
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 1, FEBRUARY 2007 85

A Reinforcement Learning Model to Assess Market
Power Under Auction-Based Energy Pricing

Vishnuteja Nanduri, Student Member, IEEE, and Tapas K. Das, Member, IEEE

Abstract—Auctions serve as a primary pricing mechanism
in various market segments of a deregulated power industry.
In day-ahead (DA) energy markets, strategies such as uniform
price, discriminatory, and second-price uniform auctions result in
different price settlements and thus offer different levels of market
power. In this paper, we present a nonzero sum stochastic game
theoretic model and a reinforcement learning (RL)-based solution
framework that allow assessment of market power in DA markets.
Since there are no available methods to obtain exact analytical
solutions of stochastic games, an RL-based approach is utilized,
which offers a computationally viable tool to obtain approximate
solutions. These solutions provide effective bidding strategies for
the DA market participants. The market powers associated with
the bidding strategies are calculated using well-known indexes
like Herfindahl–Hirschmann index and Lerner index and two
new indices, quantity modulated price index (QMPI) and rev-
enue-based market power index (RMPI), which are developed in
this paper. The proposed RL-based methodology is tested on a
sample network.

Index Terms—Auctions, average reward stochastic games,
competitive Markov decision processes (CMDPs), deregulated
electricity markets, market power, reinforcement learning (RL).

I. INTRODUCTION

MARKET power is defined as the ability of a seller to
maintain prices above competitive levels for a signifi-

cant period of time. Market power (MP) of the participants is
among the chief concerns of the designers of deregulated elec-
tric power markets. The participants could derive MP from dif-
ferent sources that are either inherent in the market design or
are manifested through operational parameters. The design pa-
rameters that could potentially yield MP include market rules
(e.g., capacity withholding, price caps, arbitrage), pricing and
settlement mechanisms (e.g., LMP, types of auctions, transmis-
sion rights), and demand side bidding. Examples of operational
parameters include types and sizes of available generation tech-
nologies (nuclear, coal, gas, hydro), transmission constraints,
existing forward contracts, and load distribution in the network.
The objective of this research was to develop a modeling ap-
proach and its solution strategy that would allow assessment of
the impact of auction-based pricing strategies on MP.

Common forms of multiunit electricity auctions are uniform
price auction, discriminatory auction, and second-price uniform
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auction. Cramton [1] notes that, under a uniform price auction,
the generator supplying the last MWh meeting the market de-
mand sets the market-clearing price. This gives the clearing gen-
erator an incentive to overstate costs. Such a tendency increases
with the quantity supplied. Under a discriminatory auction, the
bidders’ incentive is to bid as close to the clearing price as pos-
sible since this auction rewards those that can best guess the
clearing price. Typically, this favors larger companies that can
spend more on forecasting and are more likely to set the clearing
price as a result of their size. In sharp contrast, uniform pricing
favors the smaller companies (or those with small unhedged po-
sitions going into the market). The small generators are able to
free ride on the exercise of market power by the larger genera-
tors. The fundamental insight of the second-price uniform auc-
tion is that, since the price a generator receives is independent of
his/her own offer price, marginal cost bidding can be induced as
a weakly dominant strategy [2], [3]. Other important literature
on electricity auctions include [4]–[8] and [9].

In POOLCO-type markets, bidding tends to be strategic in na-
ture, where bidders seek opportunities to exercise market power.
The extent of MP could vary under different auction mech-
anisms as well as network conditions, including transmission
constraints [10], [11]. Other papers that address the issue of
market power are Stoft [12], Mount [13], Nicolaisien et al. [7],
Spear [14], Borenstein et al. [15], Bunn and Oliviera [16], and
Hogan and Harvey [17].

The daily operation of a day-ahead (DA) electricity market
with competing market participants and random demand real-
izations can be studied within the framework of nonzero sum
stochastic games. Such games with Markovian probability
structure lend themselves to be modeled as competitive Markov
decision processes (CMDPs). In this paper, we present a CMDP
model for a DA energy market in which prices and quantity
settlements are accomplished through multiunit auctions.
Since there are no available methods to obtain exact analytical
solutions for CMDPs, a reinforcement learning (RL)-based
approach is utilized, which offers a computationally viable tool
to obtain approximate solutions. It is shown through detailed
study of a sample network how the CMDP model and the
RL-based solution approach can be used to examine market
powers under various auction-based pricing strategies.

