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Abstract

The CPR (“cumulative proportional reinforcement”) learning rule
stipulates that an agent chooses a move with a probability proportional
to the cumulative payoff she obtained in the past with that move.
Previously considered for strategies in normal form games (Laslier,
Topol and Walliser, Games and Econ. Behav., 2001), the CPR rule is
here adapted for actions in perfect information extensive form games.
The paper shows that the action-based CPR process converges with
probability one to the (unique) subgame perfect equilibrium.
Key Words: learning, Polya process, reinforcement, subgame per-

fect equilibrium.

1 Introduction

Reinforcement learning has a long history spanning from Animal Psychology
to Artificial Intelligence (see Sutton and Barto, 1998 for more details). In
Games and Economics, several reinforcement rules have been introduced
(see Fudenberg and Levine, 1998). Some rules were considered in order to
explain the choices made by individuals in laboratory experiments when
observed at intermediate stages in interactive situations (Roth and Erev,
1995; Camerer, 2003). The same and other rules were more extensively
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studied in the literature from a theoretical point of view, especially with
respect to their asymptotic behavior (see Sarin and Vahid, 1999, 2001).
The CPR (Cumulative Proportional Reinforcement) rule, also called the
‘basic’ reinforcement rule, is perhaps the simplest mathematical model of
reinforcement learning. It associates a ‘valuation rule’ and a ‘decision rule’
with each period. The former states that the player computes for each action
an index equal to its past cumulative payoff. The latter states that the player
plays an action with a probability proportional to that index.

A preceding paper (Laslier, Topol and Walliser, 2001, henceforth LTW)
studied the convergence properties, in repeated finite two-player normal form
games, of the learning process where each player uses the CPR rule. On the
one hand, LTW proved that the process converges with positive probabil-
ity toward any strict pure Nash equilibrium. On the other hand, LTW
proved that the process converges with zero probability toward any non
Nash state as well as toward some mixed Nash equilibria (duly character-
ized). Lastly, for some non strict Nash equilibria, convergence could not be
elucidated. Note that, for a single decision-maker under risk, LTW showed
that the process converges toward the expected payoff maximizing action(s).
Related theoretical results are given in Hopkins (2002), Beggs (2002) and
Ianni (2002).

The present paper considers repeated finite extensive form games with
perfect information, assumed to have generic payoffs (no ties for any player).
Passing from normal to extensive form games, the CPR principle can be
adapted in two ways. With the s-CPR (strategy-based CPR) rule, each
player applies the CPR rule to its “strategies”, a strategy being defined,
as usual in game theory, as a set of intended conditional actions at each
node of the game tree. With the a-CPR (action-based CPR) rule, each
player applies the CPR rule to each action at each node in the game tree
when reached (although the player only receives the payoff at the end of
the path). The main result of the present paper is that the a-CPR process
converges with probability 1 toward the unique subgame perfect equilibrium
path (obtained by backward induction). Moreover, for any learning process,
one may distinguish between ‘convergence in actions’ of the moves which
are selected and ‘convergence in values’ of the indices which are computed.
The a-CPR process converges in actions, even if it may not converge in
values. However, the perfect equilibrium values (i.e. the payoffs that the
players reach at each node, when at the subgame perfect equilibrium) may
be asymptotically recovered by dividing the cumulative index by the number
of trials of an action.

A similar problem was already studied in the literature, with a simi-
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lar result, but with different reinforcement learning rules. Jehiel and Samet
(2000) considered the ε-greedy rule: the valuation rule asserts that the player
computes for each action an index equal to its past average payoff; the de-
cision rule asserts that she plays, with some given probability, the action
maximizing the index and, with the complementary probability, a random
-uniformly distributed- action. Since some randomness is present until its
end, the process converges in values toward the subgame perfect equilib-
rium values, but the actions only approach the subgame perfect equilibrium
actions. More precisely, the sub-sequences of index-maximizing actions con-
verges toward the subgame perfect equilibrium, but random actions continue
to be played with a fixed positive probability. Pak (2001) considered a more
sophisticated rule: the valuation rule associates to each action a stochastic
index equal either to its past payoffs (with a probability proportional to
their frequency) or to some random values (with a probability decreasing
with the number of occurences of that action); the decision rule states that
she chooses the maximizing action. Here, the process converges (for even
a larger class of rules containing the preceding one) toward the subgame
perfect equilibrium actions, but not toward the equilibrium values, even if
they are recovered by taking the expected value of the random variable.

