
Received February 17, 2019, accepted March 9, 2019, date of publication March 18, 2019, date of current version April 8, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2905589

A Reinforcement Learning Based Smart Cache
Strategy for Cache-Aided Ultra-Dense Network

WEI LI , JUN WANG , (Member, IEEE), GUOYONG ZHANG, LI LI, ZE DANG,
AND SHAOQIAN LI, (Fellow, IEEE)
National Key Laboratory of Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China

Corresponding author: Jun Wang (junwang@uestc.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFC0807101, in part

by the National Defense Pre-Research Foundation of China under Grant 6141B062901, in part by the National Research Program of China

under Grant 9020302, in part by the Foundation of National Key Laboratory of Science and Technology on Communications, in part by the

Innovation Fund of NCL (IFN) under Grant IFN2018214, and in part by the National Natural Science Foundation of China (NSFC) under

Grant 61471099.

ABSTRACT The integration of caching and ultra-dense network (UDN) can not only improve the efficiency

of content retrieval by reducing duplicate content transmissions but also improve the network throughput

and system energy efficiency (EE) of the UDN. In this paper, we focus on energy consumption aspects of

cache-aided UDN (CUDN) and develop a novel caching strategy to improve the system EE. Different from

the existing researches, we consider a more realistic scenario where the popularity of the cache content

is dynamic and unknown. The proposed caching strategy is a deep reinforcement learning (DRL)-based

approach that uses a deep Q-network to approximate the Q action-value function. We optimize the structure

and corresponding parameters of the deep Q-network according to the latest findings in the field of DRL and

deep learning (DL) to improve the performance of this caching strategy. The simulation results show that

the performance in terms of EE of the CUDN can be significantly improved by using our proposed caching

strategy.

INDEX TERMS Ultra-dense network, cache, energy efficiency, deep reinforcement learning.

I. INTRODUCTION

The ultra-dense network (UDN) [1] is considered as one

of the key techniques of the fifth generation (5G) mobile

communication network to achieve high system throughput

and energy efficiency (EE). However, for the ever-increasing

applications which need not only high data rate but also high

caching and computing capabilities, the existing UDN cannot

work well [2]. A promising approach to address this issue is

to integrate UDN and cache into one system [3]. By incor-

porating cache functionality into the UDN, the resulting sys-

tem, i.e., the cache-aided UDN (CUDN), can provide native

support for highly scalable and efficient content retrieval,

and meanwhile, the duplicate content transmissions within

the network can be significantly reduced. As a conse-

quence, the performance of the CUDN, such as mobility,

flexibility, throughput and system EE, can be considerably

improved.

The associate editor coordinating the review of this manuscript and
approving it for publication was Richard Yu.

For the CUDN, in order to improve the accessibility of

data content to users, the most popular content should be

stored in the local caches to maximize the content hit prob-

ability. Hence, the content placement strategy, i.e., which

files are chosen to store in the local caches, is very crucial.

To address the issue of content placement strategy, some

schemes have been proposed based on the assumption that the

popularity of the content is fixed and perfectly known [4]–[7].

In such circumstances, the cache content placement strategy

can be formulated as a deterministic optimization problem,

and the optimal content placement strategy can be obtained

based on some advanced optimization methods. However,

as mentioned in [9] and [10], such assumptions cannot be

reasonably justified. Recently, a more practical case of cache

content placement is investigated without prior information

of the content popularity. Bharath et al. [9] assume that the

popularity of the content is fixed and unknown. They esti-

mate the popularity of the content according to the instanta-

neous demands of users within a specified time interval and

obtain an estimation of the cost function. Then, a transfer

39390
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-1353-9809
https://orcid.org/0000-0003-4422-1705

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

learning-basedmethod is proposed to improve the estimation.

In [10], by using a multi-armed bandit algorithm, the small

base station (SBS) learns the fixed popularity profile online

by refreshing its cache content and observing the instanta-

neous demands for the cached files over time. In this way,

the cache content placement strategy for the SBS is optimized

over time, and the users can be served by the SBS with

maximal data rate.

However, for all the aforementioned approaches, neither

the potential diversity nor the time-sensitive characteristics

of different content popularity has been considered. In fact,

Tatar et al. [11] show that the popularity of cache content

is highly non-stationary over time. Therefore, the above

mentioned estimation methods of the cache popularity will

inevitability introduce deviation, and the corresponding cache

placement strategy cannot achieve optimal performance in

this case.

To cope with the dynamic of the content popularity, deep

reinforcement learning (DRL) based approaches [12]–[14]

have been proposed recently. He et al. [12] consider to obtain

the optimal interference alignment (IA) user selection pol-

icy in cache-enabled opportunistic IA wireless networks.

Somuyiwa et al. [13] consider the issue that a mobile user

accesses contents in a dynamic environment, and models

the proactive caching problem as a Markov decision pro-

cess aiming at minimizing the long term average energy

cost. Somuyiwa et al. [13] use reinforcement learning (RL)

algorithms to find near optimal cache placement parameters.

In [14], the local and global Markov process models of user

request and RL framework are proposed for cache-aided

heterogeneous networks. Sadeghi et al. [14] propose a novel

RL based caching by utilizing the Q-learning algorithm to

implement the optimal cache placement policy.

This paper focuses on the energy efficiency (EE) aspects of

the CUDN and considers a realistic scenario, where the popu-

larity of the contents is dynamic and unknown. We propose a

novel online learning algorithm for content placement based

on DRL by using a deep Q neural network to approximate

the Q action-value function under our considered CUDN

scenarios. The main differences between our work and the

existing DRL-based approaches [12]–[14] are as follows.

• First, we consider a new scenario, i.e., CUDN, and put

our effort on maximizing the EE.

• Second, we optimize the parameters and structure of the

adopted deep Q neural network according to the latest

findings of Google DeepMind [15]–[18], such as pri-

oritized experience replay, dueling and recurrent neural

network (RNN), and obtain a novel and near-optimal

cache strategy for our considered CUDN scenarios.

• Third, we use Google TensorFlow [20] to implement our

proposed cache strategy.

Simulation results show that the performance in terms of EE

of the CUDN can be significantly improved by using our

proposed caching strategy.

The rest of this paper is organized as follows. The sys-

tem model and the problem formulation are described in

Section II. In Section III, the DRL based content cache algo-

rithm is proposed for our considered CUDN scenario, and the

parameters and structure of the adopted neural network are

also optimized. Simulation results are provided in Section IV,

followed by concluding remarks in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. NETWORK MODEL

The general architecture of CUDN is shown in Fig.1.We con-

sider the downlink of a CUDN, where the small access

points (SAP) with caching capability are overlaid with macro

base stations (MBS). We assume that universal frequency

reuse (UFR) is adopted, where the BSs in different tiers

share the whole spectrum of the system [21], to fully uti-

lize the network spectrum. The SAPs, MBSs and users are

distributed according to homogeneous spatial Poisson point

process (PPP) with density λs, λm and λu, respectively, where

λs > λm. The location distribution of SAPs, MBSs and

users is denoted as 8s = {r
s
i }i∈N, 8m = {r

m
j }j∈N and

8u = {r
u
i }i∈N, respectively, where r

s
i , r

m
i , rui ∈ R

2, and

R
2 represents the feasible two-dimensional space. We use

the notations U ,S and M to denote the set of users, SAPs

and MBSs, respectively. We consider the single input sin-

gle output (SISO) system, for which both large-scale fad-

ing and small-scale fading are considered. Specifically, due

to large-scale fading, the transmitted signal is attenuated

by g(d) = bd−α̂ , where d is the distance, b is the path

loss coefficient, and α̂ > 2 is the path loss exponent. For

small-scale fading, Rayleigh fading is assumed, i.e., channel

fading coefficient h satisfies h ∼ CN (0, 1). For convenience,

the important notations used in this paper are summarized

in Table 1.

