by the length of the
arm links and the range of its joints. The work space is asymmetric as the
“elbow” joint range is asymmetric with respect to the upper arm as in a
humanoid robot arm.

and a forearm measuring 35 cm. The movement range of the

joints was set to [−100◦; +30◦] for the shoulder (0◦ corre-

sponding to the upper limp located forward the robot and the

angle was measured anticlockwise) and to [0◦; +160◦] for the

elbow (0◦ corresponding to the straight arm and the angle was

measured anticlockwise).

The dynamics of the arm were simulated based on the

following equations [57]:

qs =
(

Is + Ie + 2MeLsSe cos θe + MeLs
2
)

θ̈s

+ (Ie + MeLsSe cos θe)θ̈e

− MeLsSe

(

2θ̇s + θ̇e

)

θ̇e sin θe + Bsθ̇s

qe = (Ie + MeLsSe cos θe)θ̈s + Ieθ̈e

+ MeLsSeθ̇s
2

sin θe + Beθ̇e (24)

where qs and qe are the actuated torques of the shoulder and

elbow joints, respectively, and the parameters M, L, S, I, and

B are, respectively, the mass, the length, the distance from

the center of mass to joint, the rotational inertia of links,

and the coefficient of viscosity (these parameters were set

to {0.9, 0.25, 0.11, 0.065, 0.08} for the shoulder joint and to

{1.1, 0.35, 0.15, 0.1, 0.08} for the elbow joint as in [57]). The

equations were integrated with a fourth order Runge–Kutta

method using a time step of 0.01 s.

The arm had two actuated DoF: one for the shoulder joint

(θs) and one for the elbow joint (θe). In particular, the robot

controllers used here set the desired posture (or “desired

angles,” or “action”) of the arm, and actor experts represented

the mappings from sensory input to desired postures. A PD

controller was used to generate the torque of each of the two

arm joints [58]

q = Kp(θdes − θ) − Kd θ̇ (25)

where θ and θdes are, respectively, the current and desired

joint angles, and Kp and Kd are, respectively, the propor-

tional and damping gains (Kp was set to 25 and Kd to 4 for

both joints).
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Fig. 3. Performance (reaching time) during learning in three sequential tests in each of which the systems TERL, SIM, and EXP learn a first task for n trials
(200; 400, 700 in the three conditions; left panels) and then a second task for further n trials (right panels). Each curve represents the average and standard
deviation of ten repetitions of each experiment. (a) Test 1: test with two tasks requiring the same sensorimotor mapping (tasks A and B). (b) Test 2: test with
two tasks requiring a similar sensorimotor mapping (tasks C and D). (c) Test 3: test with two tasks requiring a different sensorimotor mapping (task A and D).
“Exp. time” represents the “exploitation time” of the noise generator (as explained in detail in Section II-B, this represents an initial period of time at the
beginning of each trial during which exploratory noise is kept at a minimum to foster exploitation).

The objects shown in Fig. 2 allow the specification of four

reaching tasks, each requiring that the system learns to reach

one specific object. We will call these tasks “task A,” “task B,”

etc., depending on the target object. The solution of each task

requires the system to acquire a skill that allows the system to

reach one of these objects starting from any initial posture. All

trials involving the solution of the tasks started with the arm

set at a random posture. Each trial terminated either with the
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achievement of the goal (target object) or with a time out of 6 s

(i.e., 600 steps of 0.01 s each; 0.01 is also the integration time

step used for dynamical equations of the arm). The models got

a reward of 1 when the hand touched any point of the target

object, and 0 otherwise. This implies that the system can work

with tasks defined in terms of reaching a set of states, rather

than a single state, to the extent that a suitable reward function

can be associated with them.

The tasks were used to build three tests corresponding

to the three conditions of the rows of Table I. In each,

the system had to first learn a task during n trials, and

then another task for further n trials (this is what we call

here a “sequential test”). The first test involves first learn-

ing task A and then task B each for 200 trials: as these

tasks require the same sensorimotor mapping this allows us

to check if TERL is able to reuse experts used to solve

task A when learning to solve task B and how efficient it

is in doing so (by comparing TERL with SIM, which per-

forms an instantaneous transfer, this allows us to quantify

the “overhead” cost of solving the task with the hierarchi-

cal architecture of TERL rather than with a simple expert).

We set the number of trials for this and other experiments

through pilot experiments that showed the amount of learn-

ing allowing the best tested systems for each condition to

achieve steady-state performance. The second test involves

first learning task C and then task D each for 400 trials:

as these tasks require similar sensorimotor mappings, TERL

should exhibit a transfer advantage when learning D in com-

parison to EXP that learns all tasks from scratch. Finally, the

third test involves learning first task A and then task D each

for 700 trials: as these tasks require very different sensori-

motor mappings, TERL should realize that no transfer has to

be attempted, and show a performance similar to EXP, that

learns from scratch, and superior to SIM, that starts to learn

task D from the different sensorimotor mapping learned for

task A.

The avoidance of catastrophic forgetting can be ascertained

by comparing the performance in the first task (e.g., C) after

learning it, with the performance in the same task after the

system has learned the second task (e.g., D) and without

relearning the first one. The system is robust to forgetting

if the performance in solving the first task does not decrease

after learning the second task.

Overall, the tests involve these challenges.

1) The experts have to learn to associate, at each time step

of the trial, a suitable desired posture (output) to the cur-

rent posture of the robot (input): the dynamics of the arm

will then generate the actual trajectory of the arm given

the desired EPs selected by the experts; no cost is given

for performing movements, but due to the discount of

the reward (see Section II-B) the RL algorithm tries to

find trajectories of EPs that minimize the time taken by

the dynamic arm to touch the target object. This aspect

is not further discussed here, but in previous work we

have shown how one expert of the type used here can

learn to produce quite complex equilibrium-point trajec-

tories to minimize such time and possibly move around

obstacles [59], [60].

Fig. 4. Test on catastrophic forgetting. Each graph shows the average and
standard deviation of reaching time in the first task before (bars on the left)
and after (bars on the right) learning the second task. (a) Same sensorimotor
mapping (task A then task B). (b) Similar sensorimotor mapping (task C then
task D). (c) Different sensorimotor mapping (task A then task D).

