
Received August 5, 2019, accepted August 24, 2019, date of publication August 29, 2019, date of current version September 13, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2938390

A Reinforcement Learning-Based QAM/PSK
Symbol Synchronizer

MARCO MATTA 1, GIAN CARLO CARDARILLI1, (Member, IEEE), LUCA DI NUNZIO 1,
ROCCO FAZZOLARI1, DANIELE GIARDINO1, ALBERTO NANNARELLI 2, (Senior Member, IEEE),
MARCO RE1, (Member, IEEE), AND SERGIO SPANÒ 1
1Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
2Department of Applied Mathematics and Computer Science, Danmarks Tekniske Universitet, 2800 Kgs. Lyngby, Denmark

Corresponding author: Marco Matta (matta@ing.uniroma2.it)

ABSTRACT Machine Learning (ML) based on supervised and unsupervised learning models has been

recently applied in the telecommunication field. However, such techniques rely on application-specific

large datasets and the performance deteriorates if the statistics of the inference data changes over time.

Reinforcement Learning (RL) is a solution to these issues because it is able to adapt its behavior to the

changing statistics of the input data. In this work, we propose the design of an RL Agent able to learn the

behavior of a Timing Recovery Loop (TRL) through the Q-Learning algorithm. The Agent is compatible

with popular PSK and QAM formats. We validated the RL synchronizer by comparing it to the Mueller

and Müller TRL in terms of Modulation Error Ratio (MER) in a noisy channel scenario. The results show a

good trade-off in terms of MER performance. The RL based synchronizer loses less than 1 dB of MER with

respect to the conventional one but it is able to adapt its behavior to different modulation formats without

the need of any tuning for the system parameters.

INDEX TERMS Artificial intelligence, machine learning, reinforcement learning, Q-learning, synchroniza-

tion, timing recovery loop.

I. INTRODUCTION

Machine Learning (ML) is a field of Artificial Intelligence

based on statistical methods to enhance the performance of

algorithms in data pattern identification [1]. ML is applied

in several fields, such as medicine [2], financial trading [3],

big data management [4], imaging and image processing [5],

security [6], [7], mobile apps [8] and more.

In recent years, the advancement of electronics, infor-

mation sciences and Artificial Intelligence supported the

research and development in the telecommunication (TLC)

field. In modern TLC systems, important aspects are flexibil-

ity and compatibility withmultiple standards, often addressed

with ML approaches. Some examples are Software Defined

Radio (SDR) [9], Cognitive Radio (CR) [10] and Intelligent

Radio systems (IR). IRs are capable to autonomously esti-

mate the optimal communication parameters when the sys-

tem operates in a time-variant environment. This intelligent

The associate editor coordinating the review of this manuscript and
approving it for publication was Malik Jahan Khan.

behavior can be obtained by using conventional adaptive

signal processing techniques or by using ML approaches.

In [11] the authors show a survey of different innovative

ML techniques applied to telecommunications. In [12] the

authors compare the modulation recognition performance

using different ML techniques such as Logistic Regres-

sion (LR), Artificial Neural Networks (ANN) and Support

Vector Machines (SVM) over different datasets (FSK and

PSK-QAM signals). The authors in [13] propose the use of

Deep Belief Networks in a demodulator architecture. Other

noteworthy research papers in this context are [14]–[18].

Another important research field is related to the development

of ML hardware accelerators that allow time and energy

efficient ML algorithms execution [19]–[24].

ML techniques are usually classified in three main cate-

gories: Supervised, Unsupervised and Reinforcement Learn-

ing. The first two require a training phase to obtain an expert

algorithm ready to be deployed in the field (inference phase).

Supervised and unsupervisedML approaches rely onmassive

amounts of data, intensive offline training sessions and large

parameter spaces [25]. Moreover, the inference performance

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 124147

https://orcid.org/0000-0002-2415-1386
https://orcid.org/0000-0002-4312-7939
https://orcid.org/0000-0002-8303-6329
https://orcid.org/0000-0002-8230-7211

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

degrades when the statistics of the input data differs from

that of the training examples. In these cases, multiple training

sessions are required to update the model [26]. In Reinforce-

ment Learning (RL) the training and inference phases are

not separated. The learner interacts with the environment to

collect information and receives an immediate reward for

each decision and action it takes. The reward is a numerical

value that quantifies the quality of the action performed by

the learner. Its aim is to maximize the reward while inter-

acting with the environment through an iterative sequence of

actions [27].

Consequently, in a scenario where the input data statistics

evolves, a possible solution is the use of an RL approach. The

main feature of RL is its capability to solve the task interact-

ing with the environment by trail-and-error. For this reason,

this methodology brings the following advantages:

• The off-line training phase is not required, avoiding the

need for cumbersome training data-sets;

• Parameter space dimensions are generally smaller than

in supervised and unsupervised approaches;

• Themodel is self-adapting using the data collected in the

field.

RL became increasingly popular in robotics [28]–[31],

Internet of Things (IoT) [32], financial trading [33] and

industrial applications [34]. RL for multi-Agent systems is a

growing research field as well. It is often bio-inspired [35]

and the learners are organized in ensembles, i.e. swarms,

to improve learning capabilities [36], [37].

However, the application of RL models to TLC is a fairly

new and unexplored line of research. As detailed later, a con-

ventional TLC receiver is a cascade of processing units based

on tunable feedback loops and application-specific modules.

For example, a Timing Recovery Loop (TRL) is a system that

includes an error detector and a feedback loop filter to control

the synchronization of the receiver resampler. Conventional

approaches require the tuning of the filter parameters and

error detectors that are specific to the transmission param-

eters, such as types of modulation scheme.

In this paper, we propose a TRL based on RL capable to

operate independently of the modulation format, due to its

adaptation capability. Moreover, a large training dataset is not

required, differently from the cited researches about the use

of supervised and unsupervised ML approaches in TLC. Our

solution is based on Q-Learning, an RL algorithm developed

byWatkins and Dayan [38]. This model learns from the input

data how to synthesize the behavior of a symbol synchro-

nizer by using a trial-and-error iterative process. The system

performance has been validated by comparing the proposed

approach to a standard synchronization method, the Mueller

and Müller gate [39]. With respect to [40], we extend the

method to a wider set of modulations schemes by using a

modified and enhanced ML model.