FIGURE 1. General architecture of cache-aided ultra-dense network [4].

At a certain service timeslot, each user can be served by any

of the nearest SAP or the nearest MBS as long as the corre-

sponding service condition is satisfied. Therefore, the signal

strength received by a typical user i can be expressed as

p(rui) = I idxi

∣
∣hsj,i

∣
∣
2
Psj,ib|r

u
i − r

s
j |
−α̂

+(1− I idxi)
∣
∣hml,i

∣
∣
2
Pml,ib|r

u
i − r

m
l |
−α̂, (1)

VOLUME 7, 2019 39391

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

TABLE 1. Table of notations.

where I idxi = {0, 1} is the association index of the typical user.

If I idxi = 1, the typical user is served by a SAP, otherwise,

I idxi = 0 represents that the typical user is served by a MBS.

hsj,i and h
m
l,i denote the Rayleigh fading between the typical

user i and the service SAP j or service MBS l, respectively.

Psj,i and P
m
l,i stand for the transmit power of the service SAP

j or MBS l for the typical user i, respectively. As a result,

the received signal to interference and noise ratio (SINR) of

this typical user is given by

SINR(rui) =
p(rui)

σ 2 + Iui

, (2)

where σ 2 is the power of Gaussian noise, and

I
u
i = I idxi

(
∑

rs
ĵ
∈8s\r

s
j

∣
∣hs
ĵ,i

∣
∣
2
Ps
ĵ
b|rui − r

s

ĵ
|−α̂

+
∑

rm
l̂
∈8m

∣
∣hm
l̂,i

∣
∣
2
Pm
l̂
b|rui − r

m

l̂
|−α̂

)

+ (1− I idxi)

(
∑

rs
ĵ
∈8s

∣
∣hs
ĵ,i

∣
∣
2
Ps
ĵ
b|rui − r

s

ĵ
|−α̂

+
∑

rm
l̂
∈8m\r

m
l

∣
∣hm
l̂,i

∣
∣
2
Pm
l̂
b|rui − r

m

l̂
|−α̂

)

, (3)

is the cumulative interference experienced from all the SAPs

and MBSs except the service base station.

B. CACHE MODEL

We assume that each user independently requests data files

from a library F = {1, · · · ,F} containing F files with equal

size of L bits. We denote the content request density as λr per

time period. The popularity of the contents is time-sensitive

and unknown. Each SAP and MBS is equipped with a cache

size of Ns and Nm, respectively. Here, Ns < F,Nm < F .

Therefore, the cached files form a combination of all the files

in the library. There are Ds ,
(F

Ns

)

different combinations for

SAPs, and Dm ,
(F

Nm

)

different combinations for MBSs in

total. Let all the content combinations in SAPs form a setDs,

and all the content combinations in MBSs form another

set Dm. Once the typical user’s request arrives, the system

first retrieves the content in the local cache device of this

user’s service base station. If the system finds the required

content, transmission between the typical user and the service

base station happens. Otherwise, the required content will be

searched in the core network and additional energy consump-

tion will be introduced. Each base station fetches the contents

using its backhaul link so that the combination of the contents

in local cache device can be refreshed after a specific period.

C. ENERGY CONSUMPTION MODEL

In the context where caching and wireless network are inte-

grated, an extensive power model that takes into account

various detailed factors is widely adopted [22]. In our con-

sidered CUDN scenario, the following three components with

respect to the total power consumption at an operating BS are

considered:

i) Transmit power: As defined before, the transmit power

of the i-th SAP and the i-th MBS is denoted as Psi and P
m
i ,

respectively. The accumulative transmit power of the service

base station is proportional to the number of its associated

users.

ii) Operational charge power : The operational power at a

SAP and a MBS is Pso and P
m
o , respectively.

iii) Data retrieval power: If the data is retrieved from the

local cache device, the consumed data retrieving power is

denoted asPlr . Otherwise, if the requested content is retrieved

via the backhaul, the consumed data retrieving power is

represented as Pbr .
1

D. PROBLEM FORMULATION

In this paper, we focus on maximizing the EE of the system.

According to the power model described above, the total

average power consumed by the system can be represented

as follows,

Psys =
∑

i∈U

(

I idxi Psj,i + (1− I idxi)Pml,i + (Plr,i × (1− Pout)

+Pbr,i × Pout)
)

+
∑

q∈S

Pso,q +
∑

k∈M

Pmo,k , (4)

1Note that the data retrieval power may be varying in practical systems.
Especially for the case that the required data have to be retrieved via the
backhaul links, so that the retrieval power is related to the link between
the user and the server. Then, the dynamic network topology has to be
considered. In this paper, as we focus on the basic methodology for cache
placement strategy, we consider the data retrieval power Plr and Pbr to be
constant to simplify the analysis. In future works, we will extend our work
to cover the dynamic network topology. Even though, we also provide the
performance comparison for different retrieval power to give some insights
in this paper. Please refer to Section IV.

39392 VOLUME 7, 2019

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

where Pout denotes the probability that the requested content

is not within the local cache combination. Obviously, Pout is

highly related to the chosen cache combination from the con-

tent library. Wemodel the content requests arrival of the users

as a poisson process. During each period, each user submits

content requests to the service SAP or MBS with a density

of λr . We assume that the users’ demand for the content is

greedy and the requests density λr is large enough, so that

the system throughput is limited by spectrum efficiency [7].

Thus, the system EE can be formulated as:

EE =

∑

rui ∈8u
log(1+ SINR(rui))

Psys
. (5)

Mathematically, the system EE optimization problem can

be formulated as

argmax
aIs ,aIm

EE

s.t. SINR(rui) ≥ γ

Is ∈ Ds, Im ∈ Dm

aIs , aIm ∈ {0, 1}, (6)

where the constraint γ is the minimal SINR threshold sat-

isfying the user’s communication quality-of-service (QoS).

We use the optimization variables aIs , aIm to represent the

cache strategy.2 If the Is-th and the Im-th cache combination

are selected from their corresponding cache libraries, aIs = 1

and aIm = 1, otherwise aIs = 0 and aIm = 0. Therefore,

the optimization Eq.(6) can be regarded as a l0-norm problem.

Due to the unknown parameter Pout, the nonconvex variables

and the discontinuous l0-norm in the objective function, it is

challenging to solve the optimization problem Eq.(6). To the

best of our knowledge, the existing works coping with these

challenges mainly lie in the following two aspects.

For one aspects, earlier works suppose that the popularity

distribution of the content is perfectly known, and use a

smooth function to approach the l0-norm problem [5]–[7],

[23], [25]. For example, to solve the l0-norm problem,

Tao et al. [23] have adopted the smoothed l0-norm approxi-

mation and compared the performance of three smooth func-

tions, including logarithmic function, exponential function,

and arctangent function. The resulting approximated problem

is then transformed into the difference of convex program-

ming problems. As the distribution of content popularity is

perfectly known, the relationship between the parameter Pout,

the library size F and the capacity of the local cache device

Ns,Nm can be derived analytically. By the approximation of

l0-norm problem, the objective function of the optimization

problem can be converted into a smooth and convex form.

