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Abstract. KASUMI is an 8-round Feistel block cipher used in the con-
fidentiality and the integrity algorithms of the 3GPP mobile communi-
cations. As more and more 3GPP networks are being deployed, more
and more users use KASUMI to protect their privacy. Previously known
attacks on KASUMI can break up to 6 out of the 8 rounds faster than
exhaustive key search, and no attacks on the full KASUMI have been
published.

In this paper we apply the recently introduced related-key boomerang
and rectangle attacks to KASUMI, resulting in an attack that is faster
than exhaustive search against the full cipher. We also present a related-
key boomerang distinguisher for 6-round KASUMI using only 768 adap-
tively chosen plaintexts and ciphertexts encrypted or decrypted under
four related keys.

Recently, it was shown that the security of the entire encryption sys-
tem of the 3GPP networks cannot be proven using only the “ordinary”
assumption that the underlying cipher (KASUMI) is a Pseudo-Random
Permutation. It was also shown that if we assume that KASUMI is also
secure with respect to differential-based related-key attacks then the se-
curity of the entire system can be proven. Our results show that theoret-
ically, KASUMI is not secure with respect to differential-based related-
key attacks, and thus, the security of the entire encryption system of the
3GPP cannot be proven at this time.

1 Introduction

KASUMI [31] is a 64-bit block cipher used in the confidentiality and the in-
tegrity algorithms of the 3GPP mobile communications. KASUMI was devel-
oped through the collaborative efforts of the 3GPP organizational partners. It
is a slight modification of the known block cipher MISTY1 [27], optimized for
implementation in hardware.
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The security of the entire 3GPP mobile network relies on the security of the
underlying block cipher KASUMI. Initial examination of the modes of operation
used in the 3GPP networks showed that if KASUMI is a Pseudo-Random Per-
mutation (PRP), then the entire network is provably secure [20,16]. However,
it appeared that the proof was incorrect [17]. Moreover, it was shown that as-
suming only that the underlying cipher is a PRP, the security of the modes of
operation cannot be proven [17]. In [18], Iwata and Kohno showed that if KA-
SUMI is a PRP and is also secure with respect to differential-based related-key
attacks, then the modes in which KASUMI is used can be proven secure. This
result shows that the strength of KASUMI with respect to related-key attacks
is crucial to the security of the entire mobile network.

KASUMI accepts 128-bit keys and consists of eight Feistel rounds. Previous
results on KASUMI include an impossible differential attack on a 6-round version
of the cipher presented by Kühn [25] and a related-key differential attack on a
6-round version of the cipher presented by Blunden and Escott [12]. There are
no known attacks applicable to the full 8-round KASUMI.

In this paper we apply the recently introduced related-key boomerang and
rectangle attacks to the full 8-round KASUMI and to reduced-round versions of
the cipher.

The boomerang attack [33] is an adaptive chosen plaintext and ciphertext
attack built over differential cryptanalysis [9]. The cipher is treated as a cascade
of two sub-ciphers, and a short differential is used in each of these two sub-
ciphers. These two differentials are combined in an elegant way to suggest some
property of the entire cipher with high probability that can be detected using
adaptive chosen plaintext and ciphertext queries.

The boomerang attack was further developed in [21] into a chosen plaintext
attack called the amplified boomerang attack. The transformation uses birthday
paradox techniques to eliminate the adaptive nature of the attack by encrypt-
ing large sets of plaintexts. After the encryption of the plaintexts, the attacker
searches for quartets of plaintexts that behave as if they were constructed in
the boomerang process. The transformation to a chosen plaintext attack (in-
stead of an adaptive chosen plaintexts and ciphertexts attack) has price both
in a much larger data complexity, and in a much more complicated algorithm
for the identification of the right quartets. After its introduction, the amplified
boomerang attack was further developed into the rectangle attack [6]. The rect-
angle attack utilizes a more careful analysis that shows that the probability of a
right quartet is significantly higher than suggested by the amplified boomerang
attack. Also an optimized algorithm for finding and identifying the right quartets
was given in [7]. The boomerang and the rectangle attacks were used to attack
several reduced-round versions of block ciphers, including the AES, Serpent,
SHACAL-1, COCONUT98 (the full cipher), SC2000, Khufu and FEAL.

Related-key attacks were introduced by Biham [2] in 1993. This technique
assumes that the attacker is able to request the encryptions of plaintexts un-
der two related keys: an unknown key and a key (also unknown) that is re-
lated to it in some known way. Under this assumption, the attacker uses the
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relations between the keys and various weaknesses of the cipher to derive infor-
mation about the two keys. In [2] a related-key attack was applied to a mod-
ified variant of DES [28], to LOKI [13] and to Lucifer [29]. In [22] Kelsey et
al. combined the related-key technique with differential cryptanalysis [9]. In the
related-key differential attack, the attacker requests the encryption of pairs of
plaintexts with some chosen difference under the unknown key and under a re-
lated key such that the difference between the keys is chosen by the attacker.
Related-key differential attacks were used to attack several full/reduced versions
of block ciphers, including AES [14], KASUMI [31], and others (see the attacks
of [19,12,22]).

The related-key boomerang and rectangle attacks were presented by Kim
et al. [23,24] and independently by Biham et al. [8]. These attacks are a com-
bination of the boomerang/rectangle technique with the related-key differen-
tial technique. In the attack, the attacker examines quartets of plaintexts en-
crypted under four differentially related keys. The key differences are used to
improve the two differentials used for the boomerang (or the rectangle) dis-
tinguisher. Related-key boomerang and rectangle attacks were used to attack
reduced versions of AES [14], IDEA [26] and SHACAL-1 [15] and the full CO-
CONUT98 [32].