2) The gating networks are only informed about the identity

of the currently solved task (task A, task B, etc.) and on

this basis they have to learn to select the best expert(s)

to solve it.

3) The management of the expert copies by the learning

algorithms have to support the exploitation of the oppor-

tunities for transfer between tasks while at the same time

avoiding catastrophic interference.

The initial connection weights of the expert actors were

randomly drawn from a uniform distribution ranging in

[−0.2, 0.2], and the connection weights of the critic experts

were set to zero for SIM, EXP, and TERL. The connection
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Fig. 5. Use of the actor experts by TERL in three tests, each involving
the solution of two tasks in sequence, characterized by (a) same sensorimotor
mapping, (b) similar sensorimotor mapping, and (c) different sensorimotor
mapping. Each of the three graphs shows the three highest prior responsibility
signals of the ten experts in one trial after learning the first task (left panels)
and in one trial after learning the second task (right panels). In each graph the
highest, second highest, and third highest priors are, respectively, marked with
a black, dark gray, and light gray strip, while all other priors are not marked
(white). The data refer to one specific system (seed 1): in other replications of
the experiment, or if the analysis is repeated for the critic experts, the results
are the same but of course involve different experts. Note that this type of
graphs give information on the selection of experts during the whole trial: here
the graphs simply show that TERL reliably selected specific experts during the
whole trial; in other conditions the graphs are very useful to analyze expert-
based models similar to TERL, especially at the beginning of the learning
process or when using gating networks having highly varying input.

weights of TERL gating networks were set to zero. The actor

and the critic of TERL were each formed by ten experts

each. This number was chosen to give the system enough

resources to form main experts (i.e., experts with the high-

est functioning responsibilities) and copies for the three tasks

and to study the selective recruitment of redundant resources

by the system’s gating networks. Other parameter values of

TERL are summarized in the Appendix.

Fig. 3 illustrates the learning curves of SIM, EXP, and TERL

in the three tests. In particular, for each test the figure reports

the learning curves related to the first and second task forming

each test.

The results of the first test, formed by two tasks involving

the same sensorimotor mapping, show that TERL manages to

quickly discover that in order to solve the new (second) task B

Fig. 6. Configuration of targets (tasks) used to test the scaling-up capacities
of TERL.

it can reuse the skill previously acquired by solving task A.

The overhead cost for this discovery is rather low (compare

TERL performance with SIM performance in task B). TERL

has also some advantage on the other models in the task A

solved as first: the reason for this is that TERL experts are

initialized to incorporate different initial behaviors from which

the selection mechanism can draw one that is most appropriate

for the current task (this is further explained on the basis of

some figures in Section III-C).

The results of the second crucial test, formed by two tasks

involving similar sensorimotor mappings, show that TERL is

capable of discovering that in order to solve the second task

(task D) it can start from the skill previously acquired by solv-

ing task C and this produces a notable advantage in its learning

speed. The difference in performance between EXP (starting

from scratch) and TERL in task D shows the transfer advan-

tage for TERL. The difference in performance between TERL

and SIM (transferring immediately) in task D shows the over-

head cost that TERL pays to understand the possibility of

exploiting transfer.

Finally, the results of the third test, formed by two tasks

involving very different sensorimotor mappings, show that

TERL manages to avoid using the skill previously learned

for task A to solve the new task D as the two are quite

different. The difference in performance between SIM and

TERL in task D shows the cost that TERL avoids by not

attempting to transfer from the different previously-learned

task A.

While having these transfer strengths, TERL also manages

to avoid catastrophic forgetting. Fig. 4 shows the compari-

son between: 1) the performance of the three models in the

first task (in each of the three tests) right after such task has

been learned; and 2) the performance right after the model has

learned the second task (with the learning rates set to zero, so

as to avoid relearning). The comparison of the performance in

the first task, before and after learning the second task, allows

the evaluation of how the learning of the second task interferes

with the performance of the first one.

As expected, SIM suffers catastrophic forgetting both when

the second task is similar but not identical to the first one and

when the two tasks are very different. Again as expected, EXP

performs very well since it learns every task from scratch, and
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Fig. 7. Snapshot of the postures (actions) suggested by the actor experts in the (a) low scattering condition (TERL) and (b) high scattering condition (TERLs).
The thick stylized 2-D arm indicates the current arm posture whereas the other thin stylized 2-D arms represent the arm postures suggested by the 30 actor
experts (the number on each arm drawing indicates the expert). The thin arm marked with “MIX” represents the overall arm posture suggested by the mixture
of experts; the thin arm marked with “GHOST” indicates the arm posture suggested by the exploration noise added to the mixture posture.

previous acquired skills are not affected by the learning of the

new ones. What is most important is that, as expected TERL

does not suffer of the problem of catastrophic forgetting in

any of the three tests. The reason is that when a new task is

the same or similar to the previously learned task, TERL uses

a copy of the previously acquired skill to solve the new task

thus not damaging the capacity of the best expert trained to

solve the previous task. When the new task is different, TERL

does not transfer but rather uses a completely new expert, thus

avoiding interference.

To show the actual formation and use of background copies

by TERL, Fig. 5 shows the responsibilities that it assigns to

actor experts during learning in the three tests involving same

Fig. 5(a), similar Fig. 5(b) or different Fig. 5(c) sensorimotor

mappings (left panels show responsibilities of actor experts for

the first task of each test; right panels for the second one; data

are qualitatively similar for the responsibility signals of the

critic experts, data not shown). The graphs show that, when the

two tasks require the same sensorimotor mapping [Fig. 5(a)],

TERL uses the same experts with the same responsibilities,

i.e., it reuses the skill developed for task A to solve task B.

When the two tasks require similar sensorimotor mappings

[Fig. 5(b)], TERL solves the second task, e.g., task D, by

reusing a copy expert developed in background while solving

the previous task, e.g., task C. Thus TERL is able to exploit

previously acquired knowledge to solve new tasks, and at the

same time to avoid catastrophic interference, by recruiting and

modifying expert copies developed for previously solved tasks.

Finally, when the two tasks require very different sensorimotor

mappings [Fig. 5(c)], TERL uses different experts as it realizes

that trying to transfer knowledge would be useless or even

detrimental.