The main advantages of our approach are:

• It is capable to operate on different modulation schemes

(static conditions);

• It is capable of self adaptation to changes in the

channel noise and modulation formats (changes in the

environment);

• It avoids the loop filter parameter tuning phase;

• It avoids the need to allocate specific sub-channels for

synchronization because the timing recovery is per-

formed by using the input data.

In this paper, we prove that the use of a Reinforcement

Learning based QAM/PSK symbol synchronizer is a valid

timing recovery method by testing it in generic telecommu-

nication system.

This paper is organized as follows. In Sect. II an overview

about conventional symbol synchronization methods, RL and

Q-Learning is provided. In Sect. III we illustrate the archi-

tecture and the sub-modules of the proposed RL based TRL.

In Sect. IV we provide the experimental results regarding the

choice of the Q-Learning hyperparameters and we compare

the performance of the system to conventional synchroniza-

tion methods. In Sect. V the conclusions are drawn.

II. BACKGROUND

In this section, we provide insights about conventional timing

recovery methods and Reinforcement Learning.

A. SYMBOL SYNCHRONIZATION METHODS

A generic receiver front-end consists of a receive filter fol-

lowed by a carrier and timing recovery system. The carrier

recovery system is implemented with first or second-order

Phase-Locked Loops (PLL). The symbol synchronization is

performed using Timing Recovery Loops (TRL) as shown

in [41], [42]. Examples of recovery loops are the Costas

Loop, for carrier recovery [43], the Early-Late [42], [44],

the Mueller and Müller [39], and the Gardner Loop [45] for

symbol synchronization. The timing recovery is often imple-

mented as a first-order TRL.ATRL consists of a timing phase

detector (TPD), a loop filter, and a Numerically Controlled

Oscillator (NCO) for resampling.

In this paper we compare the RL based synchronizer to the

Mueller andMüller (M&M)method for twomain reasons: the

M&Mrecovery loop is a data-assisted timing synchronization

algorithm and it uses only one sample per symbol. TheM&M

synchronizer (the BPSK version is shown in Fig. 1) resamples

the signal y[k] and computes the synchronization error e[n] =

x[n]a[n− 1]− x[n− 1]a[n]. A decision device estimates the

expected values a[n] and a[n−1], providing the constellation

coordinates of the nearest symbol. The error signal drives a

loop filter which controls the NCO that resamples the input

waveform y[k].

B. REINFORCEMENT LEARNING

Among the ML paradigms described in the Introduction,

RL is the most appropriate method for symbol timing syn-

chronization, because a lot of the newTLC applications imply

dynamic scenarios (environments). RL is a ML methodology

124148 VOLUME 7, 2019

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

FIGURE 1. Mueller and Müller timing recovery loop (BPSK
implementation).

FIGURE 2. Principle of reinforcement learning.

used to train an object, called Agent, to perform a certain

task by interacting with the environment. As shown in Fig. 2,

the RL Agent adjusts its behavior by a trial-and-error process

through a rewarding mechanism called reinforcement that is a

measure of its task-solving overall capability [46]. The effects

of the actions are gathered and estimated by an entity called

Interpreter that computes the new state and rewards the Agent

accordingly. The Interpreter can be external or internal to the

Agent itself: in the latter case, the Agent and the Interpreter

are merged into a more complex Agent able to sense the

environment and capable of self-criticism. This is the type

of Agent we use in this paper.

The proposed RL-based synchronizer interacts with the

received signal generated by an evolving TLC environment

and is capable to decide the best timing compensation value.

This process takes place without the need for extensive train-

ing phases and large training datasets.

In standard RL algorithms, the environment is often mod-

eled as aMarkovianDecision Process (MDP) [46]. TheAgent

is characterized by the space S × A, where S is the state

vector and A is the set of the actions. The Agent evaluates

the states si ∈ S and decides to perform the action ai ∈ A.

The process by which the Agent senses the environment,

collecting pieces of information and knowledge, is called

exploration. At a certain time t , the Agent is in the state st
and takes the action at . The decision to perform the action

at takes place because the Agent iteratively learns and builds

an optimal action-selection policy π : S × A. Each π (s, a)

is a real number in the range [0, 1]. π is a probability map

showing the chances of the Agent to take one of the actions

in A given the current state st . Then, the Agent observes the

effects generated by the action at on the environment.

The information derived from the environment response is

called reward, a real number (positive or negative). Its value

depends on how the action at brings the system closer to the

task solution. The Agent aims to accumulate positive rewards

and to maximize its expected return by iterating actions over

time. This process is modeled by the State-Value Function

Vπ (s) which is related to the current policy map and it is

updated with the reward value at each iteration. Through

Vπ (s) the Agent learns the quality of the new state st+1
reached starting from st and executing at . The number of

iterations taken by the Agent to complete the given task is

called an episode. The agent reaches a terminal state sgoal and

the updated State-Value Function is stored for further use. The

subsequent episode starts with the updated State-Value Func-

tion available to the Agent. As Vπ (s) is updated, the Agent

manages its set of actions in order to solve the task by max-

imizing the cumulative reward in fewer iterations. This pro-

cess is called exploitation. The Agent explores and exploits

the environment using the knowledge collected in the form

of the π map.

In general, the environment is dynamic and the effect

of an action in a certain state can change over time. By

alternating exploration and exploitation, the RL Agent adapts

its State-Value Function Vπ (s) over time following the envi-

ronment changes. There are several RL algorithms that

approximate and estimate the State-Value function, both for

single and multi-Agent, and the most prominent example is

Q-learning by Watkins and Dayan [38].