In this paper we present a key recovery related-key rectangle attack on the
entire 8-round version of KASUMI. The attack requires 254.6 chosen plaintexts
encrypted under four related keys and has time complexity of 276.1 encryptions.
We also present a related-key boomerang distinguisher of 6-round KASUMI. The
distinguisher requires 768 adaptive chosen plaintexts and ciphertexts encrypted
under four related keys and has a negligible time complexity. We summarize our
results along with previously known results on KASUMI in Table 1.1

Our results do not practically compromise the security of the 3GPP mobile
networks. However, our results show that KASUMI cannot be considered secure
against differential-based related-key attacks. Therefore, the security of the entire
mobile network cannot be proven at this stage.

This paper is organized as follows: In Section 2 we give a brief description of
the structure of KASUMI. In Section 3 we describe the related-key boomerang
and rectangle attacks. In Section 4 we present a related-key rectangle attack on
the full KASUMI. Section 5 contains a related-key boomerang distinguisher of
6-round KASUMI. Finally, Section 6 summarizes the paper.

1 We note that several generic attacks that apply to any block cipher with 64-bit block
and 128-bit keys, such as exhaustive key search, key-collision, and time-memory-data
tradeoffs, may be used to attack the cipher. For example, a key-collision attack on
this cipher has time complexity of 264 encryptions using 264 known plaintexts, each
encrypted under a different key [3]. For time-memory-data tradeoff attacks using four
different keys as in our attack, the overall time complexity (including preprocessing)
is very close to the time complexity of an exhaustive key search. A time-memory-data
tradeoff attack using a fixed known plaintext encrypted under a large number of 243

keys can be performed with on-line computation of 284 encryptions and preprocessing
of 285 encryptions [11].
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Table 1. Summary of the Attacks on KASUMI

Attack Number of Complexity Source
Rounds Keys Data Time

Higher-Order Differential 4† 1 210.5 CP 222.11 [30]
Related-Key Differential 6 1 218.6 RK-CP 2113.6 [12]
Impossible Differential 6 1 255 CP 2100 [25]
Related-Key Boomerang Distinguisher 6 4 768 RK-ACPC 1 Section 5.2
Related-Key Boomerang Key Recovery 6 34 213 RK-ACPC 213 Section 5.3
Basic Related-Key Rectangle 8 4 253 RK-CP 2102 Section 4.2
Improved Related-Key Rectangle 8 4 254.6 RK-CP 276.1 Section 4.4
Related-Key Boomerang 8 4 245.2 RK-ACPC 278.7 Section 4.4

RK – Related-key, CP – Chosen plaintext, ACPC – Adaptive chosen plaintext and ciphertext
Time complexity is measured in encryption units.
† – this attack is on a version of the cipher without the FL functions.

2 The KASUMI Cipher

KASUMI [31] is a 64-bit block cipher that has a key size of 128 bits. KASUMI
was designed as a modification of MISTY1 [27], optimized for implementation
in hardware. Therefore, most of the components of KASUMI are similar to the
respective components of MISTY1.

KASUMI has a recursive structure. Each of its eight Feistel rounds is com-
posed of an FO function which is a 3-round 32-bit Feistel construction, and of
an FL function that mixes a 32-bit subkey with the data. The order of the two
functions changes each round (in odd rounds the FL function is first, and in the
even rounds the FO function is first).

The FO function also has a recursive structure. Each of the three rounds of
the FO functions consists of a key mixing stage and of an application of the FI
function, yet another three-round Feistel construction. The FI functions use two
non-linear S-boxes S7 and S9 (where S7 is a 7-bit to 7-bit permutation and S9
is a 9-bit to 9-bit permutation) and accept an additional 16-bit subkey, which is
mixed with the data. In total, a 96-bit subkey enters FO in each round — 48
subkey bits used in the FI functions and 48 subkey bits in the key mixing stages.

Table 2. KASUMI’s Key Schedule Algorithm

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3

1 K1 ≪ 1 K′
3 K2 ≪ 5 K6 ≪ 8 K7 ≪ 13 K′

5 K′
4 K′

8

2 K2 ≪ 1 K′
4 K3 ≪ 5 K7 ≪ 8 K8 ≪ 13 K′

6 K′
5 K′

1

3 K3 ≪ 1 K′
5 K4 ≪ 5 K8 ≪ 8 K1 ≪ 13 K′

7 K′
6 K′

2

4 K4 ≪ 1 K′
6 K5 ≪ 5 K1 ≪ 8 K2 ≪ 13 K′

8 K′
7 K′

3

5 K5 ≪ 1 K′
7 K6 ≪ 5 K2 ≪ 8 K3 ≪ 13 K′

1 K′
8 K′

4

6 K6 ≪ 1 K′
8 K7 ≪ 5 K3 ≪ 8 K4 ≪ 13 K′

2 K′
1 K′

5

7 K7 ≪ 1 K′
1 K8 ≪ 5 K4 ≪ 8 K5 ≪ 13 K′

3 K′
2 K′

6

8 K8 ≪ 1 K′
2 K1 ≪ 5 K5 ≪ 8 K6 ≪ 13 K′

4 K′
3 K′

7

X ≪ i — X rotated to the left by i bits
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Fig. 1. Outline of KASUMI

The FL function accepts 32-bit input and two 16-bit subkey words. One
subkey word affects the data using the OR operation, while the second one
affects the data using the AND operation. We outline the structure of KASUMI
and its parts in Figure 1.