Therefore, the primal problem can be solved to get the opti-

mal cache strategy. However, this two relaxations described

above are too ideal in real system. To avoid these unpractical

assumptions, we focus on a more realistic scenario where the

2Obviously, both the power consumption Psys and the SINR in the objec-
tive function Eq.(5) are related to the cache strategy. Unfortunately, it is hard
to explicitly expresss these two items as the function of aIs and aIm .

popularity of the cached content is dynamic and unknown in

this paper.

For the other aspect, the latest works focus on a more

realistic case where the content popularity is dynamic and

unknown [9], [10]. The relationship between the parameter

Pout, the library size F and the capacity of the local cache

device Ns,Nm is derived based on the estimated content

popularity. Then, the optimization problem can be solved

analytically, and the cache content placement strategy at the

local cache device can be optimized. However, the estimation

of the cache popularity will inevitability introduce deviation

so that the corresponding cache placement strategy can not

achieve optimal performance. What’s more, the estimation

based method cannot cope with the dynamic content popu-

larity distribution and the resulting performance is very poor

in the case of dynamic content.

III. DEEP REINFORCEMENT LEARNING BASED

CACHE STRATEGY

Based on the discussion in section II, we propose an online

cache strategy learning algorithm based on DRL in the sce-

nario where the popularity of the cached content is dynamic

and unknown in this section.

A. BRIEF OVERVIEW OF DEEP REINFORCEMENT

LEARNING

The principle of reinforcement learning (RL) can usually be

described as a Markov Decision Process (MDP) [24]. Let

X = {x1, · · · , xn} be the state space and A = {a1, · · · , am}

be the action set. Based on the current state x(t) ∈ X ,

the agent applies an action a(t) ∈ A into the environment and

then the system transfers to a new state x(t+1) ∈ X according

to the transition probability Px(t)x(t+1)(a). This process gives

the agent an immediate reward R
(

x(t), a(t)
)

and a long-term

cumulative discounted reward V (x). The long-term cumula-

tive discounted reward from state x can be expressed by the

following state-value function:

V (x) = E

[∞
∑

t=0

ǫtR
(

x(t), a(t)
)

|x(0) = x

]

, (7)

where E[·] denotes the expectation operation, and 0 < ǫ < 1

is the discount factor. In RL, the goal of the agent is to find an

optimal policy a∗ = π∗(x) ∈ A for each state to maximize

the cumulative reward over a long time. Due to the Markov

property, the state-value function can be rewritten as

V π (x) = R(x, π(x))+ ǫ
∑

x ′∈X

Pxx ′
(

π (x)
)

V π (x ′), (8)

where x ′ represents the state at the next time instant. The

optimal policy π∗ follows Bellman’s criterion, i.e.,

V π∗ = max
a∈A

[

R(x, a)+ ǫ
∑

x ′∈X

Pxx ′ (a)V
π∗ (x ′)

]

. (9)

Given the reward R and the transition probability Pxx ′ ,

the optimal policy can then be obtained. When R and Pxx ′

VOLUME 7, 2019 39393

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

are unknown, Q-learning is one of the most widely-used

strategies to determine the best policy π∗. The Q-function is

defined as

Qπ (x, a) = R(x, a)+ ǫ
∑

x ′∈X

Pxx ′ (a)V
π (x ′). (10)

Usually, theQ-function is obtained via a recursive manner by

using the available information tuple (x, a,R, x ′). The update

of the Q-function is

Qt+1(x, a) = Qt (x, a)

+η
(

Rt+1+ǫ
[

max
a′

Qt (x
′, a′)

]

−Qt (x, a)
)

, (11)

where η is the learning rate. According to [24], Qt (x, a) will

definitely converge to Q∗(x, a) while t →∞.

Unfortunately, we can not find a precise Q-function of the

real environment for most of the time. Therefore, the deep

neural network Q(x, a; θ) has been used to approximate the

Q-functionQ(x, a), where θ is the weight vector of the neural

network. The deep neural network can be trained byminimiz-

ing the following loss function:

Lloss(θ) = E
[

(yt − Q(x, a; θ t))
2
]

, (12)

where yt = E
[

Rt + ǫ maxa′ Q(x
′, a′; θ t−1)|x, a

]

is the target

for interaction t .

B. DEEP REINFORCEMENT LEARNING BASED

CACHE STRATEGY

In order to apply DRL into the cache placement of a CUDN,

we first define some important notations under the framework

of DRL.

1) SYSTEM STATES

At the beginning of a specific period, each base station fetches

the contents via its backhaul link to get its content combi-

nation. In our scenario, there are |8s| + |8m| base stations,

where | · | represents the cardinality of a set. The current

system state x(t) can be defined as

x(t) = {cs1(t), · · · , c
s
|8s|

(t), cm1 (t), · · · , c
m
|8m|

(t)}, (13)

where csi (t) ∈ Ds, i ∈ {1, · · · , |8s|} is the cached con-

tent combination at the ith SAP, and cmj (t) ∈ Dm, j ∈

{1, · · · , |8m|} is the cached content combination at the j-th

MBS.

2) SYSTEM ACTIONS

During each period, the SAPs andMBSs should decide which

content combination to be cached so that the system per-

formance in terms of EE can be improved. The actions of

the SAPs and MBSs are the chosen content combinations.

Therefore, the current action a(t) is denoted by

a(t) = {as1(t), · · · , a
s
|8s|

(t), am1 (t), · · · , a
m
|8m|

(t)}, (14)

where asi ∈ Ds and a
m
j ∈ Dm.

3) REWARD FUNCTION

The system reward represents the optimization objective.

In this paper, the objective is to maximize the system EE,

and the reward function is defined as Eq. (15), shown at the

bottom of the next page, where Iui is shown in Eq.(3).

It follows Eq.(15) that variables I idxi and Pout prevent the

system from getting the immediate reward. Fortunately, for

our DRL approach, these two variables will degenerate into

known quantities. The underlying reasons are as follows.

First, I idxi can be determined when the distribution of the

nodes, including the users, the SAPs and the MBSs, and the

associated schedule of each user are given. Second, in our

scenario, when the system state x(t) and system action a(t)

are given, the content combination in the local cache device of

the base station can be determined.When the content requests

of a typical user arrive, the system can get the knowledge

whether the local cache combination satisfies the requests

by retrieving the local content combination. Therefore, Pout

degenerates into a deterministic parameter that is given as

follows,

Pout =

{

0, the requests are satisfied,

1, otherwise.
(16)

As described in Section III-A, the optimal caching pol-

icy π∗ can be determined by optimizing the Q-function,

i.e., argmaxQπ (x(t), a(t)). For our considered CUDN, it is

obvious that the number of possible system states can be

very large. Due to the curse of high-dimensionality, it is very

difficult for traditional approaches to handle our problem.

Fortunately, as deep Q neural network is capable of directly

learning from high-dimensional inputs, it is adopted in our

system.