A critical aspect in the study of stochastic games is the re-
ward mechanism, common forms of which are discounted re-
ward, average reward, and total reward. In the repeated game
environment of a DA market, the rewards from the bids are re-
alized within a day, and hence, average reward appears to be
the most appropriate reward criterion. The reward criterion sig-
nificantly impacts the existence of Nash equilibria of stochastic
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games. For example, discounted reward nonzero sum CMDPs
are guaranteed to have at least one mixed strategy Nash equi-
librium. However, the question whether, with respect to the av-
erage reward criterion, there always exist equilibrium solutions
for nonzero sum games is still open [18]. However, the exis-
tence of equilibria under average reward is known for some spe-
cial cases, including irreducible games [18]. We note that the
Markov chain underlying the DA energy market, as described
in Section II-A, is irreducible, since for any combination of bid-
ding strategies, all states of the DA market form an ergodic class.
Hence, the existence of an equilibrium for the DA market is
guaranteed, though its uniqueness is not.

As mentioned earlier, no exact computational method exists
for obtaining the Nash equilibria of a nonzero sum average
reward stochastic game. The difficulty of computation arises
from the complex nature of interactions among the competing
decisions of the participants, probabilities of state transitions,
and the reward structure. For stochastic games with a single
state, which essentially becomes a matrix game, efficient so-
lution methods exist [19]–[21]. In the recent years, algorithms
based on a stochastic approximation method (known as rein-
forcement learning) have been presented to the literature to
solve stochastic games. An approach can be found in [22],
where it is shown that for each stage of a -discounted nonzero
sum stochastic game, there exists an equivalent matrix game.
A reinforcement learning algorithm is presented in [22] that
learns the elements of the matrices via a long simulation of
the system. For a discount factor , the convergence
and optimality of the algorithm under the critical assumption
of uniqueness of equilibrium are established. Such results for
average reward games, however, are much more difficult to
obtain in the absence of helpful convergence properties of the
discounting factor. An approach similar to [22] was adopted in
[23] in establishing equivalent matrix games for average reward
irreducible nonzero sum stochastic games. A learning-based
algorithm was also presented in [23] that incrementally con-
structs the equivalent reward matrices at each time stage of
a game. In this paper, we use a similar approach, where a
reward vector is constructed for each game participant for all
state-action combinations via a learning process.

Energy markets have been widely modeled as static (one
shot) games ([24]–[27]). A large body of literature addresses
obtaining equilibrium of such static games via complemen-
tarity-based approach. A good exposition of this approach can
be found in Hobbs and Helman [28] and Daxhelet and Smeers
[29], which are also excellent sources for other references
on this topic. Matrix game approaches to solving two- and
three-player games arising in energy markets can be found in
Lee and Baldick [30], [31]. An earlier version of the stochastic
game model presented in this paper can be found in Ragupathi
and Das [32]. Some of the learning-based approaches to power
market games include [7], [16], and [33].

The rest of this paper is organized as follows. Section II
presents our stochastic game theoretic model. A novel solution
methodology using RL is presented in Section III. Section IV
consists of a numerical study for assessment of market power.
Concluding remarks appear in Section V.

II. GAME THEORETIC MODEL FOR DAY-AHEAD

ENERGY MARKET

In a DA energy market, multiple generators compete by bid-
ding to supply power in a network. The market operates as fol-
lows. At the th day, the generators submit their bid for the

th day. Actual loads and prices that comprise the system
state of the th day are used as the forecasted loads and
prices for preparing the bids of the th day. Using the price
and quantity bids and the forecasted load conditions, the system
operator solves an optimal power flow (OPF) problem to deter-
mine the least cost dispatch quantities and the bus prices for the

th day. The auction strategy in use provides a critical input
in determining the prices for the buses with more than one gen-
erator. The actual realizations of random load on the th
day are used in settling the physical dispatch and spot prices.
Thus, the state of the th day is determined by the ac-
tual demand realizations on that day and the DA bids that were
submitted on the th day. Clearly, the knowledge of the system
state on the th day allows us to predict the state of the th
day. This process of system state transitions is shown to be a
Markov chain. Also, since the generators bid noncooperatively
with an aim of maximizing their individual market powers, the
DA market is modeled as a nonzero sum stochastic game. It is
well known that a stochastic game, for which the underlying
process of state transition is a Markov chain, can be modeled
as a CMDP [18]. The Markov chain and the resulting CMDP
model for the DA market are presented next.

A. Markov Chain and CMDP Model

In this section, we first establish the notation for the network
characteristics and the system state. Thereafter, we define the
stochastic processes and show how they can be modeled as a
Markov chain and CMDP. Let denote the set of buses in
the network, and denotes the subset of supply buses
(nodes). Let the number of generators at a supply bus
be denoted by , and denotes the number of loads in the
network. Let and = de-
note the set of generators at a supply bus and the set of loads
in the network, respectively. Let , and . It
is assumed that the DA energy market bids are submitted at the
end of every day (after 12 A.M.) when the system state for the
just completed day is known. Also, to keep the model exposi-
tion simple, we assume that only the generators bid in the DA
market. The model can be extended to allow retailers to submit
price-sensitive demand bids.