One of the major differences between KASUMI and MISTY1 is in the key
schedule. In KASUMI, the subkeys are derived from the key in a linear way: The
128-bit key K is divided into eight 16-bit words: K1, K2, . . . , K8. Each Ki is used
to compute K ′

i = Ki ⊕ Ci, where the Ci’s are known and fixed constants. The
constants Ci are interleaved with the key bits in order to avoid weak-key classes
based on fixing key bits to be zero. Such weak keys were found in IDEA [26] (see
for example [10]) and in other ciphers as well.
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Table 3. KASUMI’s Key Schedule Constants

Round 1 2 3 4 5 6 7 8
Constant C1 C2 C3 C4 C5 C6 C7 C8

Value 0123x 4567x 89ABx CDEFx FEDCx BA98x 7654x 3210x

In each round, eight words are used as the round subkey (up to some in-word
rotations). Therefore, the 128-bit subkey of each round is a linearly dependent of
the secret key in a very simple way. We give the exact key schedule of KASUMI
in Table 2 and list the values of the constants in Table 3.

3 Related-Key Boomerang and Related-Key Rectangle
Attacks

In this section we describe the related-key boomerang and related-key rectangle
attacks. First, we outline the boomerang/rectangle attacks and the related-key
differential attacks separately. Then, we describe the combination that forms the
related-key boomerang and related-key rectangle attacks.

3.1 The Boomerang and the Rectangle Attacks

The main idea behind the boomerang attack [33] is to use two short differentials
with high probabilities instead of one long differential with a low probability.
We assume that a block cipher E : {0, 1}n×{0, 1}k →{0, 1}n can be described
as a cascade E = E1 ◦ E0, such that for E0 there exists a differential α → β
with probability p, and for E1 there exists a differential γ → δ with probabil-
ity q. We note that the second differential γ → δ for E1 is actually used in
the backward direction, i.e., decryption, but as we are dealing with differentials
(and not truncated differentials), then this does not change the probability of
the differential.

The distinguisher is based on the following boomerang process:

– Ask for the encryption of a pair of plaintexts (P1, P2) such that P1 ⊕P2 = α
and denote the corresponding ciphertexts by (C1, C2).

– Calculate C3 = C1 ⊕ δ and C4 = C2 ⊕ δ, and ask for the decryption of the
pair (C3, C4). Denote the corresponding plaintexts by (P3, P4).

– Check whether P3 ⊕ P4 = α.

The boomerang attack uses the first characteristic (α → β) for E0 with respect
to the pairs (P1, P2) and (P3, P4), and uses the second characteristic (γ → δ) for
E1 with respect to the pairs (C1, C3) and (C2, C4).

For a random permutation the probability that the last condition is satisfied
is 2−n. For E, the probability that the pair (P1, P2) is a right pair with respect to
the first differential (α → β) is p. The probability that both pairs (C1, C3) and
(C2, C4) are right pairs with respect to the second differential is q2. If all these
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are right pairs, then E−1
1 (C3) ⊕ E−1

1 (C4) = β = E0(P3) ⊕ E0(P4). Thus, with
probability p, P3 ⊕ P4 = α. The total probability of this quartet of plaintexts
and ciphertexts to satisfy the boomerang conditions is (pq)2.

The attack can be mounted for all possible β’s and γ’s simultaneously (as
long as β �= γ). Therefore, a right quartet for E is encountered with probability
no less than (p̂q̂)2, where:

p̂ =
√∑

β

Pr 2[α → β], and q̂ =
√∑

γ

Pr 2[γ → δ].

The complete analysis is given in [33,6,7].
As the boomerang attack requires adaptive chosen plaintexts and cipher-

texts, many of the techniques that were developed for using distinguishers in
key recovery attacks cannot be applied. This led to the introduction of cho-
sen plaintext variants of the boomerang attack called the amplified boomerang
attack [21] and the rectangle attack [6]. The transformation of the boomerang
attack into a chosen plaintext attack is quite standard, as it can be achieved
by birthday-paradox arguments. The key idea behind the transformation is to
encrypt many plaintext pairs with input difference α, and to look for quartets
that conform to the requirements of the boomerang process.

Given the same decomposition of E as before, and the same basic differentials,
the analysis in [6] shows that out of N plaintext pairs, the number of right
quartets is expected to be N22−np̂2q̂2. We note, that the main reduction in
the probability follows from the fact that unlike the boomerang attack, in the
rectangle attack the event E0(P1) ⊕ E0(P3) = γ occurs with probability 2−n.

3.2 Related-Key Differentials

Related-key differentials [22] were used for cryptanalysis several times in the
past. Recall, that a regular differential deals with some plaintext difference ∆P
and a ciphertext difference ∆C such that

Pr P,K [EK(P ) ⊕ EK(P ⊕ ∆P ) = ∆C]

is high enough (or zero [5]).
A related-key differential is a triplet of a plaintext difference ∆P , a ciphertext

difference ∆C, and a key difference ∆K, such that

Pr P,K [EK(P ) ⊕ EK⊕∆K(P ⊕ ∆P ) = ∆C]

is useful (high enough or zero).