1) WATKINS’ Q-LEARNING

Q-learning is an algorithm able to approximate the

State-Value function Vπ (s) of an Agent in order to find an

optimal action-selection policy π∗. As mentioned before,

the Agent overall goal is to maximize its total accumulated

future discounted reward derived from current and future

actions. The State-Value function is defined as Vπ (s) = E[R]

and R is the Discounted Cumulative Future Reward defined

as (1):

R =

∞
∑

t=0

γ trt (1)

where γ ∈ [0, 1] is the discount factor and rt is the reward

at time t . In [38] the authors demonstrate that to approximate

the State-Value Vπ∗ (s) function related to the optimal policy

π∗ it is sufficient to compute a map called Action-Value

Matrix Qπ∗ : S × A. The elements of Q represent the quality

of the related policy π (st , at). The Q values are updated at

every iteration (time t) using the Q-Learning update algo-

rithm in the form of the Bellman equation [47] and reported

below (2).

Q(st , at)← (1− α)Q(st , at)

+α

(

rt + γ max
a
Q(st+1, a)

)

(2)

VOLUME 7, 2019 124149

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

FIGURE 3. Objectives: minimization of the amplitude variation and
maximization of the eye-opening (BPSK waveform).

where α is the learning rate, γ is the discount factor and rt
is the reward at time t . Some state-of-the-art action-selection

policies widely used in Reinforcement Learning frameworks

[46] are:

• Random: the Agent selects an action ai ∈ A with a

random approach, ignoring the Q values;

• Greedy: the Agent selects the action with the highest

corresponding Q value;

• ǫ-Greedy: the chance of taking a random action is a value

ǫ ∈ [0, 1] and the probability of a greedy choice is 1−ǫ;

• Boltzmann: the Q values are used to weight the

action-selection probabilities according to the Boltz-

mann distribution based on the temperature parameter τ .

In the case of anAgent required to performmultiple actions

simultaneously, it is possible to apply the concept of Action

Branching [48] that extends the dimensionality of the action

space.

III. TIMING SYNCHRONIZER BASED ON Q-LEARNING

In this section, we present the design of a TRL based on

Q-Learning able to recover the timing of a raised-cosine-

shaped signal when QAM and PSK modulation schemes are

used. In our system, the input signal y[k] is downsampled by

a factor M obtaining the signal x[n] (as for the Mueller and

Müller gate). The Agent task is to compensate for the symbol

timing error by delaying or anticipating the resampling time.

In our experiments, the downsampling factor M is equal to

the number of samples per symbol. The definitions of the

Agent state is related to a measure on the resampled symbol

(detailed in Sect. III-A.2). The Agent action is defined as a

double control (Sect III-C): the first one is used to manage

the resampling timing and the second one to modify the input

signal amplitude.

With respect to Fig. 3, the Agent is required to fulfill two

main objectives:

1) To minimize the variation in amplitude of consecutive

resampled symbols x[n] with respect to an expected

constellation (dark blue arrows);

2) To maximize the eye-opening (orange arrow).

With respect to [40], the algorithm is extended to support

the QAM synchronization.

The proposed RL Agent architecture is illustrated in Fig. 4

and it consists of four main sub-modules:

FIGURE 4. Q-Learning timing synchronizer architecture.

1) State and Reward Evaluator Block: it is the Interpreter

in the RL framework;

2) Q-Learning Engine: it updates theQmatrix and imple-

ments the action-selection policy π ;

3) Action Decoder: it carries out the Agent decisions to

manage the signal sampling delay and its amplitude;

4) Numerically Controlled Oscillator: it provides the

resampling timing.

Additional details and accurate descriptions of the TRL

blocks are provided in the following subsections.

A. STATE AND REWARD EVALUATOR

The basic idea behind the RL based TRL is illustrated

in Fig.5. In this figure the input y[k] is a BPSK signal. The

variation range of the resampled signal absolute value |(x[n])|

is represented by the pink band (Fig. 5a) and green (Fig. 5b).

The Agent goal is the minimization of this variation and,

in addition to this, it minimizes the difference between the

amplitude of the resampled signal x[n] (red crosses) and

the expected symbol value x∗(blue line, the value is 1 in the

depicted example). We design an RL Interpreter, called State

and Reward Evaluator (SRE), that processes x[n] to fulfill

these objectives.

We design the Agent states si ∈ S and reward r depending

on the input signal amplitude and its variation over time. As

depicted in Fig. 6, the SRE module is built as two blocks

in cascade called Constellation Conditioning and State &

Reward Computing.

1) CONSTELLATION CONDITIONING

The main limitation of the approach proposed in [40] is

the inability to synchronize QAM signals. To address this

problemwe use a coordinate transformation approach, imple-

mented as shown in Fig.7.

The following equation represents the constellation condi-

tioning algorithm:

x̂ = |[G · xr − round(G · xr)]+ 1| (3)

where x̂[n] is the conditioned symbol, xr is the real part of

x[n], and the gain value G[n] is controlled by the Agent with

the action a2[n], detailed later. Using this approach, the trans-

formed signal x̂[n] tends to an optimal value x̂∗ that depends

on the value of G[n]. The effect of the wrap block is modeled

by [G · xr − round(G · xr)]. The constellation conditioning

process is depicted in Fig. 8. In this example, we consider

124150 VOLUME 7, 2019

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

FIGURE 5. Resampling of a BPSK waveform (M = 8): (a) before
synchronization, (b) after synchronization.

FIGURE 6. State and reward evaluator (SRE) block.

FIGURE 7. Constellation conditioning block.

a 16QAM constellation where the coordinates of x[n] are

projected on the real axis, aligned using the gain block,

collapsed and merged on the expected symbol coordinate x̂∗.

2) STATE & REWARD COMPUTING

In Fig. 9 the State and Reward Computing block is shown.

The state function (4) and the reward function (5) are:

s[n] = N/2 · (∇2x̂[n]+ 1)+ x̂[n− 2] (4)

r[n] =
[

x̂[n− 2]− |∇2x̂[n]|
]q

(5)

where N is the number of states and qmust be an odd integer

to keep the sign. ∇2x̂[n] is the second-order finite difference

of x̂[n], as shown in (6):

∇2x̂[n] = x̂[n]− 2x̂[n− 1]+ x̂[n− 2] (6)

To compute the state s[n], the value of ∇2x̂[n] is scaled by

N/2 to be compatible with the coordinates of the Agent

Q-matrix. If the Agent retrieves the correct symbol phase,

the differential ∇2x̂[n] tends to 0 and x̂[n] to x̂∗. For this

reason, according to (4), the target state s∗i is placed in the

neighborhood of si = N/2 + x̂∗ and the reward, in (5),

is maximized.