Two techniques are applied to modify the regular

Q-learning into deep Q neural network. The first one is

experience replay. At each time instant t , the system stores

its interaction experience tuple e(t) = (x(t), a(t),R(t),

x(t + 1)) in a replay memory and forms a experience pool

Dmemory(t) = {e(1), · · · , e(t)}. Then, the networks are

trained by sampling from the experience pool. The othermod-

ification is that the system uses two neural networks, which

are net_target and net_evaluate, to approach the Q-function,

i.e.,

Qt+1(x, a; θ)=

net_evaluate
︷ ︸︸ ︷

Qt (x, a; θ)+η
(

Rt+1+ǫ
[

max
a′

Qt (x
′, a′; θ−)

]

︸ ︷︷ ︸

net_target

−Qt (x, a; θ)
︸ ︷︷ ︸

net_evaluate

)

. (17)

For net_target, the parameter θ is updated per S time steps,

i.e., θ−i = θ i−S . In contrast, the parameter θ in net_evaluate is

updated for each time step. It can be proved that thismodifica-

tion can reduce the correlation between these two neural net-

works and make the learning process more stable [15]. Note

that, Eq.(17) is updated based on the ε-greedy policy with

ε ∈ [0, 1] to balance the exploration and exploitation [24].

39394 VOLUME 7, 2019

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

In the standard DRL algorithm, we use the regular

multi-tier deep neural networks (DNN) to realize the deep Q

neural network. The DNN can be trained by minimizing the

loss function Eq.(12) via stochastic gradient descent (SGD)

algorithm, and the weights are updated based on the loss

gradient by back-propagation [24]. In this case, we iteratively

compute a forward pass yt and a backward pass ∂L/∂θ .

There are several optimizers provided in the TensorFlow [20],

among which we choose the AdamOptimizer for our DNN

training. The proposed DRL based cache (DRLC) algorithm

is summarized in Algorithm 1.

Algorithm 1 DRL Based Cache Strategy

Initialization

Initialize the replay memory Dmemory with capacity C .

Initialize net_evaluate with random weights θ .

Initialize net_target with weights θ− = θ .

For episode = 1, · · · ,K do

Initialize the initial state sequence x(0) with random

content combinations.

For t = 1, · · · ,T do

Select action a(t) based on ε-greedy policy:

a random action a(t) with probability ε,

or a(t) = argmaxa Qnet_evaluate(x, a; θ) with

probability 1− ε.

Execute action a(t), observe the reward of Eq.(15).

Store tuple (x(t), a(t),R(t), x(t + 1)) in Dmemory.

Randomly sample tuple (x(j), a(j),R(j), x(j+ 1))

Set yj =

{

R(j), if episode terminates at step j+ 1

R(j)+ ǫ maxQnet_target(x, a; θ
−), otherwise

.

Train the DNN by minimizing the loss function

(yj − Qnet_evaluate(x, a; θ))
2.

Update Qnet_target← Qnet_evaluate every S steps.

End For

End For

The DRL-based caching algorithm can achieve the opti-

mal cache strategy in an interactive manner. As presented in

Algorithm 1, the procedure generates a caching placement

strategy based on the network parameters obtained from the

history experience tuples, and observes the reward from the

environment. And then, the procedure updates the history

experience tuples and trains the neural networks. This try-

and-observe operation avoids the prior knowledge of the

environment, i.e., the popularity of the contents. By enough

trials, the well trained neural networks will nearly perfectly

characterize the environment. Therefore, the cache place-

ment strategy given by Algorithm 1 can adapt the real

environment.

C. ADVANCED DEEP REINFORCEMENT LEARNING BASED

CACHE STRATEGY

For the past few years, some exciting finds have been reported

in the fields of both RL and DL, e.g., prioritized experience

replay for history action tuple selection [17], dueling archi-

tecture forQ-functon [18], and deep recurrent neural network

(RNN) [19] for deep Q-network. In what follows, we further

utilize them to improve our DRL based cache strategy.

1) PRIORITIZED EXPERIENCE REPLAY FOR HISTORY

EXPERIENCE TUPLE SELECTION

In DRLC, the experience tuples are randomly sampled from

the experience pool regardless of their significance. How-

ever, the RL agent may learn more effectively from some

tuples than the others. Meanwhile, some tuples may not be

immediately useful for the agent, but might become useful

as the episode increases. It has been proved that selecting

action a(t) with prioritized experience replay can improve the

performance and speed up the algorithm [17]. For prioritized

experience replay, the sampling probability of experience

tuple i can be defined according to the priority as follows,

Pr(i) =
p̂
γ̂

i
∑

k p̂
γ̂

k

, (18)

where p̂i > 0 is the priority of tuple i. p̂ can be computed

as p̂i = |δi| + ǫ̂, where ǫ̂ is a small positive constant, and δi
is the temporal-difference (TD) error. δi can be computed as

follows,

δi = Ri + ǫQnet_target(xi, argmax
a
Qnet_evaluate(xi, a))

−Qnet_evaluate(xi−1, ai−1). (19)

The factor γ̂ controls the effect of priority. Specifically, γ̂ =

0 corresponds to the uniform sampling.

2) DUELING ARCHITECTURE FOR Q-FUNCTION

In contrast to the standard deep Q neural network RL

algorithm, the dueling networks architecture denotes the

Q-function as two separate estimators. A estimator is used

for the state value function, and another one is used for the

state-dependent action advantage function, i.e.,

Q(x, a; θ) = V (x; θ)+ A(x, a; θ), (20)

where V (x; θ) is the value of state, and A(x, a; θ) is the

advantage function expressed as Aπ (x, a; θ) = Qπ (x, a; θ)−

V π (x; θ). This decomposition can generalize the learning

across actions without imposing any change to underlying

RL algorithm. Therefore, this architecture can lead to better

policy evaluation in the presence of many similar-valued

actions [18].

R(t) =

∑

rui ∈8u
log

(

1+
I idxi |h

s
j,i|

2Psj,ib|r
u
i −r

s
j |
−α+(1−I idxi)|hml,i|

2Pml,ib|r
u
i −r

m
l |
−α

σ 2+Iui

)

∑

i∈U

(

I idxi Psj,i + (1− I idxi)Pml,i + (Plr,i × (1− Pout)+ Pbr,i × Pout)
)

+
∑

q∈S P
s
o,q +

∑

k∈M Pmo,k
(15)

VOLUME 7, 2019 39395

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

3) DEEP RECURRENT NEURAL NETWORK (RNN) FOR DEEP

Q NEURAL NETWORK

In the above proposed DRLC procedure, the deep Q-network

is usually implemented by a multi-tier DNN. In our con-

sidered CUDN, the popularity of the content is highly

non-stationary and relevant. From a high-level point of view,

Tatar et al. [11] show that the popularity evolution of cache

content over time can be represented by power-law or expo-

nential distribution, and the content requests of the users are

dependent. As the RNN is good at extracting useful infor-

mation from a correlated sequence [19], we then choose a

RNN to replace the DNN used in Algorithm 1 and propose an

advantaged DRL based cache placement strategy (ADRLC).

The details of the ADRLC are summarized in Algorithm 2.

Algorithm 2 Advanced DRL Based Cache Strategy

Initialization: Initialize the memory Dmemory with

capacity C , the net_evaluate with random weights θ ,

the net_target weight θ− = θ , 1 = 0, p̂0 = 1, w0 = 1,

update steps S, batch size k , learn rate η,

exponents α and β.

For episode = 1, · · · ,K do

Initialize initial state sequence x(0) with random

content combinations.

For t = 1, · · · ,T do

Select action a(t) based on ε-greedy policy:

a random action a(t) with probability ε,

or a(t) = argmaxa Qnet_evaluate(x, a; θ) with

probability 1− ε.