3.3 Related-Key Boomerang Attacks

Let us assume that we have a related-key differential α → β of E0 under a key
difference ∆Kab with probability p. Assume also that we have another related-
key differential γ → δ for E1 under a key difference ∆Kac with probability q.
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Fig. 2. A Related-Key Boomerang Quartet

The related-key boomerang process involves four different unknown (but re-
lated) keys — Ka, Kb = Ka ⊕∆Kab, Kc = Ka⊕∆Kac, and Kd = Ka⊕∆Kab⊕
∆Kac. The attack is performed by the following algorithm:

– Choose a plaintext Pa at random, and compute Pb = Pa ⊕ α.
– Ask for the ciphertexts Ca = EKa(Pa) and Cb = EKb

(Pb).
– Compute Cc = Ca ⊕ δ and Cd = Cb ⊕ δ.
– Ask for the plaintexts Pc = E−1

Kc
(Cc) and Pd = E−1

Kd
(Cd).

– Check whether Pc ⊕ Pd = α.

See Figure 2 for an outline of such a quartet.
It is easy to see that for a random permutation, the probability that the last

condition is satisfied is 2−n. For E the probability that this condition is satisfied
is p2q2. Hence, the related-key boomerang attack can be used for distinguishing
and key recovery attacks for this cipher.

The attack can use many differentials for E0 and E1 simultaneously (just like
in a regular boomerang attack), as long as all related-key differentials used in E0

have the same key difference ∆Kab and the same input difference α, and that all
related-key differentials used inE1 have the samekeydifference∆Kac and the same
output difference δ. Thus, the probability of a quartet to be a right one is p̂2q̂2.

In the case of KASUMI, the key schedule algorithm is linear. Therefore, given
a key difference, all subkey differences are known, and can be easily used in the
related-key model.

3.4 Related-Key Rectangle Attack

The transformation of the related-key boomerang attack into a related-key rect-
angle attack is similar to the transformation of the boomerang attack to the
rectangle attack. The related-key rectangle distinguisher is as follows:



A Related-Key Rectangle Attack on the Full KASUMI 451

– Choose N plaintext pairs (Pa, Pb = Pa ⊕ α) at random and ask for the
encryption of Pa under Ka and of Pb under Kb. Denote the set of these pairs
by S.

– Choose N plaintext pairs (Pc, Pd = Pc ⊕ α) at random and ask for the
encryption of Pc under Kc and Pd under Kd. Denote the set of these pairs
by T .

– Search a pair of plaintexts (Pa, Pb) ∈ S and a pair of plaintexts (Pc, Pd) ∈
T , and their corresponding ciphertexts (Ca, Cb) and (Cc, Cd), respectively,
satisfying:
• Pa ⊕ Pb = Pc ⊕ Pd = α
• Ca ⊕ Cc = Cb ⊕ Cd = δ

The analysis of the related-key rectangle attack is similar to the one of the
rectangle attack (with the same modifications that were presented at the related-
key boomerang attack). Starting with N plaintext pairs in S and N plaintext
pairs in T , we expect to find N22−n(p̂q̂)2 right quartets. For a random permuta-
tion the number of “right quartets” is about N22−2n, so as long as p̂q̂ > 2−n/2

we can use the rectangle attack to distinguish between a random permutation
and the attacked cipher. This distinguisher can be later used for a key recovery
attack.

4 Related-Key Rectangle Attack on KASUMI

In this section we devise a related-key rectangle attack on the entire KASUMI.
We start with a short description of the related-key differentials used in this
attack, then describe a basic attack without full optimization, and its analysis.
Finally, we describe the optimizations that reduce the complexities to our final
results.

4.1 Related-Key Differentials of KASUMI

As mentioned earlier, KASUMI’s round function is composed of two main func-
tions: the FO function and the FL function. A non-zero input difference to the
FO function can become almost any output difference, with approximately the
same probability. However, non-zero differences to the FL-function propagate
with much higher probabilities.

For the rectangle attack we use two related-key differentials. The first related-
key differential is for rounds 1–4, while the second is used in rounds 5–7.

4.1.1 A 4-Round Related-Key Differential for Rounds 1–4 This 4-
round related-key differential is an extension by one round of the related-key
differential presented in [12]. The key difference is ∆Kab = (0, 0, 1, 0, 0, 0, 0, 0),
i.e., only the third key word has a non-zero difference K ′

3 = 0001x. The plain-
text difference of the differential is α = (0x, 0020 0000x). It was shown in [12]
that with probability 1/4, the difference after three rounds is equal to α as
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well. The input difference of the FO function in the fourth round is non-zero
(0020 0000x). The key difference of the fourth round is introduced only at the
end of the FO function (precisely, in FI4,3). Hence, the non-zero difference
propagates through all the parts of FO, and the output difference of the round
function is distributed almost uniformly. Therefore, we shall use the differentials
α = (0x, 0020 0000x) → (y, 0020 0000x) for all the possible values of y. In the
worst case, all the y values are equiprobable. Thus, when using all the 232 possi-
ble values, each of them is expected to occur with probability 2−32. Hence, each
differential of the form α = (0x, 0020 0000x) → (y, 0020 0000x) has probability
2−34. The effective probability of the differentials when using all these differen-
tials simultaneously is p̂ =

√
232 · (2−34)2 =

√
2−36 = 2−18. If the y values are

not equiprobable, then the value of p̂ is higher.
As observed in [12], the attacker can select two bits of the plaintext in order

to double the probability of the differential: The attacker assigns one bit of the
plaintext to be one (thus fixing one bit of the output of the OR operation in
FL1) and one bit of the plaintext to be zero (thus fixing one bit of the output
of the AND operation in FL1). More precisely, let P = (PLL, PLR, PRL, PRR),
where PLL is the 16 plaintext bits that enter the AND operation of the FL
function in the first round, and PLR are the remaining bits of the left half of the
plaintext. The attacker sets the least significant bit of PLL and the second least
significant bit of PLR to P 0