C. Tests With the Planar Arm: Scaling-Up to

Several Tasks and Experts

The experiments reported in this section test the capacity

of TERL to scale up to learn a larger number of tasks with

respect to the previous sections, and in particular show how the

mechanism of recruitment of already trained experts, or of still

untrained experts to solve new tasks, continues to work with a

large number of available experts. The experiments also show

the capacity of TERL to recruit a restricted subset of experts

among the multiple available ones, for both functioning and

learning, based on the responsibility signals. For this purpose,

we trained the system in sequence with the six tasks shown in

Fig. 6, each for 500 trials, using 30 experts for the critic and

30 for the actor (we set this large number to test the scaling

capabilities of the system; the number of experts of the critic

and actor do not need to be the same).

Before illustrating the results of these experiments, we also

indicate how they were also used to quantify the advantage

of TERL over other systems due to the possibility of dif-

ferentially initializing its experts. For this purpose, in these

experiments TERL was also tested in a version where the con-

nection weight of the bias of each actor expert network was

randomly generated in [−1, +1] with the effect that the initial

actions (here desired arm postures, or “EPs,” pursued by the

robot PD or PID) of all actor experts were more uniformly

distributed in the work space (as usual, all other connection

weights were set to zero). In the graphs we will refer to this

condition with “TERLs” (“s” refers to the “high initial scat-

tering”) to distinguish it from the condition with a low initial

scattering used so far where the bias connection weight was

drawn in [−0.1, +0.1] to have some differentiation. Fig. 7

shows the postures of the actor experts in the low and high

scattering condition in the initial phase of training. Having

initially scattered actor experts is advantageous as it produces

different initial postures/behaviors and this facilitates the selec-

tion of them by the information-accumulation mechanism of

the actor gating network. Although low, the initial (small) scat-

tering of the actor experts used in TERL also explains the

advantage it has with respect to SIM and EXP in learning the

first task in the tests shown in Fig. 3. Notice that the possibil-

ity of exploiting the best skill from a rich initial repertoire of
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Fig. 8. Reaching time of SIM, EXP, TERL, and TERLs during learning of six tasks in sequence. The test involved learning one after the other the targets
A, B, C, D, E, and F shown in Fig. 6, each for 500 trials. Each curve and shadow represent the average and standard deviation computed over ten different
repetitions of the simulation.

skills is general as TERL samples in parallel the goodness of

all available experts for the current task (since it compares the

action of all experts with the action actually performed) and

so it rapidly focuses the selection on the best available one.

Without such a mechanism (e.g., as is in SIM and EXP) the

initial repertoire of experts, and in general any repertoire of

experts available at a later time, could not be probed to isolate

the best expert usable to solve the current task. Note that TERL

rather than TERLs was used throughout this paper to avoid that

the additional advantage given by scattering confounded the
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Fig. 9. Overall performance of SIM, EXP, TERL, and TERLs during learning
of six tasks in sequence: sums of the integrals, one for each model, of the
mean curves of the six graphs plotted in Fig. 8.

advantage of the system based on the mechanisms identifying

the best experts from which to transfer knowledge (below we

present some other results on TERLs alongside TERL to show

its advantages).

Figs. 8 and 9 show the results of the test on the six tasks

learned in sequence. TERL performs better than both EXP

and SIM architectures. This confirms the capacity of TERL to

scale up to a higher number of experts, 30 in this case, and

to exploit transfer opportunities when this is possible (e.g.,

when learning tasks C and E after task A, and tasks D and

F after task B). When the actor experts start with a higher

scattering of the initial EPs (TERLs), the system has an even

higher performance due to the advantages mentioned above.

A larger number of experts involves the following effects

on computational costs.

1) The functioning and learning responsibility signals of

experts are computed in parallel on the basis of the

action/value errors of the experts: this implies that the

number of tests to do with a task in order to evalu-

ate the experts does not increase with the number of

experts.

2) The computation of the activation of experts increases

linearly with the number of experts (but notice that the

activation of different experts is independent, so it could

be implemented in parallel hardware).

3) The learning processes involve only a given subset

of experts for each step (here eight in total) so it

does not depend at all on the total number of experts

(recall that thanks to the functioning/learning decou-

pling, the number of experts learning at each trial

is fixed and depends on how many background copy

experts one wants to train, not on the total number

of available experts). Importantly, this also means that

the computation time needed by the system function-

ing and learning is fully independent of the experience

already acquired, contrary to most TRL systems that

become slower with the accumulation of experience

(see Section IV).

Fig. 10. Performance of the different systems during learning (trials) in the
interleaved test where six tasks changed at each trial and for several times.
The performance was measured as the time taken by the systems to reach and
touch the target during a trial. The six tasks are those of Fig. 6. Curves are
averages of ten repetitions of the simulations.

Fig. 11. iCub robot and the environment used to test TERL. The picture
refers to the beginning of a trial. Object A represents an obstacle, whereas
objects B and C represent the target objects that the robot has to reach.

D. Tests With the Planar Arm—Interleaved Tasks

We also tested the capacity of TERL and TERLs to solve

multiple tasks when these are learned in an interleaved fashion

rather than in a sequence of blocks each focused on a task,

as done in the previous tests. For this purpose, the six tasks

considered in the previous section were learned during 1500

trials where at each trial the task to be learned was randomly

selected. As before, TERL and TERLs used 30 experts for

both actor and critic.

Fig. 10 shows the results of the test. The first interesting

point is the advantage of TERL on EXP, which learns from

scratch. Although not large, this advantage is important as it

shows that when TERL learns similar tasks at the same time
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Fig. 12. Performance of TERL and EXP where the systems are first trained on task B for 5000 trials and then on task C for another 5000 trials. (a) Reward
acquired by TERL during the sequential learning of the two 3-D tasks requiring a similar sensorimotor mapping (tasks B and C): although task B and task C
are learned sequentially, the learning curves are represented in the same graph to ease comparison. (b) Reward acquired by TERL and EXP during learning of
task C and showing the advantage of TERL over EXP due to its capacity for transfer. Each curve represents an average over ten repetitions of the experiment,
and data are smoothed over 100 trials. Notice that TERL solving task B (a) and EXP solving task C (b) have an initial negative reward indicating that they
often hit the obstacle.

with interleaved trials the information gained is shared among

the experts. For example, when the system has to learn to reach

tasks A, C, and E starting from EPs initially set at the center

of the work space, the experts that it forms can initially be the

same, so that up to a certain point modifying them for solving

one task also improves them to accomplish similar tasks. A

second relevant point is the large advantage of TERLs versus

all other models, confirming that the initial differentiation of

the experts can significantly boost learning speed. Last, for all

conditions a higher performance also tends to produce a lower

statistical variation of the results of different repetitions of the

tests.