Execute action a(t), observe the reward of Eq.(15).

t = t + 1, store tuple (x(t), a(t),R(t), x(t + 1))

in Dmemory with maximal priority p̂t = maxi<t p̂i.

If t mod C = 0 then

For j = 1, · · · , k do

Sample (x(j), a(j),R(j), x(j+ 1)) with

probability Pr(j) =
p̂α
j

∑

i p̂
α
i

Compute importance weight wj =
(C ·Pr(j))−β

maxi wi
Compute TD-error δj according to Eq.(19).

Accumulate weight-change △← △+ wj · δj·

(∇θV (x; θ)+∇θA(x, a; θ)).

End for

Train the RNN by updating weights θ ← θ + η · △,

and reset △ = 0.

End if

Update Qnet_target← Qnet_evaluate every S steps.

End For

End For

D. REMARKS

It this subsection, we discuss the complexity and scalability

of our proposed DRL-based cache algorithm.

1) COMPLEXITY

To the best of our knowledge, the latest works [26]–[29]

have analyzed the complexity of DRL based on experimental

results. From the existing results, it can be concluded that the

complexity of our proposed DRL based cache algorithm is

dominated by the complexity of training the adopted neu-

ral networks and the convergence rate. The complexity of

training the adopted neural networks depends on the network

depth and the number of neurons [30]–[33]. The convergence

rate of the DRL based cache algorithm is dominated by many

factors, including the size of content library F , the size of

memory pool Dmemory, the structure of the adopted neural

network π (·|θ), the random action selection factor ε of the

ε-greedy policy, the learning rate η, and the neural network

parameter update step interval S, etc.. It is difficult to ana-

lyze the complexity of the DRL based caching algorithm

analytically. We have to evaluate the complexity of our pro-

posed algorithms in terms of the convergence steps and the

consumed computation time through simulations. Moreover,

by elaborately choosing the parameter tuple, i.e., {ε, η, S},

we can improve the tradeoff between the convergence rate

and the global performance. We have performed extensive

simulations to find the optimal parameter tuple that can make

a good tradeoff between the global performance and the

convergence rate.

2) SCALABILITY

Obviously, all the system parameters, including: the cache

content library size F , the local cache capacity Ns,Nm, and

the access point density λm, λs, have effect on the scalability

of our proposed algorithms. Intuitively, the larger the cache

content library size F and the local cache capacity Ns,Nm,

the larger the number of cache combinations and the number

of neurons in the output layer of the adopted neural network.

Therefore, the complexity of training the adopted neural net-

works becomes higher and more interaction steps are needed

for algorithm convergence. Similarly, the larger the access

point density, the larger the number of the system sate and

action. Then, the complexity and convergence rate of the

algorithmswill inevitably increase. As it is hard to analyze the

effect of these factors on the scalability of our proposed algo-

rithms analytically, we have to evaluate it through simula-

tions. Based on the simulation results, we have found that the

proposed learning based algorithms can adapt to complicated

scenarios, and our proposed algorithm can always obtain the

best performance comparing with the existing methods.

IV. SIMULATION RESULTS

In this section, we provide simulation results to validate

our proposed cache placement strategies. The simulation

setup is as follows. We consider a two-tier CUDN consist-

ing of MBSs and SAPs. The network covers an area with

radius Ra = 0.5 km. The MBSs, SAPs and users are dis-

tributed in the area according to PPP with density λm = 8,

λs = 20 and λu = 50 per kilometer square, respectively.

The transmit power of MBS and SAP are Pm = 66mW

and Ps = 20mW, respectively. The path loss exponent

α = −3.5 and the noise power σ 2 = −127dBm. The data

retrieving power are Plr = 20mW in local cache device and

39396 VOLUME 7, 2019

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

FIGURE 2. Comparison of the four cache algorithms under three types of content popularity distribution: (a) uniform content popularity
distribution, (b) zipf content distribution with β = 2, (c) MovieLens dataset based real-world content popularity distribution.
F = 100, Ns = 12, Nm = 17, Plr = 20mW , Pbr = 500mW , λreq = 8.

TABLE 2. Parameters of the adopted Q neural networks. (a) Parameters
of adopted DNN. (b) Parameters of adopted CNN. (c) Parameters of
adopted RNN.

Pbr = 500mW in backhaul, respectively. The operation

power is Pso = 1500mW for SAPs and Pmo = 2500mW

for MBs, respectively. We set the content size L = 2Mbits,

the cache content request density λr = 8 per time period.

The capacity of the experience memory Dmemory C = 100,

the deep Q neural network parameter update step interval

S = 20, and the action selection probability ε = 0.15.

In our simulations, we use Google TensorFlow to imple-

ment our advanced deep Q neural network and choose the

AdamOptimizer [20] to optimize the loss function. The sim-

ulations have been performed by our computer with Intel

i7-6500 CPU, 16GB RAM, Win10 64-bit system, Pycharm

3.6.3 and tensorflow 1.8.0 environment. We set the learning

rate η = 0.001. For the content popularity, both stationary

and dynamic distributions are considered [11]. For stationary

distribution, we consider both uniform distribution and Zipf

distribution fη̂ = (1
η̺̂)/

∑F
i=1

1
i̺
, where η̂ is the file index,

̺ is the file request coefficient controlling the popularity

distribution of contents. For dynamic distribution, we use the

MovieLens Dataset [34] to reflect the content request behav-

ior of users. MovieLens is a website that recommends movies

for its users operated by GroupLens research group at the

University of Minnesota to gather research data on personal-

ized recommendations. This dataset contains 1000209 ratings

for 3952movies provided by 6040 users from the year 2000 to

2003. Each entry of the dataset consists of an anonymous

user identity (ID), a movie ID, a rating and a timestamp.

We treat each movie rating from a user as a content request of

the user (see [35] for a similar approach). As shown in [34],

the request of a content is highly related to the timestamp.

Therefore, the MovieLens dataset based content requests

can be considered as a time-sensitive dynamic distribution.

Note that the content popularity is unknown for all cache

algorithms in the simulations. We compare our advanced

cache strategy with other three cache strategies including:

1) random caching strategy, 2) standard DRL based caching

strategy, and 3) the DRL with CNN based caching strategy

presented in [12]. The parameters of the adopted Q neural

networks are shown in Table 2.

Fig. 2 shows the performance comparison of these four

cache algorithms under different popularity distributions. The

size of content library is F = 100, and the capacity of the

cache device in SAPs and MBSs are Ns = 12 and Nm = 17,

respectively. In Fig. 2(a), uniform content popularity distri-

bution is considered. It can be seen that these four cache

strategies have nearly the similar performance. The under-

lying reason is that different cache combinations in local

cache device have the same effect on the users’ requests when

the cache contents follow uniform popularity distribution.

Therefore, the cache strategies make no significant different

influences on the performance.