LL = 0 and P 1
LR = 1, where the superscript x ∈ {0, 1}

denotes the x’th bit of that quarter of the plaintext. This selection ensures
that the characteristic holds with probability 1 in the first round (instead of
1/2), despite of the key difference. Therefore, the probability of the differential
α = (0x, 0020 0000x) → (y, 0020 0000x) is increased from 2−34 to 2−33, and
the effective probability of the first part of the rectangle is increased to p̂ =√

232 · (2−33)2 =
√

2−34 = 2−17.
It is possible to rotate all the words of the key difference ∆Kab and the

characteristic by the same number of bits, without changing the probability of
the characteristic. Hence, the above characteristic can be replaced by 15 other
characteristics.

4.1.2 A 3-Round Related-Key Differential for Rounds 5–7
The 3-round related-key differential used in rounds 5–7 is the 3-round differential
of [12] shifted by four rounds. The key difference is ∆Kac = (0, 0, 0, 0, 0, 0, 1, 0).
Again, it is possible to rotate the difference in K ′

7 and the corresponding values
in the characteristic, to obtain a new characteristic with the same probability.

The differential is γ = (0x, 0020 0000x) → (0x, 0020 0000x) = δ with proba-
bility q = q̂ = 1/4.

4.2 The Basic Related-Key Rectangle Attack on KASUMI

The attack on KASUMI treats the cipher as a cascade of three parts: E0 consists
of the first four rounds, E1 consists of rounds 5–7, and Ef the round after the
distinguisher (round 8), which is used for analysis. Let Ka, Kb = Ka ⊕ ∆Kab,
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Kc = Ka ⊕ ∆Kac, and Kd = Kc ⊕ ∆Kab be the unknown related keys that we
want to retrieve.

For E0 we use the 4-round differential with p̂ = 2−17 presented earlier, whose
key difference is ∆Kab = (0, 0, 1, 0, 0, 0, 0, 0) and whose input difference is α =
(0x, 0020 0000x). For E1 we use the 3-round differential with q̂ = 2−2 presented
earlier, whose key difference is ∆Kac = (0, 0, 0, 0, 0, 1, 0, 0) and whose output
difference is δ = (0x, 0020 0000x).

If we encrypt N = 251 pairs of plaintexts under Ka and Kb, and the same
number of pairs under Kc and Kd, we expect to find N2 = 2102 quartets, of
which about N2 · 2−64 · 2−34 · 2−4 = 2102 · 2−102 = 1 are right rectangle quartets.

In the attack we identify the right quartets out of all possible quartets, and
then analyze them to retrieve the subkey of round 8. This analysis is performed
in the following way:

1. Data Collection Phase:
(a) Ask for the encryption of 251 pairs of plaintexts (Pa, Pb), where Pb =

Pa ⊕ α, P 0
aLL

= 0, and P 1
aLR

= 1, and where Pa is encrypted under Ka

and Pb is encrypted under Kb. Insert each pair into a hash table indexed
by the 64-bit value of (CaRL , CaRR , CbRL , CbRR).

(b) Ask for the encryption of 251 pairs of plaintexts (Pc, Pd), where Pd = Pc⊕
α, P 0

cLL
= 0, and P 1

cLR
= 1, and where Pc is encrypted under Kc and Pd

is encrypted under Kd. For each pair, access the hash table in the entry
corresponding to the value (CcRL ⊕ 0020x, CcRR , CdRL ⊕ 0020x, CdRR).
For each pair (Pa, Pb) found in this entry, apply Step 2 on the quartet
(Pa, Pb, Pc, Pd).

The (251)2 possible quartets are filtered according to a condition on 64 bits
on the difference of the ciphertexts, leading to about 238 quartets that enter
Step 2. In the following step, we treat all remaining quartets as right quartets.
The analysis of a quartet is done by guessing 32 bits of the key (KO8,1, KI8,1),
and trying to deduce KL8,2. In most cases there is a contradiction, e.g., one of
the pairs suggests something which is impossible, or the two pairs disagree on
some key bit.

2. Analyzing Quartets:
(a) For each quartet (Ca, Cb, Cc, Cd), guess the 32-bit value of KO8,1 and

KI8,1. Assume that this is a right quartet. For the two pairs (Ca, Cc)
and (Cb, Cd) use the value of the guessed key to compute the input
and output differences of the OR operation in the last round of both
pairs. For each bit of this 16-bit OR operation of FL8, the possible
values of the corresponding bit of KL8,2 are given in Table 4. On average
(8/16)16 = 2−16 values of KL8,2 are suggested by each quartet and guess
of KO8,1 and KI8,1.

(b) For each quartet and values of KO8,1, KI8,1 and KL8,2 suggested in
Step 2(a), guess the 32-bit value of KO8,3 and KI8,3, and use this infor-
mation to compute the input and output differences of the AND opera-
tion in both pairs. For each bit of the 16-bit AND operation of FL8, the
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Table 4. Possible Values of KL8,2 and KL8,1

OR — KL8,2 AND — KL8,1

(X ′
2, Y

′
2) (X ′

2, Y
′
2)

(X ′
1, Y

′
1) (0,0) (0,1) (1,0) (1,1) (X ′

1, Y
′
1) (0,0) (0,1) (1,0) (1,1)

(0,0) {0,1} — 1 0 (0,0) {0,1} — 0 1
(0,1) — — — — (0,1) — — — —
(1,0) 1 — 1 — (1,0) 0 — 0 —
(1,1) 0 — — 0 (1,1) 1 — — 1

∗ The two bits of the differences are denotes by (input difference, output difference):
(X ′

1, Y
′
1) for one pair and (X ′

2, Y
′
2) for the other.

possible values of the corresponding bit of KL8,1 are given in Table 4. On
average (8/16)16 = 2−16 values of KL8,1 are suggested by each quartet
and guess of KO8,1, KI8,1, KO8,3, and KI8,3 and the computed value of
KL8,2.