E. Test With 3-D Redundant Simulated 4-DOF Arm (iCub)

This section illustrates a test to evaluate whether TERL

was capable of exploiting between-skill transfer while avoid-

ing catastrophic forgetting in more complex conditions. The

test required in particular to control the 3-D 4 DoF simulated

robotic dynamic arm of the humanoid robotic platform iCub,

an open-source robot built for studying cognitive development

in humans [61].

Fig. 11 shows the simulated setup used in this test formed by

the iCub robot and a 3-D environment containing three spher-

ical target objects (in the simulator, these three objects can

be anchored to the world without an actual physical support).

Each arm of the iCub has 16 joints: three for the shoulder

(J0−2), one for the elbow (J3), three for the wrist (J4−6), and

nine for the hand (J7−15).1 Here we used TERL to control the

movements of four joints of the right arm, in particular: 1) J0,

the “shoulder pitch,” responsible for the front-back movement

when the arm is aligned with gravity; 2) J1, the “shoulder roll,”

affecting the adduction-abduction movement of the arm; 3) J2,

the “shoulder yaw,” affecting the yaw movement when the

arm principal axis is aligned with gravity; and 4) J3, the joint

related to the elbow. During the simulation J0 could assume

1http://wiki.icub.org/wiki/ICub_joints

values in the range [−80◦; −15◦], J1 in the range [10◦; 110◦],

J2 in the range [−10◦; 75◦], and J3 in the range [20◦; 85◦].

The positions of the remaining joints were set at fixed values

(J4 = −10◦; J5 = −30◦; J9 = 80◦; J6−8 = J10−15 = 0◦). The

torso joint affecting the yaw with respect to the vertical axis

was fixed to −30◦. All trials started with the arm set at a fixed

posture so that the obstacle was in the way of the targets at

each trial: J0 = −90◦, J1 = 100◦, J2 = 90◦, and J3 = 6◦.

The three spherical objects in the environment had a diam-

eter of 3.5 cm and were set in front of the robot (Fig. 11).

The objects allowed the implementation of two reaching tasks,

each requiring that TERL learn how to control the right arm

of the iCub in order to reach either object B (“task B”) or

object C (“task C”) while avoiding hitting the “obstacle” A.

The system had the same architecture and functioning of

the system of the previous sections, and was trained as in

the sequential test involving the 2-D arm with a few differ-

ences. First, all trials involving the solution of the tasks started

with the arm set at a fixed posture at the right of object A.

This made the task more difficult as object A was always an

obstacle for reaching the two targets B and C (Fig. 11) and so

the robot had to perform curved trajectories around the obsta-

cle to reach the targets. Second, each trial ended when the

iCub hit any one of the three objects with the hand, or after a

timeout of 8 s (in the 2-D tests the time out was 6 s; as before,

the integration time-step of the model and robot equations was

0.01 s). The longer trial duration allowed a longer exploration

necessary as the model had to discover a more complex tra-

jectory to reach the targets while controlling a redundant arm

(redundancy required the algorithm to autonomously converge

to one possible solution among all those explored). Third,

when the iCub hand hit the obstacle the model got a nega-

tive reward signal set to −0.5, whereas if it touched the target

object received a reward equal to 1. The reward was 0 oth-

erwise. Fourth, TERL was endowed with 10 experts for both

actor and critic. Last, the values of a few parameters of the

model were changed to take into account the different setup, in

http://wiki.icub.org/wiki/ICub_joints
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Fig. 13. (a) Reaching time of TERL during the sequential learning of the two 3-D tasks requiring a similar sensorimotor mapping (tasks B and C). TERL
first learns task B for 5000 trials and then learns the second task C for other 5000 trials. (b) Reaching time of TERL and EXP during learning of task C.
Each curve represents an average over ten repetitions of the experiment, and data are smoothed over 100 trials with a moving average.

Fig. 14. Trajectories of the iCub hand produced by TERL after learning
two 3-D tasks requiring a similar sensorimotor mapping (tasks B and C while
avoiding A, see Fig. 11). The trajectories refer to one run of the simulation
but other runs produced qualitatively similar results.

particular the higher number of controlled degrees of freedom

that required a different number of output units, and thus a

different number of Gaussian functions used by the algorithm

as features (see Table II in the Appendix).

In the test, the system first learned task B and then

task C, each for 5000 trials. As the tasks require a similar

sensorimotor mapping, they allowed us to evaluate whether

TERL was capable of reusing the experts employed to solve

task B when learning to solve task C. To show the capac-

ity of TERL to exploit transfer we also tested EXP in the

same experiment involving first learning of task B and then

of task C.

Fig. 12(a) shows that TERL learns the second task (task C)

much faster then the first task (task B) as it can partially

transfer the ability acquired for the first task to the second

one. The fact that the advantage in task C is actually due

to TERL’s transfer capacity rather than a different difficulty

of the task C with respect to task B is demonstrated by the

fact that TERL is much faster in learning task C than EXP

[Fig. 12(b)]. The same result is shown by the reaching time

instead of the reward (Fig. 13).

The curve trajectories performed by TERL to solve the

obstacle avoidance tasks B and C are shown in Fig. 14.

These curves show how the sensorimotor mappings needed

to solve the two tasks are similar which explains the higher

performance of TERL capable of taking advantage of this.

IV. DISCUSSION: TERL COMPARISON

WITH OTHER MODELS

This section compares TERL with other models illustrat-

ing its similarities and novelties with respect to them and the

different subproblems of TRL they face.