Zipf content popularity distribution andMovieLens dataset

based real-world content popularity distribution are consid-

ered in Fig. 2(b) and Fig. 2(c), respectively. From these

figures, we can find that our proposed advanced cache strat-

egy (Algorithm 2) needs the least number of learning steps

to get the maximum reward, i.e., energy efficiency. Mean-

while, it can be seen that our proposed advanced cache strat-

egy can adapt to both stationary case, i.e., zipf distribution,

and dynamic case, i.e., MovieLens dataset based real-world

content popularity distribution. In contrast, from Fig. 2 (c),

we can see that the proposed DRL based cache algorithm

(Algorithm 1) and the algorithm proposed in [12] suffer

VOLUME 7, 2019 39397

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

FIGURE 3. Comparison of the four cache algorithms under MovieLens dataset based real-world content popularity distribution with different library
size and cache device capacity size: (a) F = 500, Ns = 32, Nm = 39, (b) F = 1000, Ns = 32, Nm = 39, (c) F = 1000, Ns = 120, Nm = 150, with
Plr = 20mW , Pbr = 500mW , λreq = 8.

significantly performance degradation, and need more steps

to reach the maximal reward for the dynamic case. Moreover,

the random cache strategy can only achieve very poor per-

formance in these two cases. The advantage of our proposed

advanced DRL based cache algorithm (algorithm 2) is due to

the following reasons. First, the prioritized experience replay

schedule makes full use of the history experience and speeds

up the training of our algorithm. Second, dueling architecture

for Q-function leads to better policy evaluation in the pres-

ence of many similar-valued actions. Finally, the RNN can

extract the correlated information in the users’ requests.

To investigate the complexity and scalability of our

proposed algorithms, we have performed simulations under

different scenarios. Fig. 3 shows the performance comparison

of different cache algorithms with MovieLens dataset based

real-world popularity distribution under different local cache

device capacity (LCDC) tuples. It can be seen that our pro-

posed algorithms can always obtain better performance under

different LCDC tuples. Especially, our proposed Algorithm 2

can achieve the best performance. Meanwhile, from Fig. 3,

we can find that the parameters F ,Ns andNm have significant

effect on the system energy efficiency. The larger the libary

size F , the lower the energy efficiency for given cache size

Ns and Nm. Moreover, the larger the cache size Ns and Nm
is, the higher the energy efficiency for given library size F

will be. The underlying reason is that, a larger library size

F will lower the hit probability of the cached content and

then decrease the system energy efficiency. On the other

hand, a larger cache capacity Ns and Nm can increase the hit

probability of the cached content and then improve the system

energy efficiency. Furthermore, with the increase of content

library size and the number of cache nodes, the number of

cache combination and the neurons of the output layer in the

adopted neural network will become larger. Therefore, from

Fig. 3, we can find that the needed interaction steps to reach

the maximal reward become larger for all the three learning

based algorithms with the increase of the content library

size. As a consequence, the complexity of network train-

ing becomes higher. Even though, our proposed algorithm 2

always has the fastest converge speed.

When the learning based cache algorithms converge, Fig. 4

shows their achievable energy efficiency under five different

access point (including SBS and MBS) densities, including:

case 1 with {λm = 4, λs = 10}, case 2 with {λm =

8, λs = 20}, case 3 with {λm = 12, λs = 30}, case 4 with

{λm = 6, λs = 40}, and case 5 with {λm = 20, λs = 50}.

It can be seen that, with the increase of access point densi-

ties, the achievable energy efficiency of all these algorithms

decreases. This result is due to the fact that higher access

point densities will result in higher system operational charge

power, i.e., the sum of Pso and Pmo for all the access points.

Therefore, the system energy efficiency decreases. Even

though, as shown in this figure, our proposed algorithm 2 still

achieves the best performance. So, our proposed algorithm is

scalable and can work well under complicated scenarios with

large cache nodes density.

FIGURE 4. Converged energy efficiency under different access point
density cases. with λu = 50, F = 100, λreq = 8, N=12, Nm = 17,

Plr = 20mW , Pbr = 500mW .

The other important parameters affecting the performance

of the cache algorithms include: the ε-greedy policy factor ε,

the learning rate η and the neural network parameter update

step interval S. Table 3 shows the convergence performance

and time cost under different parameter tuples {ε, η, S} of our

proposed algorithm 2 forMovieLens dataset based real-world

39398 VOLUME 7, 2019

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

FIGURE 5. The average energy efficiency vs. content request densities with MovieLens dataset based real-world content popularity distribution and
Plr = 20mW , Pbr = 500mW : (a) F = 100, Ns = 12, Nm = 17, (b) F = 100, Ns = 17, Nm = 22, (c) F = 100, Ns = 22, Nm = 27.

TABLE 3. Convergence performance & time cost comparison under
different parameter tuples with F = 100, Ns = 12, Nm = 17, Plr = 20mW ,
Pbr = 500mW , λreq = 8. (a) Convergence performance & time cost for
different ε, η = 0.001, S = 20. (b) Convergence performance & time cost
for different η, ε = 0.15, S = 20. (c) Convergence performance & time cost
for different S, ε = 0.15, η = 0.001.

content popularity distribution. Table 3(a) shows the conver-

gence performance and time cost represented by the simula-

tion computation time for different probability ε of random

action choice with fixed learning rate and neural network

update step interval, i.e., η = 0.001, S = 20. It can

be concluded that a smaller probability ε can result in a

faster convergence rate. However, as shown in this table,

the smaller probability ε prevents the strategy exploration

so that the algorithm may converge to a local optimum.

Table 3(b) presents the convergence performance and time

cost for different learning rate η with fixed probability ε of

random action choice and neural network parameter update

interval, i.e., ε = 0.15, S = 20. From Table 3(b), we can see

that, the larger the learning rate is, the faster the algorithm

converges. However, a larger learning rate may result in a

sub-optimal performance. Based on our simulation results,

the optimal learning rate η = 0.001 for given ε = 0.15 and

S = 20. Table 3(c) provides the convergence performance

and time cost for different neural network update step inter-

val under fixed random action probability and learning rate,

i.e., ε = 0.15, η = 0.001. It can be seen that it will result

in a sub-optimal performance if the neural network update

interval S is too large or too small. Therefore, by taking into

consideration of both the performance and the complexity

of the proposed algorithm, we set the parameter tuple to be

{ε = 0.15, η = 0.001, S = 20}.

Table 4 compares the needed learning steps, the obtained

energy efficiency and the time cost of the three learning

based cache algorithms when they converge. Note that the

DNN, RNN and CNN are adopted in the proposed algo-

rithm 1, algorithm 2, and the algorithm in [12], respec-

tively. Similar to the proposed algorithm 2, we have obtained

the optimal parameter tuple ε, η, S for the proposed algo-

rithm 1 and the algorithm in [12] via simulations. It can

be found that our proposed algorithm 2 can obtain the best

EE with the smallest learning steps and computational time

cost.

Fig. 5 shows the average energy efficiency of MovieLens

dataset based real-world content popularity distribution under

different content request densities with three different cache

capacity settings. As the cache capacity increases, it can

be seen that the average energy efficiency of all the four

cache algorithms is significantly improved. Meanwhile, our

proposed algorithm 1 and algorithm 2 can achieve better

performance. In fact, as the local cache capacity increases,

the requested content can be retrieved from the local cache

device with a larger probability. This leads to a lower data

retrieval power consumption and higher system energy effi-

ciency. On the other hand, the underlying useful information

between the user requirements and the unknown content

popularity can be learned and extracted by the DRL based

algorithms. Therefore, the DRL based cache algorithms with

well trained deep neural network can make a better cache

combination selection and then obtain better system energy

efficiency. Especially, the proposed algorithm 2 can achieve

the best system performance by optimizing the parameters

and structure of the adopted neural network.