B. Q-LEARNING ENGINE

The purpose of this module is to update the Action-Value ele-

ments of Q using equation (2). As shown in Fig. 4, the inputs

are the Agent state s[n] and the reward r[n]. The output is the

action a[n], determined using one of the policies described

in Sect. II-B.1. In particular, the action is branched in two

components:

• Branch a1 =
{

a10, a
1
1, a

1
2

}

represents the action vector to

delay, stop or anticipate the resampler;

• Branch a2 =
{

a20, a
2
1, a

2
2

}

is an action vector used to

increase, hold or decrease G[n].

TheAgent action spaceA = a1×a2 is bi-dimensional and it is

processed and actuated by the Action Decoder block, detailed

in the next Section. The mapping of the state-action space

S×A into Q is a tensor with one dimension for the states and

two for the actions, as illustrated in Fig. 10.

There are 3×3 = 9 available actions for each state (si). The

hyperparameter N ∈ N is the cardinality of the state space S

(hence si ∈ N). For this reason, the state values s[n] calculated

in (4) are rounded to address the Q-tensor.

C. ACTION DECODER

The Action Decoder implements the decisions taken by the

Agent. The action a =
{

a1, a2
}

is the input of this block. The

outputs are used by the Agent to control the NCO timing and

G[n] respectively. This block computes the increments to be

assigned to the NCO timing and the Gain G[n].

The action vector a1 control the resampler using three

different actions:

• a10 = 0: the Agent decides that the current timing is

correct;

• a11 = +1: the Agent anticipates the resampling;

• a12 = −1: the Agent delays the resampling.

The purpose of the action a2 is to modify the amplitude

of the input signal, as shown in Fig. 8 and discussed in

Sect III-A. The elements of a2 are the increments used by the

Action Decoder to update the input gain G[n]:

• a20 = 0 : the current x̂∗ value is appropriate and theAgent

decides to maintain the G[n] constant;

• a21 = +0.02 : G[n] is increased;

• a22 = −0.02 : G[n] is decreased.

The initial control values for the NCO timing and G[n] are 0

and 1 respectively.

IV. EXPERIMENTS AND RESULTS

In this section, we present three experiments. In the first one

we find suitable Q-Learning hyperparameters, in the second

VOLUME 7, 2019 124151

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

FIGURE 8. Example of constellation conditioning on a 16QAM modulation scheme.

FIGURE 9. State and reward computing block.

FIGURE 10. Mapping of the state-action space into Q values.

FIGURE 11. Experimental setup used to test and characterize the
proposed Q-Learning TRL.

onewe test the adaptivity properties of the Q-LearningAgent,

and, in the last one, we compare our algorithm to the Mueller

and Müller Loop when signals with different modulation

formats in a generic telecommunication system are used. The

experimental setup is common among the experiments and it

is shown in Fig. 11.

The TX-Module is a base-band transmitter in which the

modulation scheme and Root-Raised Cosine (RRC) shap-

ing filter are parametric. The AWGN Channel Emulator is

configurable in delay and noise power (measured in terms

of Eb/N0). The RX-Module includes an RRC receive filter

and the Q-Learning Synchronizer. In these experiments,

we assume a recovered carrier. The performance of the

synchronizer is evaluated in terms of Modulation Error

Ratio (MER), defined as in [49].

In the first experiment, we asses the optimal Q-Learning

hyperparameters a posteriori. At the same time, we aim to

reduce the Agent complexity, i.e. the dimensionality of the

hyperparameters space. In the second experiment, we change

the environment properties i.e. the modulation format to

evaluate the Q-Learning Agent adaptation capability. In the

last experiment, we compare the MER of the Q-Learning

synchronizer with that obtained by the Mueller and Müller

method for PSK and QAM modulation schemes. The exper-

iments are characterized by the following Q-Learning hyper-

parameters (the values that were validated a posteriori) and

TLC parameters:

• TheN×3×3Q-Tensor is initialized with all zero values;

• The Agent number of states is N = 64;

• The values of α and γ in (2) are 0.1 and 0.01, respec-

tively;

• The Agent action-selection policy is ǫ-greedy with ǫ =

10−5;

• The samples per symbol of the transmitted waveform is

equal toM = 32.

The MER measurements, if not explicitly otherwise indi-

cated, are obtained as the average of 200 simulations where

we select the last 200 symbols in steady-state condition. The

transmitted PSK symbols have a constant amplitude equal

to 1. In QAM mode, the symbols have a fixed minimum

distance of 2.

A. HYPERPARAMETERS ANALYSIS

Considering equation (2) and the Agent features, the hyper-

parameters are:

• Action-selection policy π : it represents the action choice

rule according to the Q-values. In our workwe employed

ǫ-Greedy with ǫ = 10−5 to facilitate the state-space

exploration. Moreover, it is important to avoid the local

maxima of the reward function.

• Learning rate α: it defines the convergence speed of

the Q matrix towards the ideal State-Value function.

In the case of a dynamic environment, it also defines the

adaptation speed of the Agent. For α = 0.1, we found

124152 VOLUME 7, 2019

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

FIGURE 12. MER variation as a function of α and γ for different Eb/N0
and different modulation formats.

a good trade-off between algorithm convergence speed

and local maxima avoidance.

• Discount factor γ : it weights the outcome of the present

actions with respect to the future ones. A suitable γ

value is 0.01.

• Number of states N : it defines the state-space quantiza-

tion, hence the Q-tensor dimension (Fig. 10).

In the following analysis, different simulations have been

implemented for PSK and QAM formats, and in the next

Sections the QPSK and 16QAM are illustrated.

1) MER VARIATION AS A FUNCTION OF α AND γ

To study the range of variation of the Q-Learning TRL hyper-

parameters with respect to the modulation format and Eb/N0

we set an initial constant timing delay d = M/4, where M

is the number of samples per symbol. The graphs in Fig. 12

show that the variations of α (Fig. 12a and Fig. 12b) and γ

(Fig. 12c and Fig. 12d) do not affect the MER performance

significantly. Consequently, the default set α = 0.1 and

γ = 0.01 is a proper design choice for different modulation

formats.