3. Finding the Right Key: For each quartet and value of KO8,1, KI8,1,
KO8,3, KI8,3 and the value of KL8,1 and KL8,2 suggested in Step 2, guess
the remaining 32 bits of the key, and perform a trial encryption.

4.3 Analysis of the Attack

We first analyze Step 2(a), and show that given the input and output differences
of the OR operation in the two pairs of the quartet, the expected number of
suggestions for the key KL8,2 is 2−16. This means that the 238 · 232 = 270

(quartet, subkey guesses) tuples suggest 270 · 2−16 = 254 subkey guesses for
48-bit value.

Let us examine a difference in some bit j. There are four combinations of
input difference and output difference for this bit for each pair. Table 4 lists the
key bits that the two pairs suggest for the respective key bit.

There are nine entries that contain no value. For example, a difference 0
may never cause a difference 1 by any function. Another possible contradiction
happens when one pair suggests that the key bit is 0, while the second pair
suggests that the key bit is 1. The total number of possible key bits is 8 out of
16 entries. Thus, on average there is 1/2 a possibility for each bit. In total, for
the 16 bits there are (1/2)16 = 2−16 possibilities on average. A similar analysis
can be applied to Step 2(b).

As noted earlier, the expected number of (quartet, subkey guesses) tuples
that enter Step 2(b) is 254. For each of these tuples, we guess 32 additional
bits, resulting in 254 · 232 = 286 (quartet, subkey guesses) tuples. As step 2(b) is
similar to Step 2(a), then after its execution, the expected number of (quartet,
subkey guesses) tuples is 286 · 2−16 = 270, while the guessed subkey has 96 bits
in total.

Step 2(a) can be implemented using only a few logical operations. The test
whether a pair suggests a contradiction (a zero difference in the input with
corresponding non-zero difference in the output) can be performed as follows: Let
X ′ be the word of input differences and let Y ′ be the word of output differences.
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Compute Z = X ′ ∧ Y ′, where X ′ is the bitwise complement of X ′. If Z is non-
zero then there is some bit in X ′ which is zero, while the corresponding bit in
Y ′ is 1. Thus, we can check using two logical operation whether one of the pairs
suggests a contradiction of this kind.

We can also find which bits of the key a key suggests. For the OR operation,
the bits that a pair suggests is the bits for which X ′ has 1, and the value of
KL8,2 in these bits is the same as in Y ′. To check whether the two pairs suggest
contradicting values for the key, it suffices to check whether (X ′

1 ∧ X ′
2) ∧ (Y ′

1 ⊕
Y ′

2) �= 0. A similar method can be used on Step 2(b) (after updating the relevant
expression to take into consideration the AND operation). Further optimizations
of the generation of the list of possible values of KL8,2 and KL8,1 can be made
using table lookups.

Step 3 goes over all 270 suggestions for the 96 bits of the key, and tries
to complete the remaining 32 bits by an exhaustive search. This can easily be
performed due to the linear key schedule of KASUMI. The time complexity of
this step is 2102 trial encryptions.

As the complexity of Step 3 is dominant, the total complexity of this attack is
2102 trial encryptions. This complexity is further reduced in the next subsection.

4.4 Improvements of the Attack

Step 3 can be improved by using counting techniques. In case we encrypt three
times the data (252.6 plaintexts encrypted under four different keys), we expect
to have nine right quartets. Instead of completing the missing key bits by an
exhaustive key search, we count how many (quartet, subkey guesses) tuples
suggest each value of the 96 bits of KO8,1, KI8,1, KO8,3, KI8,3, KL8,1 and
KL8,2. Only few possible wrong key values are expected to get more than five
suggestions. On the other hand, the right key has probability 88.4% to have at
least this number of suggestions. Therefore, we identify which 96-bit values have
more than five suggestions, and exhaustively search over the remaining bits of
these cases. The time complexity of this attack is dominated by Step 2(b). The
data complexity of the attack is 254.6 related-key chosen plaintexts and the time
complexity of the attack is equivalent to 286.2 full KASUMI encryptions.

Another improvement of the attack is based on the observation that Step 2(b)
can be implemented in two substeps. In the first one, we guess KO8,3 and the
9 bits of KI8,3,2, and find the value of only 9 bits of KL8,1. Hence, we generate
9 · 254 · 225 = 282.2 (quartet, subkey guesses) where the subkey guess is of 73
bits. As this improvement first deals only with 9 bits of KL8,1, the expected
number of remaining (quartet, subkey guesses) values is 273.2. Then, we perform
the second substep on the 7 remaining bits of KI8,3,1 and of KL8,1. The time
complexity of the attack is now dominated by the first substep of Step 2(b),
whose complexity is equivalent to about 279.2 KASUMI encryptions.