In both cases, the learning rule reflects a trade-off faced by each player
between exploration and exploitation, which takes place in a non stationary
context. Exploitation is expressed by the decision rule, which is close to
a maximizing rule, and by the valuation rule, which is a nearly averaging
rule. Exploration is expressed by a random perturbation, either on the
decision rule (first case) or on the valuation rule (second case). In addition,
the perturbation is constant in the first case, and decreasing in the second
case. Conversely, the exploration component of the CPR rule is directly
integrated in a non maximizing decision rule (allowing for mutations). Its
exploitation component is associated with a cumulative valuation rule (since
it creates a feedback effect on the best actions). Hence, the trade-off is
endogenous, leading to more exploration at the beginning of the process
(since the initial indices are uniform) and to more exploitation in the latter
stages if convergence occurs (exploration decreases to zero but remains active
till the end).

The paper first presents the game assumptions and the two variants of
the CPR learning process. Then the main convergence result concerning
the action-based CPR rule is proven. Finally, the convergence properties of
the action-based and the strategy-based processes are compared using an
example.
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2 Game and learning assumptions

Consider a perfect information stage game defined by a finite tree formed
by a set I of players, a set N of non terminal nodes (including the root
node r), a set M of terminal nodes, a set A of edges (actions). For each
node n, call I(n) the player who has the move at that node, A(n) the set
of actions at her disposal, and G(n) the subgame starting at the node. For
each node n, except for r, call B(n) the unique node leading to it. For each
terminal nodem, call u(m) the payoff vector, assumed to be strictly positive:
∀i ∈ I,∀m ∈ M,ui(m) > 0. Denote by ui = min{ui(m) : m ∈ M} > 0 the
smallest payoff player i can get from any terminal node and by ui = max
{ui(m) : m ∈M} the largest one.

The game is said to be “generic” if, for any player, her payoffs at different
terminal nodes differ: if m 6= m0 ∈ M, then ∀i ∈ I, ui(m) 6= ui(m0). The
game is said to be “weakly generic” under the condition that, if for one
player, her payoffs at two different terminal nodes are identical, then this
occurs for all players : if ∃ i ∈ I and m, m0 ∈M such that ui(m) = ui(m0),
then ∀j ∈ I, uj(m) = uj(m0). In this paper, we only consider generic games,
although some results can easily be extended to weakly generic games.

A pure strategy si of player i specifies an action played at each node
of player i (i. e. each node n ∈ N such that I(n) = i). A player’s mixed
strategy specifies a probability distribution over all her pure strategies. A
player’s behavioral strategy specifies, for each node n such that I(n) = i, a
probability distribution on the actions available to player i at this node. The
combination of strategies (si)i∈I played by all players is denoted s. A generic
game has a unique subgame perfect equilibrium (SPE) s∗, obtained by a
backward induction procedure. To each node n, the equilibrium strategy
vector s∗ associates an action a∗(n) for player I(n) and a unique terminal
nodem∗(n). The payoff obtained by player i in the subgame G(n) is denoted
u∗i (n) = ui(m

∗(n)).
The stage game is now played an infinite number of times, labelled by

t. At each period t, a path of play is followed; denote δt(a) = 1 when the
path reached action a and δt(a) = 0 otherwise. Each player i knows which
nodes she successively reached and observes the payoff ut(i) she gets at the
end. After t periods, call Nt(a) the number of times that action a was used.
The a-CPR (“action-based cumulative proportional reinforcement”) rule is
defined not on mixed strategies, but on behavioral strategies. It is composed
of two parts:

- the valuation rule states that, at the end of each period t, for each node
n such that i = I(n), each action a such as a ∈ A(n) is associated with an
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index vt(a) which is the cumulative payoff obtained by that action in the
past (each payoff obtained at the end of a path is allocated simultaneously
to all actions in the path): vt(a) = Στ∈[0,t−1]uτ (i) δτ (a); the initial valuation
is v0(a).

-the decision rule states that, at each period t, if node n is attained, the
player chooses an action a ∈ A(n) according to a probability distribution pt
proportional to the index vector vt: pt(a) = vt(a)/Σb∈A(n)vt(b).

Of course, the extensive form stage game can be tranformed into a normal
form stage game by introducing the notion of a strategy. Notice that a
generic extensive form game does not generally lead to a generic normal
form game (i.e. a game in which, for each player, all payoffs are different)
but to a weakly generic normal form game (i.e. a game in which, if for some
player, two issues yield the same payoff, then, for all players the payoffs at
these two issues are equal too). Using the CPR rule on that normal form
defines the s-CPR (“strategy-based cumulative proportional reinforcement”)
rule:

-the valuation rule states that, at the end of period t, each strategy s is
associated with an index vt(s) which is the cumulative payoff obtained by
that strategy in the past;

-the decision rule states that, at each period, each player chooses a strat-
egy s among the available strategies, with a probability pt(s) proportional
to its index vt(s).

3 Convergence results

Considering the a-CPR process, a necessary condition for sufficient explo-
ration is that the process visits each node an infinite number of times. This
condition is ensured by the first result:

Lemma 1 With the a-CPR rule applied to a generic perfect information
extensive form game, each node is almost surely reached an infinite number
of times.

Proof: First, the following statement is proven: for any node n, if n is
reached an infinite number of times, then each action a ∈ A(n) is chosen
an infinite number of times. For each a ∈ A(n), the payoff that player
i = I(n) obtains after choosing a is in some positive interval [ui(a), ui(a)].
The cumulative payoff associated to an action other than a is thus bounded
above by an affine function of time, and the probability of playing action a
is bounded below by the inverse of an affine function of time. Therefore, the
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argument of the proof of Proposition 1 in LTW applies. Second, since the
initial node is obviously reached an infinite number of times, by successive
steps in the finite tree, such is the case for all nodes. QED.

Lemma 1 ensures that each path (including the SPE path) is played with
probability 1 an infinite number of times. The second result shows that the
SPE path is played infinitely more often than any other path :

Theorem 1 With the a-CPR rule applied to a generic perfect information
extensive form game, the probability of playing the SPE path at time t con-
verges almost surely to 1.

Proof:
(a) Notation and argument. Let (Ω,π) be a probability space on which
the repeated play of the game following the a-CPR rule is realized: Ω is
the set of all possible complete histories of the repeated game; π is the
probability distribution induced by the stochastic CPR rule on this set. An
event happens “almost surely” if the π-probability that this event does not
happen is equal to zero. A draw ω ∈ Ω defines the path h(t,ω) at date t
and the history H(t,ω) = (h(τ ,ω))1≤τ≤t−1 up to date t. The probability
of playing any path at date t is a function of H(t,ω) which we simply see
as a function of t and ω. The probability of playing the subgame perfect
equilibrium path at date t from a non-terminal node n ∈ N is denoted by
qt(n,ω). What is to be proved is that, for all n, π-almost surely, qt(n) tends
to 1 when t tends to infinity.