A. Option Framework and Off-Policy Learning

Several systems from the RL literature perform transfer of

knowledge between tasks by relying on the option frame-

work (see [62] for a review). An option is a data structure

that encapsulates a policy (a skill), an initiation set (states

where the option can be selected), and termination condition

(establishing when the option execution terminates, e.g., when

some subgoal states are achieved). Options can be used as

building blocks to solve different complex tasks through their

suitable combination [63]. Option-based systems have been

mainly used to face compositionality problems rather than

skill-to-skill knowledge-transfer problems as here. These are

two very different problems. Compositionality problems con-

cern how assemble multiple skills to solve complex tasks that

require multiple options (skills) to be solved. For example,

the option framework allows the formation of policies that

select multiple options in sequence, together with primitive

actions, to accomplish complex goals. Compositionality trans-

fers knowledge from a (complex) task to a new (complex) task

by reusing whole skills (or part of them), rather than from

acquired skills to a newly learned skill as required in skill-

to-skill transfer problems. For example, the complex skill of

pressing a button and the complex skill of “scratching with the

finger” might share a very similar component-skill of “reach-

ing with the finger” performed before performing, respectively,

the component-skills “pushing with the finger” or “scratching.”
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A pioneering model of this type is compositional Q-learning

model [17], relevant here also because it proposed the idea

of adapting some principles of the mixture-of-experts model

to a RL context. As another example, it has been shown [64]

that the transfer of whole options between different grid-world

environments can be facilitated when options are based on

the agent’s sensations (e.g., egocentric position of objects)

rather than on information related to the specific problem (e.g.,

absolute spatial relations between objects).

A key idea that can be exploited within the option frame-

work [62], and more generally in systems formed by multiple

RL experts, is “off-policy learning” [63]. Off-policy learning is

employed by several TRL systems reviewed below and allows

RL algorithms, for example Q-learning [24], [65], to train a

“target policy” (and/or a value function) on the basis of actions

selected by another “behavior policy.” Off-policy learning has

been used for “intraoption learning” to let options learn from

their partial execution or from the execution of actions by other

components of the system [62]. A system that makes mas-

sive use of off-policy learning is the Horde architecture [66].

This architecture is also related to TERL as it is formed by

multiple individually simple experts (“demons”) that can be

used for prediction or control purposes. Each demon learns an

approximation (e.g., based on features and linear functions) of

a generalized value function (GVF). A GVF stores knowledge

and learns to predict a relevant element through mechanisms

analogous to those used to estimate RL conventional value

functions, but it can refer to elements different from rewards

such as the activation of a robot sensor. A demon is based on

a reward function, a termination function, a terminal-reward

function, a policy (which is given in the case of prediction) and

learns the related GVF. Such functions can be structured so

that, for example, a demon can be used to learn to predict

the time when a particular sensor will be activated, or to

learn a policy to accomplish a certain activation of a sensor

through an off-policy RL algorithm. TERL shares with Horde

the idea of behavior or value prediction based on multiple

experts and their parallel learning, and the background objec-

tive of life-long learning, but differs from it in many respects,

in particular it pivots on transfer learning to improve learning

speed whereas Horde relies on off-policy learning.

B. Models From the Literature on Transfer

Reinforcement Learning

Among the several systems proposed within the litera-

ture on TRL, we focus here on those closer to TERL, i.e.,

those that address the source-task selection problem by explic-

itly reasoning about “libraries” of already solved tasks to

decide from which of them to transfer knowledge to the

new task [6]. One of these systems, called policy reuse

Q-learning (PRQ-learning) [67], uses off-policy learning,

based on Q-learning [65], to transfer knowledge. In partic-

ular, it uses “source policies” (i.e., previously learned policies

form which to possibly transfer knowledge) to train (offline)

a new optimal policy for each new task: the source policy

to use for transfer is selected at each trial on the basis of a

soft-max function applied to the “reuse gains” of all source

policies (the reuse gain of a policy is equal to the average

reward obtained in the new task). The newly learned policy

is added to the policy library if its reuse gain is larger than a

certain threshold with respect those of existing policies. With

respect to TERL, PRQ-learning has the advantage of com-

puting an explicit metric of the similarity between tasks and

the capacity to identify a core set of policies for a domain.

However, at each trial it requires the selection of only one pol-

icy to use (the system is tested in a grid world) and evaluates

the reuse gain of only that policy: this implies the need for an

increasing number of trials to evaluate the source policies as

their number increases. Instead, TERL evaluates the ability of

experts to solve/evaluate the new task in parallel at each step.

In addition, regarding brain modeling, PRQ-learning solves

the interference problem by building a new data structure for

each new task and so it could not be usable to model how the

brain faces such problem.

Another class of TRL systems transfers knowledge encoded

as “experience samples,” in particular tuples <s, a, s′, r> (i.e.,

the state and action at a certain time step and the state and

reward at the following time step), rather than “compiling” it

into the parameters of a function approximator (i.e., it follows

a non-parametric approach). For example, the system proposed

in [68] stores the experience samples during a “sampling

phase” and then, during an offline learning phase, computes

the approximation of the action-value function on the basis of

the stored samples. The key idea of the system is to imple-

ment knowledge transfer by using samples from source tasks

that are similar to the target task. The selection of the source

tasks and of their tuples is done on the basis of the “com-

pliance” (similarity) of such tuples with those experienced

in the target task. The system has the advantages of basing

transfer on the similarity between the dynamics and reward

functions of different tasks and to be applicable to problems

where both reward and transition functions change. However,

its batch nature and the computation of compliance requires

it to explicitly record experienced tuples, which is memory

intensive, and to directly compare tuples, which implies a com-

putational cost that increases with the number of experienced

tuples. Moreover, as these mechanisms directly store tuples of

experience they could not be used for modeling “compiled,”

semantic knowledge as done in biological neural networks.

TERL, instead, tests the experts for selection in parallel and

“compiles” the acquired information into the parameters of

the experts (function approximators), so it requires computa-

tion time and memory resources that do not increase with the

length of past experience.

C. MOSAIC Models

The systems most similar to TERL are those related to the

MOSAIC model [69], so these are considered more in depth.

TERL and some MOSAIC models have important similarities

but also differences that make them suitable to face differ-

ent problems. A first MOSAIC model similar to TERL is

the multiple model-based RL model (MMRL) [70]. MMRL

is composed of modules formed by a predictor of the world

dynamics (taking as input the current state and planned action,
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and returning as output the next state) and a RL controller.