We define the system state for the th day as the vector of
realized loads and prices of the most recently completed
day. Hence, , where and

denotes the realized hourly load quantity vector at the th bus,
. Also, , where represents the

realized hourly price vector at bus . Since both load
and price that constitute the system state are continuous
random variables, it is necessary to discretize them to allow for-
mulation of a discrete stochastic model, as presented here. Let
the range of possible values for both loads and prices be dis-
cretized in and steps, respectively. Then the cardinality of
the system state space is given as ,
where 24 accounts for the hours of a day. Note that our model
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allows the level of discretization to be as refined as necessary
for the desired modeling accuracy. That is, the values of and

can be chosen to be very large. However, the choice of finer
discretization leads to a significantly larger state space and in-
creased computational burden. Hence, this choice must be made
keeping in mind a balance between accuracy and computation
needs.

Now we can define the stochastic process for the state tran-
sition of the DA market as , where is
the set of integers. As discussed earlier in this section, the value
of along with the bid submitted on the th day dictate the
system state of th day, . Clearly, the process sat-
isfies the Markov property. This along with other characteris-
tics such as discrete and finite system states and time homo-
geneity assumption for the load realization process make the

process a Markov chain. The time homogeneity assumption
ensures that the probability distribution governing the load re-
alization process remains unchanged during the demand season
being modeled. We note that obtaining a closed-form analyt-
ical characterization of the transition probabilities of the Markov
chain is very difficult due to: 1) size of the system state vector
and the state space, 2) size of the decision vector space, 3) OPF
and related system constraints, and 4) auction-based price settle-
ment. However, as presented later, our machine learning-based
solution approach uses a simulation model for the DA market in-
stead of an analytical model requiring the transition probability
matrices. This simulation-based approach easily integrates solu-
tion methods for OPF-based dispatch and auction-based pricing.
Thus, we are able to avoid the complexity of analytical esti-
mation of the transition probabilities. This reduction of ana-
lytical complexity is a well-established advantage of the sim-
ulation-based machine learning approach for solving stochastic
decision-making problems [22], [34]–[36]. The notation for de-
cision vector space and the CMDP model is developed next.

Let the bid decision vector at the th day be given by
, where is the decision vector of generator and

given as . The element denotes the vector of bid
parameters for all 24 h. To limit the cardinality of the decision
space to a finite value, the bid parameters are also suitably dis-
cretized. The stochastic bidding process involves daily selection
of bid parameters by the generators. We refer to this stochastic
process as the decision process, denoted by ,
where is the decision vector chosen on the th day. Since
the decision vectors are chosen by the generators in a non-
cooperative manner, the bidding scenario characterized by the
joint process and is modeled as a stochastic game. This
stochastic game is a CMDP [18].

Solution of the CMDP requires calculation of the rewards re-
sulting from the bids submitted by the game participants. The
rewards for the bidding decisions made on the th day are de-
termined from the price and quantity settlement of the th
day. This settlement is a function of the following: submitted
bids, actual load realizations, OPF problem considerations, and
auction strategy. Reward calculation is discussed next.

B. Calculation of Rewards by Solving Optimal Power
Flow Problem

Rewards are defined as the revenue (price quantity sup-
plied) obtained by the generators from the market. The prices

and the quantities supplied at the buses are determined by the
OPF solution of the network for a given load realization. For
networks with buses having more than one generator, the prices
are influenced by both the auction strategy and the supply quan-
tities. The iterative solution process of the nonlinear OPF model,
which is described next, determines the supply allocation to the
buses that minimizes the total cost. Such least cost supply al-
locations vary for different auction strategies, since the prices
paid to the generators at a bus for any given allocation may vary
with the auction strategy in use. This indicates that the solutions
of the OPF and the auction problems are intertwined and thus
should be considered together.

OPF problem formulations generally maximize social wel-
fare in the presence of demand-side bidding (using consumer
benefit functions), which is not considered here. Also, since our
model examines DA market with bidding for active power only,
we use an AC-OPF formulation that minimizes the total cost of
meeting the active power demand while considering the system
constraints, including that of reactive power. The mathematical
formulation given below is similar to that in [37]. The formula-
tion is applicable under both uniform and second price uniform
auctions. Modifications necessary for discriminatory auctions
are discussed later

subject to (1)

(2)

(3)

set of buses (4)

(5)

(6)

In the objective function equation, denotes the auction-based
clearing price of active power at bus , which serves as an input
parameter to the optimization problem. This clearing price,
which is received by all the generators at bus , is determined
as follows. , the supply quantity allocated to bus , is sub-
divided to the set of generators at the bus based on their bid
prices. For uniform auction policy, the generator that supplies
the last MW sets the clearing price for the bus. For second
price uniform auction, the clearing price for the bus is set by
the generator whose price is immediately below the clearing
generator.