2) NUMBER OF STATES N

The number of states determines the environment observation

precision of the Agent. To analyze the system MER perfor-

mance, we simulate our system with N in the range 8-1024

and Eb/N0 = 5 − 30 dB for PSK and QAM modulation

schemes. The MER results are evaluated after 1000 explo-

ration symbols.

Figure 13a shows that the MER is affected by N only in

the case of high SNR. In this case, the MER grows when

N increases (10 dB of spread at Eb/N0 = 30 dB). In the

FIGURE 13. Variation of N . MER measured for different channel noise
levels.

16QAM case in Fig. 13b, we observe the same dependence

with respect to N but with a smaller spread (2.5 dB at

Eb/N0 = 25− 30 dB).

This experiment allows a proper selection of the number of

states N . In the QPSK case, the MER curves are monotoni-

cally growing forN ≥ 64, consequently there is no advantage

to use an Agent with more than 64 states. In the 16QAM tests,

the curves show a similar trend. The best trade-off in terms of

MER and number of states isN = 64. The resulting Q-Tensor

consists of 64× 3× 3 = 576 elements.

B. Q-LEARNING TRL ADAPTIVITY EXPERIMENT

As mentioned in Sect.I and Sect. II-B, an RL Agent is able to

adapt itself to the evolution of the environment. This property

ensures high system availability on the field and no needs

for training sessions. With the following experiment we show

the adaptivity properties that the RL approach provides and

how the proposed TRL is able to operate independently of the

modulation scheme.

In Fig. 14, the initial timing delay is set to d = 7

(in samples, horizontal dashed gray line) and the modulation

format changes from QPSK to 16QAM (vertical red line).

This change in the modulation scheme models an environ-

ment evolution and it is useful to observe the Agent behavior

in terms of adaptivity.

The Agent manages its actions to carry out the best

TRL controls, i.e. the timing compensation (blue curve) and

the value of G (orange curve). The Agent experiences two

exploration phases (green background) and two exploitation

phases (white background). After the first exploration phase

VOLUME 7, 2019 124153

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

FIGURE 14. Q-Learning adaptivity: Timing compensation and gain G[n].

(∼ 500 iterations), the Agent decides that the best timing

compensation and gain values are 7 and ∼1, in a QPSK

environment. The values of the Q-matrix converge to the

optimal ones and the Agent begins to exploit its knowledge

by maintaining the optimal TRL controls.

At a certain point, the environment changes from QPSK

to 16QAM. Because of that, the Agent is forced to adapt

itself by entering the second exploration phase to update its

Q-matrix. After about 2000 Q-learning iterations, the Agent

enters the last exploitation phase and it decides to set the

timing compensation correctly to 7 and the gain to∼ 0.7. The

modification ofG[n] from∼1 to∼0.7 is related to the change

of the real part of the coordinate of the received symbol from

the QPSK to the QAM format.

C. MODULATION SCHEME EXPERIMENTS AND

COMPARISON WITH CONVENTIONAL METHODS

In this experiment we test the Q-Leaning synchronizer

performance when different modulation schemes are used.

Moreover, we compare its performance to conventional syn-

chronization methods. The Q-Learning hyperparameters are

N = 64, α = 0.1, γ = 0.01, values suitable for BPSK,

QPSK, 16QAM, 64QAM and 256QAM. The channel delay

is constant and equal to d = M/4, whereM is the number of

samples per symbol. The Q-Learning synchronizer is com-

pared to the following methods:

• A Reference ideal resampler: a resampler with the exact

timing compensation for the channel delay d ;

• A Mueller and Müller timing recovery loop: the state-

of-the-art TRL discussed in Sec. II-A.

The graphs in Fig. 15 are obtained with the same set of the

Q-Learning hyperparameters. The Mueller and Müller TRL

filter parameters depend from themodulationmethod (one set

for PSKmodulations and one for QAM) and they are reported

in Table 1.

Figure 15 and Table 2 show the experimental results. The

number of simulations is 200, the number of exploration

TABLE 1. Loop filter parameters of mueller and Müller TRLs.

FIGURE 15. MER for different modulation schemes and comparison with
the Reference ideal resampler and the Mueller and Müller approach.

symbols is 10000 and the MER of a single simulation is

computed over 200 symbols. Each value in Table 2 is the

average MER plus or minus its standard deviation.

Figures 15a and 15b show the MER measurements for

BPSK and QPSK respectively. The MER values for BPSK

and QPSK are similar. The only exception is in the QPSK

configuration as the Q-Learning synchronizer loses up to

0.7dB at Eb/N0 = 25 dB with respect to the reference model.

The QAM related graphs (Fig. 15c, Fig. 15d and Fig. 15e)

show an interesting performance. In the case of high noise

(Eb/N0 = 5 − 10 dB), the three systems perform similarly.

In the mid-range (10− 20 dB), the Q-Learning performance

is similar to the Mueller and Müller loop in the 16QAM and

256QAM. In the same range, for 64QAM,wemeasuredMER

values lower (1.5 dB on average) than theMueller andMüller

loop. In the 20 − 25 dB range, the Q-Learning synchronizer

is outperformed by about 2 dB due to a poorer efficacy of

the exploration phase of the Agent. This leads to the conclu-

sion that the presence of white noise in the RL environment

forces the Agent to explore more states, thus converging to its

optimal Q-matrix much more efficiently. Taking into account

all MER measurements, the average difference between our

method and the conventional TRL is lower than 1 dB.

124154 VOLUME 7, 2019

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

TABLE 2. Comparison of the Q-Learning synchronizer (QLearn) with the reference ideal sampler (Ref) and the mueller and Müller timing
recovery loop (M&M).

V. CONCLUSION

In this paper, we presented an innovative method based on

RL to implement a QAM/PSK symbol synchronizer. This

approach employs an RL Agent able to synthesize a TRL

behavior compatible with a number of modulation schemes.