During each trial, the errors of the predictors determine the

responsibility signals of the modules: for this purpose, each

module predictor error is passed through a Gaussian function

(measuring its “correctness”) and then all the Gaussian activa-

tions are passed through a soft-max function. The responsibil-

ity signals are used to both weight-average the contribution of

the RL controllers to act, and to regulate the learning rate of

both predictors and related RL controllers. In this way, differ-

ent modules specialize in predicting and acting in subportions

of the whole problem space based on the correctness of the

predictors.

These ideas are further developed in the MOSAIC-RL

model [71], the MOSAIC-family model most similar to TERL.

MOSAIC-RL is formed by three sets of “modules”: “forward

modules,” predicting the environment dynamics (i.e., models

of the state transition function), “reward modules,” predicting

the one-step reward (i.e., models of the reward function), and

RL controllers (each based on a value-function approximator

and a policy directly generated from the value approxima-

tor through control theory methods). With respect to previous

MOSAIC models, in MOSAIC-RL the three types of modules

are decoupled, so they segment the problem space differently

on the basis of their respective errors: 1) the world-dynamics

prediction errors; 2) the one-step reward prediction errors;

and 3) the TD-errors. As in MMRL, these errors are used

to compute the responsibility signals of the related type of

modules on the basis of Gaussian and soft-max functions.

However, now the three types of modules have distinct respon-

sibility signals, so the RL controllers deciding the action are

selected on the basis of their TD error, not on the basis of

the world dynamics as in MMRL. This allows the model

to face not only problems with nonstationary (i.e., hidden)

dynamics, as MMRL, but also problems involving “a non-

stationary reward function,” i.e., multiple reward functions

(multiple tasks).

Given the similarities between TERL and MOSAIC-RL, in

terms of the responsibility signals computed in parallel on

the basis of a softmax of Gaussians of errors, and the seg-

mentation of the whole problem into subproblems (“tasks”),

it is important to clarify how they can be used to face differ-

ent problems. The key difference between the two systems is

that TERL uses the softmax of Gaussians to train the gating

networks, not only to select the experts to act: the knowl-

edge acquired with this learning process during the first trials

in which a new task is faced (when TERL selects multiple

experts for action as it still does not know which one is the

best) is compiled into the parameters of the gating networks.

Once acquired, this knowledge can be used to immediately

select the best expert to use, based on the information regard-

ing the identity of the task to solve, since the very first step of

the trial. Instead, MOSAIC-RL uses the softmax of Gaussians

to dynamically accumulate evidence on the experts to select

step-by-step during the trial, or during multiple trials when

these address the same task multiple times in sequence, even

after the system has learned to solve the task. This implies

an important feature of the problems that MOSAIC-RL can

solve. In trial-based RL problems, relevant for TRL, reward

is often zero during the trial and high at the end of the trial

when the task “goal” is accomplished, so the TD-error can be

high only at the end of the trial. In these cases, the responsi-

bility signals of controllers computed by MOSAIC-RL on the

basis of their TD-errors are similar during the first part of the

trial and differentiate only at the end of it, so they can start

to have an effect on the selection of controllers only from the

second trial onward, and only when the same task is expe-

rienced for more than one trial in sequence. In this respect,

in commenting on the performance of MOSAIC-RL [71], it

was reported that “after learning, the RL modules also suc-

cessfully switched within a few (one or two) trials when the

subenvironment changed” (note that the training and test of

MOSAIC-RL was done in blocks each formed by 100 trials

involving the same “subenvironment,” i.e., task).

This difference implies that MOSAIC-RL is not suitable to

face problems as those used here to test TERL where the task

is switched at each trial and its identity is known (interleaved

condition tests, see Fig. 10). This situation is for example

common in animals where motivation changes continuously

after being “satisfied in one trial” and is known to the ani-

mal. After learning, for example, when an animal is hungry

(hunger signals a first task identity) it is able to directly move

to a food dispenser, and when it is thirsty (thirst signals a

second task identity) it is able to directly move to a water dis-

penser: this without the need to sample each time the reward

given by food or water. The same holds when animals pur-

sue a goal: also in this case the task identity is known and

so the animal can immediately recall the behavior to accom-

plish it (after this behavior has been acquired and associated to

the goal). Note that this behavior of MOSAIC-RL is expected

and is not a drawback of the system. Indeed, MOSAIC-RL

has been designed to solve problems where the task identity

is hidden and so has to be identified by repeated sampling: the

mechanisms of the system are thus very good for facing these

problems. Instead, for the TRL problems considered here,

for which TERL has been designed, the information about

the identity of the task to solve is clear and available before

each trial. Since MOSAIC-RL addresses a different problem

with respect to TERL, it does not use different responsibility

signals for the evaluation function and the policy “experts,”

nor does it use different responsibility signals for function-

ing and for learning as done by TERL. These features are

very important, as shown here, when the system is used to

address the skill-to-skill knowledge-transfer problem and the

catastrophic-interference problem.

Overall, it can be said that MOSAIC models and TERL

are best suited to solve different complementary problems:

MOSAIC models are best suited to face the problem of seg-

mentation of whole MDP problems into subtasks on the basis

of the progressive online accumulation of evidence on the

hidden (nonobservable) world features based on the errors

of predictors of the world dynamics or the world reward.

Instead, TERL can be used to solve the skill-to-skill trans-

fer problem without incurring catastrophic interference on the

basis of gating networks learning to map goals to responsibil-

ities of experts. For these reasons, the two systems might be

suitably integrated in the future.
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D. Other Algorithms, Evolutionary Duplication, and

Task-Policy Mapping

The generation of multiple neural copies by TERL links

it to another class of models that implement neural duplica-

tion to solve different tasks or subparts of the same task. One

of these models [42] is based on RL experts called “mots”

that self-organize in a 2-D spatial grid in a way that is remi-

niscent of self-organizing neural networks. Mots are selected

for action and for learning based on a previously proposed

model called selected expert reinforcement learner [72]. In

particular, each mot implements a RL policy—e.g., in the

form of Q-learning—and at the same time learns to estimate

the inaccuracy of that policy—e.g., in the form of error of

the Q-learning values. At each time step, a “winning mot” is

selected for action and for learning if it has the highest Q-value

reduced by the Q-value estimated error. The mots close to the

winning mot also learn and this leads to the emergence of

spatially organized mots that tend to specialize on the same

parts of the problem space, and thus to form “copies” of the

same portion of behavior similar to TERL. Later [43], mots

maps have also been develop to capture in space the temporal

relations (sequential activation) of mots by training not only

the winning mot and its neighbors but also the previous and/or

following winner(s) and neighbors. Future work might aim to

obtain a spatial organization of TERL experts by employing

similar mechanisms as those used by mots, thus benefiting

from the advantages that this carries in terms of smoothness,

robustness, hierarchy by region, dimensionality reduction, and

reuse (see [43]).