Under discriminatory auction, since every generator gets
his/her bid price, the OPF objective function is modified to

where is the set of all generators in the network, and de-
notes the bid price (equal to price received) corresponding to
the active power supply allocation to generator . The
price , which serves as an input parameter to the optimization
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problem, is obtained as follows. Let the active power supply al-
location to bus be . This quantity is subdivided to the set of
generators at the bus (where ) based on their bid
prices, such that . Then, as per discriminatory
auction, each generator receives a price corresponding to
on his/her supply curve.

Constraint (1) in the OPF model ensures that all the active
demand and the active transmission losses are met
by the generators selected for dispatch at any given time (ac-
tive power balance equation). The constraint (2) ensures that
all the reactive demand and the reactive transmission losses

are met by generators selected for dispatch (reactive
power balance equation). The term in (3) denotes the flow
limit for the power transmitted from Bus to Bus . Constraint
(3) ensures that the maximum flow limit constraints in both di-
rections are not violated. The constraint (4) is used to maintain
the voltage limits for each Bus. Constraints (5) and (6) are used
to maintain active and reactive power generation limits.

III. CMDP MODEL SOLUTION STRATEGY

In a power network with numerous buses and generators, the
number of possible system states (represented by discretized
values of load, , and price, ) is very large. For example, in a
12-bus network, with loads and prices discretized in three steps,
the number of system states is approximately . As a re-
sult, obtaining the matrices for transition probabilities and re-
wards associated with the CMDP model are very difficult. Since
the RL approach uses a simulation model to capture system dy-
namics instead of transition probability matrices, it can handle
very complex system structures. Note that, even for very com-
plex systems, simulation models can be developed with rela-
tive ease knowing the probability distributions of the random
variables that govern the system behavior. The dimensionality
problem in RL, though much less pronounced compared to an-
alytical approaches, still persists. However, new tools such as
diffusion wavelet-based function approximation [35] are being
developed by RL researchers to improve scalability of RL. For
those who are unfamiliar with the topic of RL, a brief overview
of how the competing agents learn their bidding strategies is
given in the following subsection.

A. Overview of Reinforcement Learning Approach

The theory of RL is founded on two important principles:
Bellman’s equation and the theory of stochastic approximation
[38], [39]. Any learning model contains four basic elements:

1) system environment (simulation model);
2) learning agents (market participants);
3) set of actions for each agent (action spaces);
4) system response (participant rewards).

Consider a system with three competing market participants.
At a decision-making epoch when the system is in state , the
three learning agents that mimic the market participants select
an action vector . These actions and the
system environment (model) collectively lead the system to the
next decision-making state (say, ). As a consequence of the
action vector and the resulting state transition from to

, the agents get their rewards , and
from the system environment. Using these rewards,

the learning agents update their knowledge base (R-values, also
called reinforcement value) for the most recent state-action
combination encountered . The updating of the R-values
is carried out slowly using a small value for the learning rate.
This completes a learning step. At this time, the agents select
their next actions based on the R-values for the current state
and the corresponding action choices. The policy of selecting
an action based on the R-values is often violated by adopting
a random choice, which is known as exploration, since this al-
lows the agents to explore other possibilities. The probability of
taking an exploratory action is called the exploration rate. Both
learning and exploration rates are decayed during the iterative
learning process. This process repeats and the agent perfor-
mances continue to improve. For stochastic games with average
reward, a sample greedy updating scheme for the R-value for
the player after the visit to the state-action combination
at the th step (denoted as ) can be given as

(7)

where is the learning rate at step (which is decayed after
every step), and is a scalar for which current average reward
of agent can be used. The current average reward can be ob-
tained by dividing the running sum of rewards for agent by
the number of decision steps encountered. In the RL algorithm
used in this paper, the current average reward values are also
learned to avoid large fluctuations. After continuing learning for
a large number of steps, if the R-values for all state-action com-
binations converge, the learning process is said to be complete.
The converged R-values are then used to find a stable bidding
policy for each of the agents. A rationale for the above R-value
updating scheme can be found in the reinforcement learning lit-
erature (Gosavi [40], Abounadi et al. [41]).

1) Scalability of RL Approach: Implementation of RL
algorithms for networks with large state-action spaces suffers
from computational difficulties in storing and updating of the

-values. This problem of scalability can be addressed by the
use of a function approximation scheme via artificial neural
networks (ANNs). Large state-action spaces can be suitably
subdivided into smaller subsets, where every state-action com-
bination in a subset can share a single -value. The -value
is represented by a linear neuron with two layers (simplest
possible ANN), one for input and the other for output. This
is equivalent to piecewise linear approximation of a nonlinear
function. That is, instead of directly learning a separate -value
for each state-action combination, the ANN weights are learned
for each neuron representing a set of state-action combinations.
An example of such an implementation can be found in [42].
A recent paper by Manfredi and Mahadevan [35] discusses
a diffusion wavelet-based function approximation approach
for R-values. Such efforts are likely to further improve the
scalability of RL approaches.