The RL algorithm used to approximate the State-Value

function is Q-Learning. The state and reward are computed

from the sampled symbol amplitude x̂[n] and its differential

∇2x̂[n]. The Agent action is branched in two sub-action: the

first one to manage the timing and the second one to adjust

the input signal amplitude. The proposed Q-Learning TRL

includes four modules: a State and Reward Evaluator (the

RL Interpreter), a Q-Learning Engine, an Action decoder,

and an NCO. The compatibility with respect to the different

modulation schemes is obtained through the Constellation

Conditioning block. This solution extends the work presented

in [40] to QAM formats.

The proposedmethodwas validated through the simulation

of a base-band transmitter, receiver, and an AWGN channel

emulator, with Eb/N0 in the range 5-30 dB through three

experiments. In the first one, we estimated a set of hyperpa-

rameters for BPSK, QPSK, 16QAM, 64QAM and 256QAM.

The performance of the RL synchronizer is evaluated in terms

of Modulation Error Ratio (MER).

In the second experiment, we proved the autonomous

adaptation capability of our approach, suitable for the new

intelligent communication systems. In the last experiment,

we compared the RL approach to the Mueller and Müller

TRL: for BPSK and QPSK modulations, the two synchro-

nizers achieve similar MER values, close to a Reference

resampler. The proposed TRL is slightly outperformed for

the 64QAM and 256QAM in low-noise scenarios (Eb/N0 ≥

15 dB). The RL synchronizer performance is the same

as the Mueller and Müller TRL for 16QAM in the full

noise range.

These results are a good trade-off between flexibility

and performance. Moreover, unlike conventional methods,

the Q-Learning based TRL is able to adapt itself to evolving

scenarios, avoiding parameter tuning. We plan to expand our

research to support additional modulation formats and to

implement suitable hardware architectures.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,

USA: Springer, 2006.

[2] M. Chen, Y. Hao, K. Hwang, L. Wang, and L. Wang, ‘‘Disease prediction

by machine learning over big data from healthcare communities,’’ IEEE

Access, vol. 5, pp. 8869–8879, 2017.

[3] D. Cabrera, C. Cubillos, A. Cubillos, E. Urra, and R. Mellado, ‘‘Affective

algorithm for controlling emotional fluctuation of artificial investors in

stock markets,’’ IEEE Access, vol. 6, pp. 7610–7624, 2018.

[4] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz,

‘‘Machine learning with big data: Challenges and approaches,’’ IEEE

Access, vol. 5, pp. 7776–7797, 2017.

[5] G. Wang, ‘‘A perspective on deep imaging,’’ IEEE Access, vol. 4,

pp. 8914–8924, 2016.

[6] K. Muhammad, J. Ahmad, I. Mehmood, S. Rho, and S. W. Baik, ‘‘Convo-

lutional neural networks based fire detection in surveillance videos,’’ IEEE

Access, vol. 6, pp. 18174–18183, 2018.

[7] T. Petrovic, K. Echigo, andH.Morikawa, ‘‘Detecting presence from aWiFi

router’s electric power consumption by machine learning,’’ IEEE Access,

vol. 6, pp. 9679–9689, 2018.

[8] A. Sehgal and N. Kehtarnavaz, ‘‘A convolutional neural network smart-

phone app for real-time voice activity detection,’’ IEEE Access, vol. 6,

pp. 9017–9026, 2018.

[9] M. Dillinger, K. Madani, and N. Alonistioti, Software Defined Radio:

Architectures, Systems and Functions. Hoboken, NJ, USA: Wiley, 2005.

[10] J.Mitola, ‘‘Cognitive Radio—An integrated agent architecture for software

defined radio,’’ Ph.D. dissertation, Dept. Teleinform., KTH Roy. Inst.

Technol., Stockholm, Sweden, 2000.

[11] A. He, K. K. Bae, T. R. Newman, J. Gaeddert, K. Kim, R. Menon,

L. Morales-Tirado, J. J. Neel, Y. Zhao, J. H. Reed, and W. H. Tranter,

‘‘A survey of artificial intelligence for cognitive radios,’’ IEEE Trans. Veh.

Technol., vol. 59, no. 4, pp. 1578–1592, May 2010.

[12] M. Bari, H. Taher, S. S. Sherazi, and M. Doroslovacki, ‘‘Supervised

machine learning for signals having RRC shaped pulses,’’ in Proc. 50th

Asilomar Conf. Signals, Syst. Comput., Nov. 2016, pp. 652–656.

[13] M. Fan and L. Wu, ‘‘Demodulator based on deep belief networks in

communication system,’’ in Proc. Int. Conf. Commun., Control, Comput.

Electron. Eng. (ICCCCEE), Jan. 2017, pp. 1–5.

[14] Q. Chen, Y. Wang, and C. W. Bostian, ‘‘Universal classifier synchronizer

demodulator,’’ in Proc. IEEE Int. Perform., Comput. Commun. Conf.,

Dec. 2008, pp. 366–371.

[15] M. Zhang, Z. Liu, L. Li, and H. Wang, ‘‘Enhanced efficiency BPSK

demodulator based on one-dimensional convolutional neural network,’’

IEEE Access, vol. 6, pp. 26939–26948, 2018.

[16] T. A. Chadov, S. D. Erokhin, and A. I. Tikhonyuk, ‘‘Machine learn-

ing approach on synchronization for FEC enabled channels,’’ in

Proc. Syst. Signal Synchronization, Generating Process. Telecommun.

(SYNCHROINFO), Jul. 2018, pp. 1–4.

VOLUME 7, 2019 124155

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

[17] J. J. G. Torres, A. Chiuchiarelli, V. A. Thomas, S. E. Ralph, A. M. C. Soto,

and N. G. González, ‘‘Adaptive nonsymmetrical demodulation based on

machine learning to mitigate time-varying impairments,’’ in Proc. IEEE

Avionics Vehicle Fiber-Opt. Photon. Conf. (AVFOP), Oct./Nov. 2016,

pp. 289–290.
[18] Y. Liu, Y. Shen, L. Li, and H. Wang, ‘‘FPGA implementation of a BPSK

1D-CNN demodulator,’’ Appl. Sci., vol. 8, no. 3, p. 441, 2018.
[19] G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, D. Giardino, M. Matta,

M. Re, F. Silvestri, and S. Spanò, ‘‘Efficient ensemble machine learning

implementation on FPGAusing partial reconfiguration,’’ inProc. Int. Conf.