Our last improvement uses the fact that Step 2(b) (and even its first sub-
step) partially depends on Step 2(a). After Step 2(a) there are 254 tuples of the
form (quartet, subkey guesses), where the subkey guess is of 48 bits. However,
Step 2(b) uses only 32 bits of the guessed subkey, i.e., the value of KO8,1 and
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KI8,1. As mentioned earlier, a given quartet suggests about 216 values for the 48
bits of KO8,1, KI8,1, KL8,2. However, it suggests about 212.9 values for 32 bits
of KO8,1, KI8,1.

This observation is used to reduce the complexity of the attack: The purpose
of Step 2(a) is now to find the list of about 212.9 values for KO8,1, KI8,1 that
a quartet suggests, and then Step 2(b) finds the list of about 212.9 values for
KO8,3, KI8,3. Only then, in Step 3, we take into consideration the possible values
of KL8,1 and KL8,2. This reduces the time complexity of the attack to 276.1

KASUMI encryptions.
The attack can also be transformed into a related-key boomerang attack that

requires 243.2 adaptive chosen plaintexts and ciphertexts (encrypted under four
different keys). The attack is performed starting at the decryption direction, and
thus it is a chosen ciphertext attack with adaptively chosen plaintexts. The time
complexity of this related-key boomerang attack is 278.1 encryptions.

5 The Related-Key Boomerang Attack on 6-Round
KASUMI

In this section we present a related-key boomerang attack on 6-round KASUMI.
The attack is on the first six rounds (rounds 1–6). It finds 16 bits of the key
using only 768 adaptive chosen plaintexts and ciphertexts.

5.1 Another 3-Round Differential of KASUMI

In this subsection we present four related-key conditional characteristics [1] for
rounds 4–6 of KASUMI. We describe the conditional characteristics in the back-
ward direction as this is the direction in which we use them. These characteristics
can be easily adapted to hold for any three consecutive rounds starting with an
even round, either in the forward or in the backward direction.

The key difference of all these conditional characteristics is ∆Kac =
(0, 0, 0, 0, 0, 1, 0, 0). Unlike regular characteristics, conditional characteristics de-
pend on the value of some key bit. The four conditional characteristics we use
depend on the same key bit. Two of them assume that the value of this key bit
is 0, while the two other assume that the value is 1. Let δ0 = (0020 0000x, 0x),
δ1 = (0020 0040x, 0x), and δ′ = (0001 0000x, 0x). The two conditional char-
acteristics that depend on the value zero are δ0 → δ0 and δ0 ⊕ δ′ → δ0. The
two conditional characteristics that depend on the value one are δ1 → δ1 and
δ1 ⊕ δ′ → δ1 (the index of the subscript of δ denotes the value of the key bit).
All these conditional characteristics have probability 1/4.

Given a pair with a ciphertext difference of the conditional characteristic,
then during the decryption the zero input difference is preserved in round 6
by the FO6, and with probability 1/2 it is also the output difference of FL6
(there is a subkey difference in one bit that is canceled with probability 1/2).
In round 5, we hope to achieve a difference of 0020 0000x after FL5, which
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is then canceled with the key difference in KO5,1. This is where the condi-
tional property of the characteristics is used. In order to achieve the desired
output difference of FL5, the conditional characteristic depends on the value
of the key bit that is ANDed in FL5. There is an active bit in the data, and
if the value of the key bit is 1, then this difference is preserved. Otherwise, if
the value is 0, then the AND operation has a zero output difference. Thus, for
a given value of this key bit, exactly two out of the four characteristics yield
a difference 0020 0000x after FL5 (this part of the conditional characteristic
has probability 1), whereas for the other two characteristics this difference is
impossible. Therefore, in our attack we use all four characteristics in parallel,
and know that two of them pass round 5 with a zero output difference with
probability 1.

In round 4, the zero difference is preserved by the FO4 function. Again, it has
probability 1/2 to be preserved also by FL4, and probability 1/2 of not being
preserved. Thus, the input difference of the characteristic is either the output
difference (δ1 or δ2), or the output difference XORed with δ′.

Hence, either each of the first two conditional characteristics have probability
1/4, or the other two have probability 1/4. For each such case the effective
probability based on the two characteristics is q̂ =

√
(1/4)2 + (1/4)2 = 1/

√
8.

The successful conditional characteristics are determined by the value of the fifth
bit of K5 (i.e., K4

5 ).
We note that all these conditional characteristics can be rotated along with

the key difference, to produce 15 similar sets of characteristics with the same
effective probability.

5.2 A Related-Key Boomerang Distinguisher on 6-Round KASUMI

In this subsection we present a related-key boomerang distinguisher of 6-round
KASUMI. The distinguisher is mounted on rounds 1–6 of KASUMI, but it can
be easily adapted to rounds 2–7 or to rounds 3–8 as well.

Denote by E a reduced version of KASUMI consisting of the first six rounds
of the cipher. We describe E as a cascade E = E1 ◦ E0, where E0 corre-
sponds to rounds 1–3 and E1 corresponds to rounds 4–6. The attack exploits
the characteristic α = (0x, 0020 0000x) → (0x, 0020 0000x) of E0 with proba-
bility 1/4, as well as the four characteristics δ0 → δ0, δ0 ⊕ δ′ → δ0, δ1 → δ1,
and δ1 ⊕ δ′ → δ1 of E1 with probability 1/4. The key difference used in E0 is
∆Kab = (0, 0, 1, 0, 0, 0, 0, 0), and the key difference of all the characteristics of
E1 is ∆Kac = (0, 0, 0, 0, 0, 1, 0, 0).