B. Average Reward RL Algorithm for CMDP Model

A schematic diagram of the steps of the RL algorithm is
shown in Fig. 1. It has two nested layers. The outer layer imple-
ments the learning, while the inner layer implements the auction
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Fig. 1. Schematic for implementation of the RL algorithm.

and AC-OPF procedures. The outer layer (RL) is coded in C. For
the inner layer, MATLAB code available from MATPOWER for
solving AC-OPF is adopted. The learning phase (Box 1) begins
by initializing the parameters for simulation of the DA energy
market. System state for the DA is forecasted based on the re-
alized demand and prices of the previous day (Box 2). For this
forecasted system state, the bid decisions are made by the gener-
ators based on the existing R-values (Box 3). After the bid deci-
sions are made, the actual DA demand is simulated, which along
with the bid decisions are sent to the combined auction-OPF
program (Box 4). The prices and the quantities corresponding to
the least cost dispatch obtained from the OPF solution are then
sent for generator reward calculations (Box 5). These rewards
are then used to update the R-values (Box 6). If the convergence
criterion for the R-values is not met, the program returns to Box
2; else, the learned phase of the algorithm begins at Box 7. In
this phase, a learned bidding strategy based on the final R-values
is employed and no further updating of the R-values are done.

Completion of the learned phase implementation yields the av-
erage rewards for each generator.

Before presenting a mathematical statement of the complete
RL algorithm, we next provide a brief explanation of the pur-
pose of each step of the algorithm. The algorithm is derived
from the well-established literature on single agent reinforce-
ment learning approaches to stochastic dynamic programming
problems (Gosavi [40], Kaelbling [43], Abounadi et al. [41]).
A recent extension of single agent RL literature to multi-agent
discounted reward games is presented by Hu and Wellman [22].
Average reward RL algorithms for stochastic games, similar in
structure to the one presented here, have also appeared recently
(Ragupathi and Das [32], Ravulapati et al. [44]). This stepwise
explanation corresponds exactly to the steps of the algorithm.

1) Initialize the following variables:
— R-values for each generator and all state-action combi-

nations;
— current average reward values for the generators;
— input parameters for the two different learning rates and

an exploration rate.
2) Assume that the iteration count , the

system state is . MaxSteps denotes the length of simula-
tion run over which the generators learn; it is a termination
criterion.

a) Each generator chooses the bid (action) that has the
highest reinforcement value with a probability
of one minus the current exploration rate. All of the
remaining actions are possible choices for an ex-
ploratory action and are assigned equal proportion of
the exploration probability. A uniform (0,1) random
variable is used for each generator to select an action
according to the above probabilities.

b) The system simulation is initiated to generate the DA
demand. This demand information along with bids
chosen by the generators are sent to the OPF program.

c) The nonlinear OPF program, solved in conjunction
with the auction rule, provides the optimal quantity
allocation and bus prices.

d) Rewards of the generators resulting from the bids are
computed based on OPF solution outcomes. Also, the
system state for the next day is determined from the
information on demand and bus prices for the day.

e) For each generator, the R-value for the most recent
state-action combination is updated. Also updated are
the generator’s average reward values.

f) Update the current system state and the iteration
count.

g) The learning and exploration parameters are updated.
A well-known decay scheme proposed by Darken et
al. [45] is used.

h) If the current iteration count is less than MaxSteps, the
algorithm continues at Step 2a); else, it moves to Step
3. (MaxSteps is the maximum number of iterations by
which the R-values are expected to converge.)

3) Use the final R-values obtained from the learning phase to
obtain the stable bidding strategies for all generators. Sim-
ulate the DA market with these strategies to assess average
rewards for the generators.
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Algorithm:
1) Let iteration or decision epoch count . Initialize for

all generators , the -values as for all
states , and the average reward values as .
Set the count for the number of visits to each state-action
combination as , where is an ele-
ment of the set of all actions available to generator

in state . It is assumed that the generators do not have
knowledge of their competitors’ actions. Also initialize the
input parameters for two different learning rates
and the exploration rate .