Appl. Electron. Pervading Ind., Environ. Soc., in LectureNotes in Electrical

Engineering, vol. 550. Berlin, Germany: Springer, 2018, pp. 253–259.
[20] D. Giardino, M. Matta, M. Re, F. Silvestri, and S. Spanò, ‘‘Ip generator

tool for efficient hardware acceleration of self-organizing maps,’’ in Proc.

Int. Conf. Appl. Electron. Pervading Ind., Environ. Soc., in Lecture Notes

in Electrical Engineering, vol. 550. Berlin, Germany: Springer, 2018,

pp. 493–499.
[21] L. M. D. Da Silva, M. F. Torquato, and M. A. C. Fernandes, ‘‘Paral-

lel implementation of reinforcement learning Q-learning technique for

FPGA,’’ IEEE Access, vol. 7, pp. 2782–2798, 2018.
[22] R. Li, Z. Zhao, Q. Sun, C.-L. I, C. Yang, X. Chen, M. Zhao, and H. Zhang,

‘‘Deep reinforcement learning for resource management in network slic-

ing,’’ IEEE Access, vol. 6, pp. 74429–74441, 2018.
[23] C. Savaglio, P. Pace, G. Aloi, A. Liotta, and G. Fortino, ‘‘Lightweight

reinforcement learning for energy efficient communications in wireless

sensor networks,’’ IEEE Access, vol. 7, pp. 29355–29364, 2019.
[24] R. Ali, N. Shahin, Y. B. Zikria, B.-S. Kim, and S. W. Kim, ‘‘Deep

reinforcement learning paradigm for performance optimization of channel

observation–basedMACprotocols in denseWLANs,’’ IEEEAccess, vol. 7,

pp. 3500–3511, 2018.
[25] H. Kim, H. Nam, W. Jung, and J. Lee, ‘‘Performance analysis of CNN

frameworks for GPUs,’’ in Proc. IEEE Int. Symp. Perform. Anal. Syst.

Softw. (ISPASS), Apr. 2017, pp. 55–64.
[26] A. Ray, Compassionate Artificial Intelligence: Frameworks and Algo-

rithms. CA, USA: Compassionate AI Lab, 2018.
[27] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine

Learning. Cambridge, MA, USA: MIT Press, 2018, pp. 7–8.
[28] S. Levine, C. Finn, T. Darrell, and P. Abbeel, ‘‘End-to-end training of deep

visuomotor policies,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1334–1373,

2015.
[29] A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar,

‘‘A deterministic improved Q-learning for path planning of a mobile

robot,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 43, no. 5,

pp. 1141–1153, Sep. 2013.
[30] J.-L. Lin, K.-S. Hwang, W.-C. Jiang, and Y.-J. Chen, ‘‘Gait balance and

acceleration of a biped robot based on Q-learning,’’ IEEE Access, vol. 4,

pp. 2439–2449, 2016.
[31] S. Wu, ‘‘Illegal radio station localization with UAV-based Q-learning,’’

China Commun., vol. 15, no. 12, pp. 122–131, Dec. 2018.
[32] J. Zhu, Y. Song, D. Jiang, and H. Song, ‘‘A new deep-Q-learning-based

transmission scheduling mechanism for the cognitive Internet of Things,’’

IEEE Internet Things J., vol. 5, no. 4, pp. 2375–2385, Aug. 2018.
[33] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, ‘‘Deep direct reinforcement

learning for financial signal representation and trading,’’ IEEE Trans.

Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.
[34] C. Wei, Z. Zhang, W. Qiao, and L. Qu, ‘‘Reinforcement-learning-based

intelligent maximum power point tracking control for wind energy conver-

sion systems,’’ IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6360–6370,

Oct. 2015.
[35] I. Navarro and F.Matía, ‘‘An introduction to swarm robotics,’’ ISRNRobot.,

vol. 2013, Jun. 2012, Art. no. 608164.
[36] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, ‘‘Swarm robotics:

A review from the swarm engineering perspective,’’ Swarm Intell., vol. 7,

no. 1, pp. 1–41, Mar. 2013.
[37] M. Matta, G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, D. Giardino,

F. Silvestri, and S. Spanò, ‘‘Q-RTS: A real-time swarm intelligence based

on multi-agent Q-learning,’’ Electron. Lett., vol. 15, no. 10, pp. 589–591,

May 2019.
[38] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,

nos. 3–4, pp. 279–292, 1992.
[39] K. Mueller and M. Muller, ‘‘Timing recovery in digital synchronous data

receivers,’’ IEEE Trans. Commun., vol. 24, no. 5, pp. 516–531, May 1976.
[40] G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, D. Giardino, M. Matta,

F. Silvestri, M. Re, and S. Spanò, ‘‘A Q-learning based PSK symbol syn-

chronizer,’’ in Proc. Int. Symp. Signals, Circuits Syst. (ISSCS), Jul. 2019,

pp. 1–4.

[41] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication,

3rd ed. Springer, 2012, pp. 137–139 and 727–760.
[42] F. Ling and J. Proakis, Synchronization in Digital Communication Systems.

Cambridge, U.K.: Cambridge Univ. Press, 2017.
[43] J. P. Costas, ‘‘Synchronous communications,’’ Proc. IRE, vol. 44, no. 12,

pp. 1713–1718, Dec. 1956.
[44] B. Sklar, Digital Communications: Fundamentals and Applications.

Upper Saddle River, NJ, USA: Prentice-Hall, 1988.
[45] F. Gardner, ‘‘A BPSK/QPSK timing-error detector for sampled receivers,’’

IEEE Trans. Commun., vol. 34, no. 5, pp. 423–429, May 1986.
[46] R. S. Sutton and A. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 2018.
[47] R. Bellman,Dynamic Programming, 1st ed. Princeton, NJ, USA: Princeton

Univ. Press, 1957.
[48] A. Tavakoli, F. Pardo, and P. Kormushev, ‘‘Action branching architectures

for deep reinforcement learning,’’ in Proc. 32nd AAAI Conf. Artif. Intell.,

Apr. 2018, pp. 4131–4138.
[49] Digital Video Broadcasting (DVB); Measurement Guidelines for DVB

Systems, document ETR 290, ETSI, 1997, vol. 14, pp. 43–44.