By definition of the a-CPR process, for any draw ω, qt(n,ω) is the prod-
uct of the probabilities pt(a∗(n0),ω) of choosing the perfect equilibrium ac-
tion at all the non-terminal nodes n0 (including n) on the equilibrium path
in the subgame G(n). In other terms, qt(n,ω) = pt(a∗(n),ω) qt(n0,ω), where
n0 is the node resulting from a∗(n). Hence, the proof proceeds by induction
on subgames.
(b) Initial step. For the initial induction step, consider any node en which is
followed only by terminal nodes. Here, qt(en,ω) = pt(a∗(en),ω). Player I(en)
faces a choice between actions in A(en) among which a∗(en) is the maximizing
one. According to the lemma, π-almost surely, the process reaches node en
an infinite number of times tθ, θ = 1, 2, ...; one may number these (random)
dates by the new index θ. By definition of the a-CPR rule, pt(a∗(en),ω) is
only modified when node en is reached. Thus, slightly abusing notation, the
probability of playing a∗(en) can be written pθ(a∗(en),ω). Consider now the
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event:

F (en) = ½ω ∈ Ω / lim
θ→∞

pθ(a
∗(en),ω) = 1¾ .

According to Proposition 4 in LTW applied to time scale θ, the process
converges almost surely towards the maximizing action:

π(F (en)) = 1.
In particular, for almost all ω ∈ Ω, and for any ε > 0, there exists Θ such

that, if θ ≥ Θ, then pθ(a∗(en),ω) ≥ 1−ε. We already noted that pt(a∗(en),ω)
is only modified at dates θ (when node n is reached). Hence, there exists
T such that, if t ≥ T, then pt(a∗(en),ω) ≥ 1− ε. This proves that, π-almost
surely:

lim
t→∞

pt(a
∗(en),ω) = lim

t→∞
qt(en,ω) = 1.

(c) Induction. For the general induction step, consider any non-terminal
node n. Player i = I(n) faces a choice between actions in A(n), but the
payoff to such an action is now random. Label a0, a1, ..., ak, ... the actions
in A(n), any action ak leading to node nk, with a0 = a∗(n) the perfect
equilibrium action. Each nk is the root of a subgame G(nk), hence defines,
given the history, a lottery Lt(nk) at time t for player i. However, the
probabilities involved in Lt(nk) are not fixed and Proposition 4 in LTW is
no longer directly applicable. It is necessary to introduce auxiliary lotteries
with fixed probabilities. These lotteries are denoted by L(·). They depend
on action ak being the SPE action or not:

- if k = 0, the lottery L(n0) gives to player i the equilibrium payoff
ui(n0) = u∗i (en) with probability 1 − ε0 and payoff ui (the smallest payoff
player i can get) with probability ε0;

- if k 6= 0, the lottery L(nk) gives payoff ui(nk) = u∗i (nk) with probability
1− εk and payoff ui (the largest payoff player i can get) with probability εk.

By definition of a subgame perfect equilibrium, ui(n0) ≥ ui(nk) for all
k, and by the genericity hypothesis, each inequality is strict for k 6= 0.
Consider the auxiliary 1-player CPR process defined by the lotteries L(nk).
For ε0 and εk small enough, the expected payoff in L(nk) is smaller than
the one in L(n0), thus Proposition 4 in LTW applies, and the player chooses
asymptotically lottery L(n0). The probability of choosing action a0, which
is denoted by pt(a0), tends almost surely to 1.

Now compare, starting at n, the auxiliary fixed-lottery a-CPR process
with the true a-CPR process. By the induction hypothesis, in the true
process, there exists Tk such that for t > Tk, the probability qt(nk) is almost
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surely greater than 1 − εk. Given that action ak is played, the probability
of receiving ui(nk) is larger in the true process than in the auxiliary one.
Thus, one can define the auxiliary and true processes on the same space
(Ω,π) in such a way that, for all ω ∈ Ω such that ak is played, ui(nk) is
obtained in the true process whenever it is obtained in the auxiliary one.
The comparative payoffs, π-almost surely, are the following:

- if a0 is played , then the payoff in the auxiliary process (ui(n0) or ui)
is lower than the payoff in the true one;

- if ak 6= a0 is played, then the payoff in the auxiliary process (ui(nk) or
ui) is larger than the payoff in the true one.