2) Assume that at the iteration count , the
system state is . MaxSteps is the termination criterion.

a) For each player , with probability ,
choose an action for which is
maximum. With a probability of , choose a random
(exploratory) action from the set . At
(i.e., in the first step), choose an action randomly since
all the R-values are zeros.

b) Start the system simulation by generating the demand
for the day. Send the information on demand and gen-
erator bids to the OPF program.

c) Solve the OPF problem for the network using the
auction rule to obtain the optimal price and quan-
tity allocations while satisfying all the system-related
constraints. The constraints satisfied are demand and
supply constraints, voltage constraints, thermal limit
constraints, and the constraints of power flow, as ex-
plained in Section II-B.

d) Use the optimal price and quantity allocations ob-
tained by the OPF to determine the system state for the
next decision epoch. Let the system state at that epoch
be . Calculate , the reward for th gen-
erator resulting from the actions chosen
by the generators 1 through in state .

e) Update the R-values and the av-
erage reward as follows:

(8)

where

and
for greedy action
for other actions

Also

(9)

f) Set and .

Fig. 2. One-line diagram of the sample power network.

g) Update the learning parameters and and
exploration parameter following the DCM [45]
scheme given below:

where (10)

where denotes the initial value of a learning/explo-
ration rate, and is a large value (e.g., ) chosen
to obtain a suitable decay rate for the learning/ex-
ploration parameters. Exploration rate generally has
a large starting value (e.g., 0.4) and a quicker decay,
whereas learning rates have small starting value (e.g.,
0.01) and very slow decay rate. Exact choice of these
values depends on the application (see [34] and [42]).

h) If , go to Step 2a; else, go to Step 3.
3) Simulate the system with the final R-values,

, and estimate the average re-
ward for each generator. These are assumed to be stable re-
wards realized by the generators in the DA energy market.

IV. NUMERICAL STUDY

In this section, we present a detailed description of the
12-bus electric power network, which was used as a vehicle to
implement the RL algorithm and perform numerical analysis.
Also presented are the generator rewards and the corresponding
market concentration and market power index values for each
of the auction strategies. Results obtained from a designed
statistical experiment, performed to analyze the significance of
auction strategies, load, and congestion on market performance,
are also presented.

A. Sample Network

The sample network is adopted from networks available in
MATPOWER 2.0 software [46]. A one-line representation of
the network, developed using POWERWORLD software [47],
is shown in Fig. 2. Some of the key features of the network
(resistance, reactance, and long-term line ratings) are provided
in Table I. Since the adopted network has single generator in
each of the supply buses, in order to implement auction-based
pricing that requires multiple generators at a bus, we made the
following modifications. Subsets of the supply buses were con-
nected by zero resistance lines in order to simulate the multiple
generator bus scenario. In particular, we connected 1) Buses
1, 4, and 10; 2) Buses 3, 6, and 11; and 3) Buses 2 and 8, as
depicted in the shaded portions of the one-line diagram. The
modified network, which now effectively has a total of seven
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TABLE I
KEY NETWORK FEATURES

Fig. 3. Learning curves for Generator 1.

buses (three supply buses and four load buses), was validated
using POWERWORLD. Fig. 3 shows the improvement of the
rewards of Generator 1 during the learning phase under all three
auction rules. It can be seen from the figure that the average
rewards reached stable values after a relatively small number
of simulation runs (approximately 250 days), which took about
2 h on a Pentium IV PC with a 2-GHz processor. It appears
that the choices of the numerical values of the network and
market parameters in the numerical example (e.g., transmission
constraints, marginal costs, generator capacities, demand, bid
markups) were such that a few state-action combinations were
visited more frequently, resulting in a quick stabilization of the
average reward. For networks with large number of buses and
closely competing generators, the number of state-action com-
binations for which R-values are to be learned could be very
large. This would take the learning process a much longer simu-
lation run (in number of days simulated) to converge, requiring
extended computing time. This can be tackled through use of
cluster computing.

B. Results From the Numerical Study

The primary objective of the numerical study was to demon-
strate the ability of the RL-based methodology to assess market
power of the participants. We organized the numerical study in
three major stages. First, we obtained the prices and quantity al-
locations to the buses of the sample network under all three auc-
tion types. This was carried out for two separate (high and low)
load scenarios (see Table II). In the second stage, we considered
two levels of congestion (high and low) in addition to the two

TABLE II
LOAD (MWH) PARAMETERS

TABLE III
AVERAGE PRICES ($/MWH) AND QUANTITIES (MWH)

IN HIGH AND LOW LOAD SCENARIOS

levels of load. For all congestion-load combinations, two com-
monly used MP indexes along with a new index, introduced in
this paper, were calculated for all auction types. The third stage
involved examining the sensitivity of MP to factors such as load,
congestion, and auction type using a new revenue-based market
power index developed in this research. The sensitivity analysis
was performed via a designed statistical (factorial) experiment.