MARCO MATTA was born in Cagliari, Italy,

in 1989. He received the B.S. and the M.S. degrees

in electronic engineering from the University of

Rome Tor Vergata, Italy, in 2014 and 2017, respec-

tively, where he is currently pursuing the Ph.D.

degree in electronic engineering. Since 2017,

he has been a member of the DSPVLSI Research

Group of the University of Rome Tor Vergata. His

current research interest includes the development

of hardware platforms and low-power accelerators

aimed machine learning algorithms and telecommunications. In particular,

he is currently focused on the implementation of reinforcement learning

models on FPGA.

GIAN CARLO CARDARILLI (S’79–M’81) was

born in Rome, Italy. He received the laurea degree

(summa cum laude) from the University of Rome

La Sapienza, in 1981. He has been with the Uni-

versity of Rome Tor Vergata, since 1984. He is

currently a Full Professor of digital electronics and

electronics for communication systems with the

University of Rome Tor Vergata. From 1992 to

1994, he was with the University of L’Aquila.

From 1987 to 1988, he was with the Circuits and

Systems Team, EPFL, Lausanne, Switzerland. His current research interest

includes VLSI architectures for signal processing and IC design. He pub-

lished over than 160 articles in international journals and conferences in this

field. He has also regular cooperation with companies as: Alcatel Alenia

Space, Italy; STM, Agrate Brianza, Italy; Micron, Italy; and Selex S.I.,

Italy. His scientific interest concerns the design of special architectures for

signal processing. He is involved in the field of computer arithmetic and its

application to the design of fast signal digital processor.

124156 VOLUME 7, 2019

M. Matta et al.: RL-Based QAM/PSK Symbol Synchronizer

LUCA DI NUNZIO received the master’s degree

(summa cum laude) in electronics engineering and

the Ph.D. degree in systems and technologies for

the space from the University of Rome Tor Ver-

gata, in 2006 and 2010, respectively. He has a

working history with several companies in the

fields of electronics and communications. He is

currently an Adjunct Professor with the Digital

Electronics Laboratory, University of Rome Tor

Vergata and an Adjunct Professor of digital elec-

tronics with the University GuglielmoMarconi. His current research interests

include reconfigurable computing, communication circuits, digital signal

processing, and machine learning.

ROCCO FAZZOLARI received the master’ degree

in electronic engineering and the Ph.D. degree in

space systems and technologies from the Univer-

sity of Rome Tor Vergata, Italy, in 2009 and 2013,

respectively. He is currently a Postdoctoral Fellow

and an Assistant Professor with the Department of

Electronic Engineering, University of Rome Tor

Vergata. He involves in hardware implementation

of high-speed systems for digital signals process-

ing, machine learning, array of wireless sensor

networks, and systems for data analysis of acoustic emission (AE) sensors

(based on ultrasonic waves).

DANIELE GIARDINO received the B.S. and M.S.

degrees in electronic engineering from the Uni-

versity of Rome Tor Vergata, Italy, in 2015 and

2017, respectively, where he is currently pursuing

the Ph.D. degree in electronic engineering. He is

a member of the DSPVLSI Research Group, Uni-

versity of Rome Tor Vergata. He involves in digital

development for wideband signals architectures,

telecommunications, digital signal processing, and

machine learning. In specific, he is focused on the

digital implementation of MIMO systems for wideband signals.

ALBERTO NANNARELLI (S’94–M’99–SM’13)

graduated in electrical engineering from the Uni-

versity of Roma La Sapienza, Roma, Italy, in 1988,

and received the M.S. and the Ph.D. degrees

in electrical and computer engineering from the

University of California at Irvine, CA, USA,

in 1995 and 1999, respectively. He was a Design

Engineer with SGS-Thomson Microelectronics

and Ericsson Telecom and a summer Intern with

Rockwell Semiconductor Systems. From 1999 to

2003, he was with the Department of Electrical Engineering, University of

Roma Tor Vergata, Italy, as a Postdoctoral Researcher. He is currently an

Associate Professor with the Danmarks Tekniske Universitet, Lyngby, Den-

mark. His current research interests include computer arithmetic, computer

architecture, and VLSI design. Dr. Nannarelli is a Senior Member of the

IEEE Computer Society.

MARCO RE (M’92) received the Ph.D. degree in

microelectronics from the University of Rome Tor

Vergata, where he is currently an Associate Pro-

fessor teaching digital electronics and hardware

architectures for DSP. He received two NATO

fellowships from the University of California at

Berkeley while working as a Visiting Scientist

with Cadence Berkeley Laboratories, and the Otto

Monsted Fellowship when working as a Visiting

Professor with the Technical University of Den-

mark. He collaborates in many research projects with different companies

in the field of DSP architectures and algorithms. He is the author of about

200 articles on international journals and international conferences. His

current research interests include low power DSP algorithms architectures,

hardware-software codesign, fuzzy logic and neural hardware architectures,

low power digital implementations based on non-traditional number systems,

and computer arithmetic and cad tools for DSP. He is a member of the Audio

Engineering Society (AES). He is a Director of a master in audio engineering

with the Department of Electronic Engineering, University of Rome Tor

Vergata.

SERGIO SPANÒ received the B.S. and M.S.

degrees in electronic engineering from the Uni-

versity of Tor Vergata, Rome, Italy, in 2015 and

2018, respectively, where he is currently pursuing

the Ph.D. degree in electronic engineering. He is a

member of the DSPVLSI ResearchGroup, Univer-

sity of Tor Vergata. His current research interests

include digital signal processing, machine learn-

ing, telecommunications, and ASIC/FPGA hard-

ware design. He had industrial experiences in the

space and telecommunications field. His current research topics relate to

machine learning hardware implementations for embedded and low-power

systems.

VOLUME 7, 2019 124157