The attack essentially performs two standard related-key boomerang distin-
guishers, one for each possible value of the key bit K4

5 . A small improvement that
we use, is to save some of the data by reusing some of the plaintexts generated
in the attack. The attack algorithm is as follows:

1. Choose M pairs of plaintexts (Pa,i, Pb,i) (for 1 ≤ i ≤ M) such that Pa,i ⊕
Pb,i = α. Ask for the encryption of the pairs such that in each pair, Pa,i

is encrypted under Ka and Pb,i is encrypted under the related-key Kb =
Ka ⊕ ∆Kab. Denote the corresponding ciphertexts by (Ca,i, Cb,i).
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2. For 1 ≤ i ≤ M , calculate Cc,i = Ca,i ⊕ δ0 and Cd,i = Cb,i ⊕ δ0. Ask for the
decryption of the pairs (Cc,i, Cd,i) such that in each pair, Cc,i is decrypted
under Kc = Ka⊕∆Kac and Cd,i is decrypted under Kd = Ka⊕∆Kab⊕∆Kac.
Denote the corresponding plaintexts by (Pc,i, Pd,i).

3. For 1 ≤ i ≤ M , calculate Ce,i = Ca,i ⊕ δ1 and Cf,i = Cb,i ⊕ δ1. Ask for the
decryption of the pairs (Ce,i, Cf,i) such that in each pair Ce,i is decrypted un-
der Kc and Cf,i is decrypted under Kd. Denote the corresponding plaintexts
by (Pe,i, Pf,i).

4. Check whether Pc,i ⊕ Pd,i = α and count the number of such occurrences.
5. Check whether Pe,i ⊕ Pf,i = α and count the number of such occurrences.
6. If one of the two counters from Steps 4 and 5 is greater than zero, then

output “6-Round KASUMI”. Otherwise, output “Not 6-Round KASUMI”.

The total probability of the boomerang process of this distinguisher is (1/4)2 ·
(1/

√
8)2 = 1/128, either for quartets counted in Step 4 or for quartets counted

in Step 5. Therefore, for M = 256 we expect to find two right quartets in
Step 4 or Step 5 (either for the quartets (Pa,i, Pb,i, Pc,i, Pd,i) or for the quartets
(Pa,i, Pb,i, Pe,i, Pf,i)). Filtering of these pairs is expected to be very effective as
for a random permutation the probability of the event Pc,i ⊕ Pd,i = α (or the
event Pe,i ⊕ Pf,i = α) is 2−64.

The boomerang distinguisher can be improved using the following obser-
vation: Just like in the rectangle attack, by fixing two plaintext bits (P 0

aLL
=

0, P 1
aLR

= 1), the probability of the first characteristic in the encryption direction
is 1/2 (instead of 1/4)2. Therefore, if we choose all the (Pa,i, Pb,i) according to
this additional requirement, the probability of the characteristic in rounds 1–3
in the forward direction doubles.

The overall probability of this boomerang process in this case is doubled
to 1/64. Thus, M = 128 suffices for a success rate of about 86%. Hence, our
distinguisher requires a total of 3 · 128 · 2 = 768 adaptively chosen plaintexts
and ciphertexts such that 256 chosen plaintexts are encrypted and 512 adap-
tively chosen ciphertexts are decrypted. The time complexity of the attack is
negligible.

5.3 Related-Key Boomerang Key Recovery Attack on 6-Round
KASUMI

We note that the boomerang distinguisher can be also used for a key recovery
attack. As mentioned earlier, the set of characteristics (of E1) for which the
attack succeeds depends on the value of a single key bit of K5. Thus, the value of
this key bit can be detected by observing which one of the sets of characteristics
of E1 is successful. Similar attacks can be mounted by taking other single bits
of K6 to have key difference in E1. That way, all 16 bits of K5 can be retrieved
by performing the attack 16 times, each time with another key difference. The
rest of the key can be retrieved using auxiliary techniques.
2 The actual probability is slightly higher, i.e., 5/8, and the probability of the first

characteristic in the decryption direction is 5/16.
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This variant of the attack requires 256 chosen plaintexts encrypted under
two keys (Ka and Kb), and sixteen times the decryption of 512 adaptive cho-
sen ciphertexts decrypted under two related keys. The total data complex-
ity of the attack is 213 adaptive chosen plaintexts and ciphertexts encrypted
under 34 keys. The time complexity of the attack is less than 213 KASUMI
encryptions.

6 Summary and Conclusions

In this paper we apply the related-key boomerang and related-key rectangle
attacks to the KASUMI block cipher. Our attacks are first attacks on the full ci-
pher. The related-key rectangle attack requires 254.6 chosen plaintexts encrypted
under four keys (252.6 plaintexts encrypted under each key). The time complexity
is equivalent to 276.1 KASUMI encryptions.

We also present an efficient related-key boomerang distinguisher on 6-round
KASUMI requires 768 adaptive chosen plaintexts and ciphertexts, using four
related keys.3 This attack can be converted to a key recovery attack that requires
213 adaptive chosen plaintexts and ciphertexts encrypted under 34 related keys,
and finds 16 key bits with time complexity of less than 213 KASUMI encryptions.

Previous works show that the security of the KASUMI block cipher with
respect to related-key attacks is significant for proving that the modes of oper-
ations used in the 3GPP networks are secure. Our results show that KASUMI
cannot be considered secure with respect to differential-based related-key at-
tacks. Therefore, the currently existing security proofs of the protocols of the
3GPP network should be revised to reflect this situation.
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