1) Stage 1—Average Price and Quantity Allocations:
Table III presents the average prices received and average quan-
tities supplied by all the eight generators in the network for all
six auction-load combinations. The loads were assumed to be
normally distributed. The normality assumption was motivated
by a statistical test of seasonal load data from the PJM market
[32]. Table III is broken into three parts (for formatting reasons),
where each part includes a subset of competing generators. The
following observations can be made from the table—1) in most
of the cases, discriminatory auction offered highest average
prices to the generators followed by the uniform and second
price uniform auctions, 2) generators in a discriminatory auc-
tion tend to bid higher as the network load increases, whereas
in the uniform and second price uniform auctions, the bids do
not change appreciably, and 3) the allocation of supply quantity
among the generators supplying to a bus varies considerably
with the auction rule. The table also contains, in the last row,
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TABLE IV
AVERAGE QUANTITY WEIGHTED PRICES ($) IN

HIGH AND LOW LOAD SCENARIOS

the marginal costs of each generator. This provides a visual
estimate of the extent of MP in various auction-load situations.
A detailed study of different MP indexes is presented in Stage
2 of the numerical study.

We note that using average price as a measure of performance
of a generator could be misleading, since in an auction-based
market settlement, it is possible for a generator to receive a
high price at the cost of a limited supply quantity. In averaging
price over a large number of days of operation in the simula-
tion run, several such high entries for price could raise the av-
erage price value. Use of such an average to assess MP could
lead to wrong conclusions since it may not be appropriately re-
flected in the revenue earned by the generators. Hence, we used
average quantity weighted price (AQWP) as a substitute for av-
erage price, which we defined as

AQWP of Generator

where is the total number of days simulated, and and
denote the price received and active power quantity sup-

plied, respectively, by generator on day . Table IV presents
the average quantity weighted prices for all auction-load com-
binations that were considered in Table III. As expected, the av-
erage quantity weighted prices in most cases are considerably
different from the average prices.

2) Stage 2—Study of Market Concentration and Market
Power: In this section, we first present the definition of a market
concentration indicator, known as Herfindahl–Hirschman index
(HHI), and a new variant of HHI based on market performance.
Also presented is the definition of Lerner index (LI), which
measures market power. Thereafter, we define a new market
power index named quantity modulated price index (QMPI).
The numerical values for all the indexes for 12 possible auc-
tion-load-congestion combinations are presented. Though the
MP indexes considered here are primarily price/quantity based,
as noted in [48], market power can also be manifested through
lower quality of products and services and deferment of new
entries to the market. MP can also be exercised by the buyers
through demand side bidding, which is not considered here.

HHI, an index based on installed capacities, is defined as

where is the total number of generators, is the installed
capacity of generator , and the expression within the paren-
thesis is the percentage of market capacity owned by generator
. Clearly, the value of HHI of a monopoly would be 10 000,

while the index value would be smaller for a larger number of
market participants. Under Department of Justice/Federal Trade
Commission (DOJ/FTC) standards, a market with HHI value
less than 1000 is considered to be free of market concentration.
Markets with HHI values between 1000 and 1800 are considered
moderately concentrated, and values greater than 1800 indicate
high market concentration. HHI, as defined above, is an ex-ante
index, which is static and thus differs from the actual market
concentration that corresponds to the dynamic bid-based supply
allocations. Hence, such a market performance-based HHI (re-
ferred to hereafter as HHI ) could be obtained by simply re-
placing the installed capacities in the HHI expression by the
generator supply quantities resulting from the bid-based
settlement. The idea of a supply quantity-based HHI index was
briefly mentioned in [49]–[51]. We note that, since ,
it can be easily shown that

That is, the HHI value serves as the lower bound for the pos-
sible HHI values in markets with strategic bidding.

LI, a price-based MP index, is calculated for the network as
an average over all generators as

where denotes the price received for active power, and
is the marginal cost of generator . In a perfectly competitive
market, where the demand curve is perfectly elastic, the LI
equals zero. In a monopolistic market, the generator will use its
market power to set its profit-maximizing output in the inelastic
portion of the demand curve and charge a price greater than
the marginal cost. In that case, the LI is greater than zero. In
essence, inelastic demand implies large market power or vice
versa. QMPI is proposed here as a modified version of LI that
uses AQWP instead of average price. It is defined as

QMPI, though still a price-based index, indirectly also considers
the quantity allocation. Thus, QMPI is not undesirably impacted
by scenarios where generators receive high prices without a sig-
nificant supply allocation. This is in contrast to purely quan-
tity-based HHI and purely price-based LI.