It follows that, π-almost surely, the cumulative payoff vt(a0) is larger in
the true process than in the auxiliary one while vt(ak) is lower (for k 6= 0).
Consider now the decision rule at node n. It states that the probability of
choosing action ak is proportional to vt(ak). It follows that, almost surely,
a0 is played more often in the true process: pt(a0) ≥ pt(a0). Since pt(a0)
tends to 1, so does pt(a0). The probability of playing the equilibrium path
from n is qt(n) = pt(a0)qt(n0) and since qt(n0) tends to 1 by the induction
hypothesis, it is the same for qt(n). QED.

4 Concluding remarks

For a generic extensive form game, one wishes to compare the respective
effects of the s-CPR and the a-CPR processes. To highlight the differences,
consider an example, similar to the chain-store paradox, and depicted in
extensive and normal form (Figure 1 and matrix 1). In such a 2× 2 game,
the strategies of a player coincide with his actions. In this game, CC is the
subgame perfect equilibrium and it is a strict pure Nash equilibrium. SS is
another pure Nash equilibrium, but it is not strict. Action S for the second
player is moreover weakly dominated.

C S
C (3,3)N (1,1)
S (2,5) (2,5)N

(1)

Normal form
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S S

C C
1 2

(3, 3)

(1, 1)(2, 5)

Figure 1: Extensive form

Simulations of the game are achieved for the a-CPR and s-CPR processes
(see Figure 2). In each diagram, a point represents a probability distribution
on actions (or strategies) for each player. The upper left corner of each
diagram corresponds to the upper left corner of the payoff matrix, that is
the subgame perfect equilibrium CC, and similarly for the other issues. The
two left diagrams show typical paths starting from an initial situation where
each action for each player is played with equal probability (initial valuations
v0(a) all set to 10) and for 5,000 iterations. The two right diagrams show
typical paths starting from an initial situation close to the SS equilibrium
(intial valuations v0(a) set to 90 and 10) and for 50,000 iterations. On all
these diagrams, one can see that both processes are moving faster (and thus
more randomly) at the beginning, and are moving slower and more smoothly
with time.

Looking at the left side diagrams, one can see the convergence of both
processes toward the subgame perfect equilibrium CC. For the a-CPR process,
this is in accordance with the theorem proved in this paper. For the s-CPR
process, the results in LTW do not apply since the normal form game is
not generic; however one may conjecture that the s-CPR process converges
with a positive probability toward CC. On these same diagrams, one can
also notice that the a-CPR process is moving faster than the s-CPR process.
This can be explained by the fact that the s-CPR process has more inertia
than the a-CPR one. If the first player plays C, then for both processes,
the second player plays S or C according to her index; hence the indices
associated to the s-CPR rule and to the a-CPR rule are increased by the
same amount. If the first player plays S, the s-CPR and a-CPR processes
lead to different revisions. For the a-CPR process, the second player does
not act and the indices of his strategies remain unchanged. For the s-CPR
process, the second player plays S with a probability proportional to her
index, but since each strategy gets the same result, their indices grow on
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Figure 2: Simulations of a-CPR and s-CPR processes
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average proportionally to their initial values.
Looking at the right side diagrams, one can see that the two processes

behave differently. The upper right diagram shows the typical behavior of
the a-CPR process. Even starting from a point where he seldom uses ac-
tion S, the first player uses it more and more (path going upward), which,
progressively, causes the second player to reinforce her own action S (path
turning left). According to the theorem proved in this paper, this path
will finally converge to SS. The lower right diagram is much less clear, but
notice that the path is typically going toward the right. The weakly domi-
nated strategy S for the second player is played more and more often, but
convergence is hypothetical. No theoretical result is available in this case.
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