Another relevant class of models that implement neural

duplication has been proposed in [44] and [73]. These mod-

els are developed within an evolutionary framework, so they

can be used to model neural duplication based on genetic

processes [73] whereas their use to model learning processes

related to the single individuals, as in TERL, has been

proposed only recently [74], [75]. In this respect, TERL repre-

sents a relevant hypothesis as to how neural duplication might

take place within the single animal behavior and brain when

trial-and-error learning mechanisms are involved [22].

Another class of systems learns to map tasks to solutions,

in particular it uses the information regarding features of the

goals, or reward functions, to best initialize the value func-

tions or policies to solve new tasks [76], [77]. As in TERL, in

these models the transition function is assumed to be constant.

While solving different tasks, these systems learn a mapping

between the goal features and the parameters of the value

function or policy approximators. This mapping allows the

systems to generate the initial policies and value functions

to solve new tasks: later these policies and value functions

can be refined with further training experience. These systems

face a TRL problem that is different, in particular complemen-

tary, with respect to the one faced by TERL. Indeed, they can

exploit information (features) on the goals of the new tasks

before solving them, but then when they further refine the

initial solutions they cannot further transfer knowledge from

previously solved tasks. On the contrary, TERL cannot benefit

from information (features) on the new tasks before starting to

solve them, but on the other hand it can transfer information

from previously solved tasks after it starts to solve the new

tasks based on the effectiveness of existing experts in solv-

ing them (rather than based on similarities between goals). To

further clarify this difference, consider these examples. When

the system faces a new task where the goal is very similar to

the goal of a previously solved task, and indeed the two tasks

require a very similar sensorimotor mapping to be solved, then

the systems under discussion can formulate a good first guess

on the solution to use. If instead the new task requires a very

different sensorimotor mapping, and such sensorimotor map-

ping (or a similar one) was previously learned to accomplish

a different goal, then the mechanisms of TERL would rapidly

identify the expert encoding the latter mapping and use it to

solve the new task. Similarly, the mechanisms of TERL would

be useful when solving a new task where the goal does not

give any useful information about the type of sensorimotor

mapping to use. For these reasons, the mechanisms proposed

by the systems discussed here and TERL might be integrated

in future work (Section V sketches how TERL might do this).

V. CONCLUSION

A. Main Achievements

This paper has described and tested a RL architecture

(TERL architecture) to learn multiple skills solving differ-

ent related tasks. The architecture offers a solution to the RL

source-task selection problem [6] requiring the identification

of the skills acquired to solve previous tasks from which to

transfer knowledge to best solve new tasks.

We sought a solution to this problem under two stringent

conditions. First, TERL was not given any information regard-

ing the similarity between the solved tasks and the new tasks

and so it had to sample the actual performance of the pos-

sessed skills in the new task to infer their relevance for it.

This condition was introduced to ensure the development of

algorithms that are able to exploit the knowledge acquired

while solving the new task without having any prior infor-

mation on the similarity between the solved tasks and the

new task. The solution proposed here is important because

such knowledge on the effectiveness of previous solutions to

solve the new task is always available in source-task selection

problems. The idea is that we have developed efficient algo-

rithms capable of fully exploiting such knowledge, we can

develop and add to them other mechanisms able to exploit

additional information, for example related to the similarity

between tasks (see below). The second stringent condition was

that the computational resources used by the system (here the

experts) were constant. The use of the same resources to solve

multiple tasks can support generalization and knowledge trans-

fer but also introduces the well-known problem of catastrophic

interference. The use of the same resources was dictated

by our objective of building solutions that have biological

plausibility.

Seeking the solution to the skill-to-skill transfer problem

under the two conditions just described led to the develop-

ment of two core mechanisms incorporated in TERL. The

first mechanism accumulates evidence on the goodness of

the skills, measured in terms of collected reward, during the
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solution of the new task. This mechanism accumulates such

evidence in parallel for all the experts, so continues to work

well when the number of experts increases (it does not require

the test of single experts separately one after the other). The

second mechanism involves the decoupling of the responsi-

bility signals used for the functioning and for the learning

processes of the experts. This decoupling allows TERL to

overcome the catastrophic interference problem.

The tests of TERL with a 2-D robotic dynamic arm showed

that the system works both in conditions where tasks have

to be learned and performed in sequence (i.e., with several

blocks of trials for each task: this challenges the robustness of

the system to catastrophic forgetting) or in random order (i.e.,

with one different task per each trial: this challenges the capac-

ity of the system to rapidly decide which experts to use). Other

tests showed how TERL scales up to larger numbers of experts

and tasks with little additional computational costs. Also, in

contrast to several non-parametric TRL systems that explic-

itly store experience in the form of state-action-state-reward

tuples, the speed of functioning of TERL mechanisms is fully

independent of the amount of knowledge already acquired.

Preliminary experiments also showed that TERL can scale up

to control a 3-D redundant dynamic robotic arm.

B. Future Work

The architecture of TERL could be further tested and

improved in different ways in future work. In this paper, the

experts were given only information about the task identity,

but not on task features or task goals, to facilitate the devel-

opment and study of the transfer algorithms tested here. For

the same reasons, the gating network was informed only as

to the task identity (with this the system only knows if two

tasks are the same or different), and in particular it was not

given a richer description of the task, or task goal, in terms of

features (which might hint to the possible similarities between

two tasks). In future work, it will be interesting: 1) to give the

experts further information regarding the task to solve and 2) to

give both experts and gating networks a rich description of

the task/goal (e.g., as in the system proposed in [77] and [78],

where a robot is informed on the position in space of a target

to be hit with a dart or a ball). We speculate that this would

have important consequences. Giving information about tasks

to the experts might allow the system to encode knowledge

of more than one task in the same expert, now not possible.