The MP indexes (HHI, LI, and QMPI) were calculated for
the sample network for each of the auction mechanisms under
different load-congestion scenarios. The load-congestion sce-
narios are as shown in Table V. The numerical values of the MP
indexes are given in Table VI. The HHI , shown in column 4 of
the table, are the index values calculated using average supply
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TABLE V
LOAD AND CONGESTION PARAMETERS USED IN MARKET POWER STUDY

TABLE VI
HHI, LI, AND QMPI VALUES FOR THE NETWORK

quantities of the generators. For all three auction rules and all
load-congestion combinations, the HHI values were between
1432 and 1778, indicating moderate market concentration. The
HHI value computed from installed capacities was 1257, which
supports the observation made earlier that HHI serves as the
lower bound for HHI . The LI and QMPI values show that a
consistently high bid markup is exhibited under discriminatory
auction, which is followed by uniform price auction and second
price uniform auction. The bid markup for second price uni-
form auction was found to be 50%–60% lower than the other
two auctions, which confirms the common belief that second
price uniform auction induces truthful bidding. We also note
from Table VI that the QMPI index values are not significantly
different from the LI values. This can be attributed to the fact
that, for the sample network, the differential between the av-
erage price and the AQWP was fairly small.

3) Stage 3—Sensitivity of Market Power: A generalized
mixed full factorial designed experiment was set up to study

TABLE VII
EXPERIMENTAL COMBINATIONS WITH RESPONSE VALUES

the sensitivity of market power to factors such as auction type,
load, and congestion. Readers unfamiliar with the subject of
experimental design are referred to an excellent easy-to-follow
treatment of this topic in [52]. We defined a new revenue-based
measure of MP, named revenue-based market power index
(RMPI), for use as the response variable in the designed exper-
iment. RMPI is a measure of network profit (net revenue minus
net marginal cost), which is defined as

where denote the average price of active power received by
generator over all the runs of simulation, and denotes the
marginal cost of generator . The term denotes the average
active power quantity allocation. Clearly, for a market to be
competitive, a lower value of RMPI is desirable. The lowest
possible value of RMPI is zero, which is attainable only in a
perfectly competitive market.

In the experimental design, congestion and load factors
were studied at two levels (see Table V), while the auction
type was studied at three levels (uniform, discriminatory, and
second price uniform). This resulted in a total of 12 (2 2 3)
experimental combinations for a full factorial study. Due to
the long duration of simulation run that was needed to learn
the bidding strategies for each of the 12 combinations, only a
single replicate of the response was used. An estimate of the
error sum of squares needed for analysis of variance (ANOVA)
was obtained from a normal probability plot of the effect
estimates of all factors and interactions. Table VII shows the
experimental data. The sum of squares (SS) of the error was
assessed by combining the sum of the squares of a main factor
(congestion) and three two-level interactions (auction and load,
auction and congestion, and load and congestion), which were
found to be insignificant from a normal probability plot of the
factor and interaction effects. The result of ANOVA is shown in
Table VIII, where denotes the calculated F-test statistic ,and

denotes the test limit. The results indicate that only
auction type and load are significant factors. It appears from
the result that, for the sample network, the generators need to
consider only auction type and network load condition while
making bidding decisions in DA energy markets. It is also
interesting to note, from the average prices presented earlier in
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TABLE VIII
ANOVA RESULTS WITH RMPI AS RESPONSE VARIABLE

Table III, that the generators in a discriminatory auction raise
their bids under higher loads, which gives the impression that
the auction and load interaction might be a significant factor.
This, however, is not supported by the ANOVA results.

V. CONCLUDING REMARKS

The primary contributions of this paper include the formula-
tion of a stochastic game model for the energy market and its re-
inforcement learning-based solution methodology. Though the
literature is rich with game theoretic treatments for deregulated
energy markets, almost all of these papers present the problem
within a mathematical programming framework. These models
are very well suited to analyze static (one shot) versions of the
energy market games with large number of market participants.
However, under stochastic demand variations within a modeling
horizon, e.g., an hour or a day, the equilibrium obtained from the
above models for a given value of the demand may not be op-
timal for the entire horizon. Hence, the stochastic demand real-
izations during a modeling horizon should be taken into account,
particularly when significant variations are expected. This is ac-
complished in this paper via the CMDP model, which formu-
lates the POOLCO DA energy market as a nonzero sum average
reward stochastic game.

The reinforcement learning-based solution method for the
CMDP model presented in this paper is definitely a first cut ap-
proach to a very difficult problem. We are currently working
on developing theoretical conditions under which the learning-
based solution algorithm may provide Nash equilibrium solu-
tions. Scalability of the RL-based solution approach still re-
mains a challenge in solving stochastic games involving actual
power networks. This is due to the complexity of the ac version
of OPF that our model considers and the large dimensionality
of the state-action space. Nonetheless, the RL-based method,
which is developed here, allows us to tackle the stochastic game
in DA markets in its entirety. Further research is needed before
the issues of convergence, optimality, and scalability are fully
addressed.
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