Fig. 6 shows the average energy efficiency of MovieLens

dataset based real-world content popularity distribution under

different content request densities with three different data

VOLUME 7, 2019 39399

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

FIGURE 6. The average energy efficiency vs. content request densities under different retrieval power with F = 100, Ns = 12, Nm = 17 and
MovieLens dataset based real-world content popularity distribution: (a) Plr = 20mW , Pbr = 500mW , (b) Plr = 30mW , Pbr = 600mW ,
(c) Plr = 40mW , Pbr = 700mW .

TABLE 4. Convergence performance & time cost comparison under
different algorithms (neural networks) with λu = 50, λs = 20, λm = 8,

F = 100, Ns = 12, Nm = 17, Plr = 20mW , Pbr = 500mW , λreq = 8.

retrieval power setting, including: {Plr = 20mW ,Pbr =

500mW }, {Plr = 30mW ,Pbr = 600mW }, {Plr =

40mW ,Pbr = 700mW }. As shown in this figure, the larger

the data retrieval power, the smaller the energy efficiency.

Meanwhile, our proposed algorithms can still have significant

advantage over the algorithm proposed in [12] for different

data retrieval power setting. Concretely, our proposed algo-

rithm 2 and algorithm 1 can improve the energy efficiency

by 69.8%/73.8%/75.0% and 41.9%/47.2%/48.5% comparing

with algorithm in [12] under the simulation scenarios, respec-

tively. Therefore, our proposed DRL based cache algorithms

can be applied in real systems for which the data retrieval

power is sensitive.

V. CONCLUSIONS

In this paper, we investigate the EE of CUDNs. We con-

sider a realistic scenario where the popularity of the cache

content is dynamic and unknown. We propose novel online

learning cache algorithms based on deep reinforcement learn-

ing. We further optimize the structure and the parameters

of the deep Q-network according to the latest findings in

deep reinforcement learning, including prioritized experience

replay for history experience tuple selection, dueling archi-

tecture for Q-function, and deep RNN for deep Q-network,

to improve the performance. We use Google TensorFlow

to implement our cache algorithm. Simulation results show

that our proposed cache algorithms can achieve considerable

performance improvement comparing with existing schemes

for both stationary and dynamic popularity distributions.

REFERENCES

[1] J. Park, S. Y. Jung, S.-L. Kim, M. Bennis, and M. Debbah, ‘‘User-

centric mobility management in ultra-dense cellular networks under

spatio-temporal dynamics,’’ in Proc. IEEE Global Commun. Conf.

(GLOBECOM), Washington, DC, USA, Dec. 2016, pp. 1–6.

[2] S. Abolfazli, Z. Sanaei, E. Ahmed, A. Gani, and R. Buyya, ‘‘Cloud-

based augmentation for mobile devices: Motivation, taxonomies, and open

challenges,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 1, pp. 337–368,

1st Quart., 2014.

[3] C. Wang, Y. He, F. Yu, Q. Chen, and L. Tang, ‘‘Integration of networking,

caching, and computing in wireless systems: A survey, some research

issues, and challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,

pp. 7–38, 1st Quart., 2017.

[4] M. Kamel, W. Hamouda, and A. Youssef, ‘‘Ultra-dense networks: A sur-

vey,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2522–2545,

4th Quart., 2016.

[5] Y. Cui and D. Jiang, ‘‘Analysis and optimization of caching and multicast-

ing in large-scale cache-enabled heterogeneous wireless networks,’’ IEEE

Trans. Wireless Commun., vol. 16, no. 1, pp. 250–264, Jan. 2017.

[6] B. Zhou, Y. Cui, and M. Tao, ‘‘Optimal dynamic multicast scheduling

for cache-enabled content-centric wireless networks,’’ in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Jun. 2015, pp. 1412–1416.

[7] B. Zhou, Y. Cui, and M. Tao, ‘‘Stochastic content-centric multicast

scheduling for cache-enabled heterogeneous cellular networks,’’ IEEE

Trans. Wireless Commun., vol. 15, no. 9, pp. 6284–6297, Sep. 2016.

[8] Y. Chiang and W. Liao, ‘‘ENCORE: An energy-aware multicell coopera-

tion in heterogeneous networks with content caching,’’ in Proc. IEEE Int.

Conf. Comput. Commun. (INFOCOM), Apr. 2016, pp. 1–9.

[9] B. N. Bharath, K. G. Nagananda, and H. V. Poor. (Aug. 2015).

‘‘A Learning-Based Approach to Caching in Heterogenous Small Cell

Networks.’’ [Online]. Available: http://arxiv.org/abs/1508.03517

[10] S. Müller, O. Atan, M. van der Schaar, and A. Klein, ‘‘Smart caching in

wireless small cell networks via contextual multi-armed bandits,’’ in Proc.

IEEE Int. Conf. Commun. (ICC), Jun. 2016, pp. 1–7.

[11] A. Tatar, M. D. de Amorim, S. Fdida, and P. Antoniadis, ‘‘A survey on

predicting the popularity ofWeb content,’’ J. Internet Services Appl., vol. 5,

no. 1, pp. 1–20, 2014.

[12] Y. He et al., ‘‘Deep-reinforcement-learning-based optimization for cache-

enabled opportunistic interference alignment wireless networks,’’ IEEE

Trans. Veh. Technol., vol. 66, no. 11, pp. 10433–10445, Nov. 2017.

[13] S. O. Somuyiwa, A. György, and D. Gündüz, ‘‘A reinforcement-learning

approach to proactive caching in wireless networks,’’ IEEE J. Sel. Areas

Commun., vol. 36, no. 6, pp. 1331–1344, Jun. 2018.

[14] A. Sadeghi, F. Sheikholeslami, andG. B. Giannakis, ‘‘Optimal and scalable

caching for 5g using reinforcement learning of space-time popularities,’’

IEEE J. Sel. Topics Signal Process., vol. 12, no. 1, pp. 180–190, Feb. 2018.

[15] V. Mnih et al. (2013). ‘‘Playing Atari with deep reinforcement learning.’’

[Online]. Available: https://arxiv.org/abs/1312.5602

[16] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep feinforcement learning with

doubleQ-learning,’’ inProc. 13th AAAI Conf. Artif. Intell.Menlo Park, CA,

USA: AAAI Press, 2016, pp. 2094–2100.

[17] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. (2015). ‘‘Prioritized

experience replay.’’ [Online]. Available: https://arxiv.org/abs/1511.05952

[18] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and

N. de Freitas. (2015). ‘‘Dueling network architectures for deep reinforce-

ment learning.’’ [Online]. Available: https://arxiv.org/abs/1511.06581

[19] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,

pp. 436–444, May 2015.

[20] M. Adadi et al., ‘‘TensorFlow: A system for large-scale machine learning,’’

Google Brain, Mountain View, CA, USA, Tech. Rep. 2016, vol. 16.

39400 VOLUME 7, 2019

W. Li et al.: RL-Based Smart Cache Strategy for CUDN

[21] Y. Gao, L. Dai, and X. Hei, ‘‘Throughput optimization of multi-BSS IEEE

802.11 networks with universal frequency reuse,’’ IEEE Trans. Commun.,

vol. 65, no. 8, pp. 3399–3414, May 2017.

[22] B. Perabathini, E. Baştuǧ, M. Kountouris, M. Debbah, and A. Conte,

‘‘Caching at the edge: A green perspective for 5G networks,’’ inProc. IEEE

Int. Conf. Commun. (ICC), London, U.K., Jun. 2015, pp. 2830–2835.