In turn, this might allow the study of how the system encodes

similar tasks in the same expert, and also allow the system to

learn a number of tasks greater than the number of available

experts. Giving the system a rich description of the task/goal

might allow the gating networks to use such information to

create useful predictions about the responsibility to assign to

experts for each new task before experiencing it (here such

prior signals were necessarily uniform as the system knew

only the identity of tasks and had no information about their

similarity). The mechanisms described here could then be used

to accumulate evidence about the actual capacity of experts to

solve the new task based on their test in the new task, so as to

strengthen or weaken the responsibility signals predicted ini-

tially. The output of the gating networks before and after this

learning and accumulation of evidence could thus be inter-

preted as prior and posterior probability estimates of which

experts are best to solve the new task similarly to what done

in Bayesian approaches [79].

Future work might also further improve the mechanism that

accumulates evidence on the goodness of experts for new

tasks. In particular, here the mechanism searches only the aver-

age parameters of the Gaussian functions used to update the

responsibility signals of experts, whereas their size (σ 2
A and

σ 2
C) is fixed. It might instead be possible to find a way to also

estimate such parameters, similar to what is done in the mix-

ture of Gaussian models [80], but taking into account the RL

context considered here.

Future work should also further study and improve

the mechanism used here to preserve the best experts

against interference when facing some challenging conditions

(e.g., when tasks are learned in sequence). Indeed, here we

used a heuristic mechanism that lowers the learning rates of

experts that achieve a high functioning responsibility in given

tasks as this indicates that they can be reliably considered

the best experts in those tasks. More principled mechanisms

should hence be developed for this purpose.

Another aspect of the architecture to improve involves the

treatment of noise. Here we adopted a simple solution as

this was not the focus of this paper. Noise was kept low at

the beginning of each trial during a fixed time interval that

was sufficient to solve the task if the system had already

learned it, and then noise was increased to let the system

explore new solutions in case of failure to solve the task during

such interval. Future work should find new solutions to this

problem, in particular to regulate the level of noise depending

on the system’s performance suitably estimated on the basis

of a meta-learning process (see [81], [82]).

Another aspect of TERL that might be developed in future

work is that it currently assumes the existence of tasks to

be solved, and that it receives information about the iden-

tity of the task to solve within each trial. These assumptions

have important consequences on the system functioning, for

example they give an episodic nature to the RL algorithms

used by the system and this affects the algorithms to compute

the global and local TD-errors, the exploration-exploitation

noise, and the reset of some variables. Future work could

make the system fully autonomous by endowing it with a

component that is able to self-generate goals, tasks, and learn-

ing trials. For example, a recent work [82] has proposed a

system that self-generates goals when the exploratory action

of the simulated robot controlled by the model causes impor-

tant effects in the environment, for example it turns on a

spherical light by touching it. This system also self-generates

“trial-terminations” either when it successfully accomplishes

the currently pursued goal or when a time out elapses. TERL

might be suitably integrated with similar mechanisms for goal

(task) and trial self-generation.

Given the bio-inspired nature of the ingredients used to

build it, TERL might also be used for investigating impor-

tant behavioral and brain phenomena. One possible application

is the study of the psychological processes of assimilation

and accommodation postulated by Piaget [1], as started to

do by [21] and [22]. Along this line, the system might
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also be used to investigate the open-ended learning processes

characterizing children [83] and leading them to progres-

sively acquire a repertoire of increasingly sophisticated skills

(as mentioned in Section I, this was one main motivation

for designing TERL). In this respect, it would be interest-

ing to endow the system with the autonomous capacities

of self-generating goals and tasks, as mentioned above, and

focusing on those that are learned with the highest learning

rate [82], [84]–[87].

TERL can also be used to study psychophysical issues

related to human motor learning, in particular problems related

to how the motor system transfers knowledge between similar

motor tasks. For example, the seminal work of [88] showed

that learning and transfer of reaching movements are strongly

facilitated when different tasks are learned in interleaved ran-

dom trials rather than in sequential whole blocks of trials each

focused on different tasks. Other studies have investigated how

humans generalize a newly learned reaching skill, acquired to

reach a given target point while compensating a disturbing

force field, to other target points laying on a circumference

centrad on the (fixed) starting point [89]–[91]. These stud-

ies show how transfer and generalization benefits only tasks

involving target points that are very close in space. The archi-

tecture and transfer capabilities of TERL seem ideally suited

to investigate these phenomena because they support transfer

learning between similar tasks, and these transfer processes

are parameterized under many respect, and because they can

be linked to the architecture and functioning of the brain (see

below; see also [92], for a review on experiments, models, and

possible approaches to investigate these issues).

Some aspects of the architecture and functioning of TERL

have been inspired by the brain organization and so they might

be leveraged to model and investigate some open issues in neu-

roscience. In general, RL algorithms are suitable to study the

organization and learning mechanisms of hierarchical architec-

ture [93]. Within a biological perspective, TERL architecture

might be used to model basal ganglia-cortical loops [101], a

brain hierarchical system playing a key role in trial-and-error

learning in organisms [48], [96]–[98]. For example, following

previous works [18], [33], [99], the capacity of TERL gating

networks to assign different tasks/goals to different experts

might be used to model and study he mechanisms with which

basal ganglia and cortex form separated loops and channels

dedicated to different sensory inputs, actuator outputs, and

input-output mappings [96], [100].

The capacity of TERL to form copies of experts on the

basis of RL processes could be used to model the dupli-

cation of neural modules in the brain [41], a process that

has been obtained through evolutionary algorithms mimicking

DNA-based neural duplication [44], [73] and has also been

previously observed in other systems [42], [70], [72]. In this

respects, we are not aware of previous systems regulating the

duplication process during learning on the basis of dedicated

mechanisms such as the ranking and learning-responsibility

mechanisms described here.

APPENDIX

Parameters Setting: The parameters of the model were set

as indicated in Table II.

TABLE II
PARAMETERS OF THE MODEL USED TO CONTROL THE 2-D AND THE

3-D ROBOTIC ARM. THE TABLE REPORTS IN PARENTHESES

THE PARAMETERS USED WITH THE 3-D ARM THAT

DIFFER FROM THOSE USED WITH THE 2-D ARM
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