A Reinforcement Procedure Leading to Correlated Equilibrium: A Correction

Sergiu Hart* Andreu Mas-Colell ${ }^{\dagger}$

September 2001

In Hart and Mas-Colell [2001], one needs to replace $1 /\left(m^{i}-1\right)$ by $1 / m^{i}$ in Formula (7); that is,

$$
\begin{align*}
& p_{t+1}^{i}(k):=\left(1-\frac{\delta}{t^{\gamma}}\right) \min \left\{\frac{1}{\mu} Q_{t}^{i}(j, k), \frac{1}{m^{i}}\right\}+\frac{\delta}{t^{\gamma}} \frac{1}{m^{i}}, \text { for } k \neq j ; \text { and } \tag{7}\\
& p_{t+1}^{i}(j):=1-\sum_{k \in S^{i}: k \neq j} p_{t+1}^{i}(k) .
\end{align*}
$$

Also, μ should satisfy $\mu \geq 2 M m^{i}$ (instead of $\mu>2 M\left(m^{i}-1\right)$). With these changes, ${ }^{1}$ Theorem 2 is true as stated.

The reason for this correction is that in the Proof of Step 8 we use the estimate of $\mathbf{O}(1 / \sqrt{w})$ obtained in the Lemma of Step M7 in Hart and Mas-Colell [2000]. However, this estimate depends on the lower bound β on the diagonal elements of the matrix ${ }^{2} \Pi$. The correction we have made to (7) guarantees that $\Pi_{t}(j, j) \geq 1 / m^{i}$ for all $j \in S^{i}$ and all $t \geq 1$.

[^0]The only place in the proof which is affected by this change is the Proof of Step 4: The first case is now $(1 / \mu) C_{t}^{+}(j, k) \leq 1 / m$, and its proof remains the same. In the second case, when $(1 / \mu) C_{t}^{+}(j, k) \geq 1 / m$, we have

$$
\Pi_{t}(j, k)=\frac{1-\delta_{t}}{m}+\frac{\delta_{t}}{m}=\frac{1}{m} \leq \frac{1}{\mu} C_{t}^{+}(j, k),
$$

and, for the opposite inequality,

$$
\begin{aligned}
\frac{1}{\mu} C_{t}^{+}(j, k) & \leq \ldots \leq \frac{2 M}{\mu}+\frac{M}{\mu} \bar{Z}_{t}(j, k) \leq \frac{1}{m}+\frac{M}{\mu} \bar{Z}_{t}(j, k) \\
& =\Pi_{t}(j, k)+\frac{M}{\mu} \bar{Z}_{t}(j, k)
\end{aligned}
$$

References

Hart, S. and A. Mas-Colell [2000], "A Simple Adaptive Procedure Leading to Correlated Equilibrium," Econometrica 68, 1127-1150.

Hart, S. and A. Mas-Colell [2001], "A Reinforcement Procedure Leading to Correlated Equilibrium," in Economic Essays, edited by G. Debreu, W. Neuefeind and W. Trockel, Springer, 181-200.
here, $\left.\Pi_{t}(j, j) \geq \delta / m\right)$. However, in the original Formula (7), we had $\Pi_{t}(j, j) \geq \delta t^{-\gamma} / m$, which goes to 0 as $t \rightarrow \infty$.

[^0]: *Center for Rationality and Interactive Decision Theory; Department of Mathematics; and Department of Economics, The Hebrew University of Jerusalem, Feldman Building, Givat-Ram, 91904 Jerusalem, Israel. E-mail: hart@huji.ac.il URL: http://www.ma.huji.ac.il/~hart
 ${ }^{\dagger}$ Department of Economics and Business; and CREI, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain. E-mail: mcolell@upf.es
 ${ }^{1}$ In fact, one may replace $m^{i}-1$ by $m^{i}-1+\varepsilon$ for any $\varepsilon>0$, both in (7) and in the lower bound on μ; we chose $\varepsilon=1$ for simplicity.
 ${ }^{2}$ It is easy to see that the bound obtained in that Lemma is $c(\beta) w^{-1 / 2}$, and $c(\beta) \rightarrow \infty$ as $\beta \rightarrow$ 0 . In Hart and Mas-Colell [2000], as well as in Theorem 1 of this paper, the diagonal elements of all the matrices Π_{t} are indeed uniformly bounded away from 0 (for instance: in Theorem 1