[23] M. Tao, E. Chen, H. Zhou, and W. Yu, ‘‘Content-centric sparse multicast

beamforming for cache-enabled cloud RAN,’’ IEEE Trans. Wireless Com-

mun., vol. 15, no. 9, pp. 6118–6131, Sep. 2016.

[24] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

Cambridge, MA, USA: MIT Press, 1999.

[25] X. Chen, ‘‘Smoothing methods for nonsmooth, nonconvex minimization,’’

Math. Programm., vol. 134, no. 1, pp. 71–99, Aug. 2012.

[26] A. Canziani, A. Paszke, and E. Culurciello, ‘‘An analysis of deep neural

network models for practical applications,’’ in Proc. IEEE Int. Symp.

Circuits Syst., May 2016, pp. 1–7.

[27] S. Zhang et al., ‘‘Architectural complexity measures of recurrent neural

networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1822–1830.

[28] J. Kouthník, J. Schmidhuber, and F. Gomez, ‘‘Online evolution of deep

convolutional network for vision-based reinforcement learning,’’ in From

Animals to Animats, vol. 13. Cham, Switzerland: Springer, pp. 260–269.

International Publishing, Cham, pp, 260-269.2014.

[29] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos.

(2017). ‘‘Learning to optimize: Training deep neural networks for wireless

resource management.’’ [Online]. Available: https://arxiv.org/abs/1705.

09412

[30] A. Graves. (2016). ‘‘Adaptive computation time for recurrent neural net-

works.’’ [Online]. Available: https://arxiv.org/abs/1603.08983

[31] A. Canziani, A. Paszke, and E. Culurciello, ‘‘An analysis of deep neural

network models for practical applications,’’ in Proc. IEEE Int. Symp.

Circuits Syst., 2016. [Online]. Available: https://arxiv.org/abs/1605.07678

[32] S. Zhang et al. (2016). ‘‘Architectural complexity measures of recurrent

neural networks.’’ [Online]. Available: https://arxiv.org/abs/1602.08210

[33] K. He and J. Sun, ‘‘Convolutional neural networks at constrained time

cost,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), 2015,

pp. 5353–5360.

[34] F. M. Harper and J. A. Konstan, ‘‘The MovieLens datasets: History and

context,’’ ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, pp. 1–19,

Dec. 2015.

[35] S. Müller, O. Atan, M. van der Schaar, and A. Klein, ‘‘Context-

aware proactive content caching with service differentiation in wire-

less networks,’’ IEEE Trans. Wireless Commun., vol. 16, no. 2,

pp. 1024–1036, Feb. 2017.

WEI LI was born in Chongqing, China, in 1988.

He received the B.S. and M.S. degrees in commu-

nication engineering from the Chongqing Univer-

sity of Posts and Telecommunications (CQUPT),

Chongqing, in 2012 and 2015, respectively. He is

currently pursuing the Ph.D. degree with the

National Key Laboratory of Science and Technol-

ogy on Communications, University of Electronic

Science and Technology of China (UESTC). His

current research interests include ultra-dense net-

works’ resource management and deep reinforcement learning.

JUN WANG (S’03–M’09) received the B.S.

degree in communication engineering and the

M.S. and Ph.D. degrees in communication and

information systems from the University of Elec-

tronic Science and Technology of China (UESTC),

Chengdu, China, in 1997, 2000, and 2009,

respectively.

Since 2000, he has been with the National

Key Laboratory of Science and Technology on

Communications, UESTC, where he is currently

a Professor. His research interests include signal processing for wireless

communications and machine learning for wireless communications.

GUOYONG ZHANG received the B.S. degree

from the University of Electronic Science and

Technology of China (UESTC), Chengdu, China,

in 2014, where he is currently pursuing the

Ph.D. degree with the National Key Labora-

tory of Science and Technology on Communi-

cations. His current research interests include

cognitive radio and signal processing for wireless

communications.

LI LI was born in Chongqing, China, in 1994.

He received the B.S. degree from the University

of Electronic Science and Technology of China

(UESTC), in 2016, where he is currently pursuing

the Ph.D. degree with the National Key Laboratory

of Science and Technology on Communications.

His current research interests include signal pro-

cessing algorithms and anti-jamming technology

based on machine learning.

ZE DANG received the B.S. degree from Dalian

University, Dalian, China, in 2017. She is currently

pursuing the M.S. degree with the National Key

Laboratory of Science and Technology on Com-

munications, University of Electronic Science

and Technology of China (UESTC). Her current

research interests include interference cognition

and machine learning.

SHAOQIAN LI (M’02–SM’12–F’16) received the

B.E. degree in communication technology from

Xidian University, Xi’an, China, in 1981, and the

M.E. degree in information and communication

systems from the University of Electronic Science

and Technology of China (UESTC), Chengdu,

China, in 1984.

In 1984, he joined UESTC as an Academic

Member, where he has been a Professor of infor-

mation and communication systems, since 1997,

and a Ph.D. Supervisor, since 2000. He is currently the Director of the

National Key Laboratory of Science and Technology on Communications,

UESTC. He holds more than 60 granted and filed patents. His general inter-

ests include the areas of wireless and mobile communications, anti-jamming

technologies, and signal processing for communications’ subjects. He has

published more than 100 journal papers, 100 conference papers, and two

edited books in the above-mentioned fields. His current research topics focus

on multiple-antenna signal processing technologies for mobile communica-

tions, cognitive radios, and coding and modulation for the next-generation

mobile broadband communications systems.

Mr. Li has been a member of the Communication Expert Group, National

863 Plan, since 1998, and the Future Project, since 2005. He is currently a

member of the Board of Communications and Information Systems, Aca-

demic Degrees Committee, State Council of China, and the Expert Group of

Key Special-Project on Next-Generation Broadband Wireless Mobile Com-

munications of China (approved by the State Council, since 2007). He has

served as a Technical Program Committee (TPC) Member for various IEEE

conferences. He is also an Editorial Board Member of the Chinese Science

Bulletin and the Chinese Journal of Radio Science. He was a TPC Co-Chair

of 2005, 2006, and 2008 IEEE International Conference onCommunications,

Circuits, and Systems.

VOLUME 7, 2019 39401

	INTRODUCTION
	SYSTEM MODEL AND PROBLEM FORMULATION
	NETWORK MODEL
	CACHE MODEL
	ENERGY CONSUMPTION MODEL
	PROBLEM FORMULATION

	DEEP REINFORCEMENT LEARNING BASED CACHE STRATEGY
	BRIEF OVERVIEW OF DEEP REINFORCEMENT LEARNING
	DEEP REINFORCEMENT LEARNING BASED CACHE STRATEGY
	SYSTEM STATES
	SYSTEM ACTIONS
	REWARD FUNCTION

	ADVANCED DEEP REINFORCEMENT LEARNING BASED CACHE STRATEGY
	PRIORITIZED EXPERIENCE REPLAY FOR HISTORY EXPERIENCE TUPLE SELECTION
	DUELING ARCHITECTURE FOR Q-FUNCTION
	DEEP RECURRENT NEURAL NETWORK (RNN) FOR DEEP Q NEURAL NETWORK

	REMARKS
	COMPLEXITY
	SCALABILITY

	SIMULATION RESULTS
	CONCLUSIONS
	REFERENCES
	Biographies
	WEI LI
	JUN WANG
	GUOYONG ZHANG
	LI LI
	ZE DANG
	SHAOQIAN LI

