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Abstract

Most current semantic segmentation approaches fall

back on deep convolutional neural networks (CNNs). How-

ever, their use of convolution operations with local recep-

tive fields causes failures in modeling contextual spatial re-

lations. Prior works have sought to address this issue by

using graphical models or spatial propagation modules in

networks. But such models often fail to capture long-range

spatial relationships between entities, which leads to spa-

tially fragmented predictions. Moreover, recent works have

demonstrated that channel-wise information also acts a piv-

otal part in CNNs. In this work, we introduce two sim-

ple yet effective network units, the spatial relation module

and the channel relation module, to learn and reason about

global relationships between any two spatial positions or

feature maps, and then produce relation-augmented feature

representations. The spatial and channel relation modules

are general and extensible, and can be used in a plug-and-

play fashion with the existing fully convolutional network

(FCN) framework. We evaluate relation module-equipped

networks on semantic segmentation tasks using two aerial

image datasets, which fundamentally depend on long-range

spatial relational reasoning. The networks achieve very

competitive results, bringing signicant improvements over

baselines.

1. Introduction

Semantic segmentation of an image involves a prob-

lem of inferring every pixel in the image with the se-

mantic category of the object to which it belongs. The

emergence of deep convolutional neural networks (CNNs)

[19, 33, 12, 16, 1, 40] and massive amounts of labeled data

has brought significant progress in this direction. How-

ever, although with more complicated and deeper networks

and more labeled samples, there is a technical hurdle in
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Figure 1: Illustration of long-range spatial relations in an

aerial image. Appearance similarity or semantic compati-

bility between patches within a local region (red–red and

red–green) and patches in remote regions (red–yellow and

red–blue) underlines our global relation modeling.

the application of CNNs to semantic image segmentation—

contextual information.

It has been well recognized in the computer vision com-

munity for years that contextual information, or relation, is

capable of offering important cues for semantic segmenta-

tion tasks [11, 39]. For instance, spatial relations can be

considered semantic similarity relationships among regions

in an image. In addition, spatial relations also involve com-

patibility and incompatibility relationships, i.e., a vehicle is

likely to be driven or parked on pavements, and a piece of

lawn is unlikely to appear on the roof of a building. Unfor-

tunately, only convolution layers cannot model such spatial

relations due to their local valid receptive field1.

Nevertheless, under some circumstances, spatial rela-

1Feature maps from deep CNNs like ResNet usually have large recep-

tive fields due to deep architectures, whereas the study of [43] has shown

that CNNs are apt to extract information mainly from smaller regions in

receptive fields, which are called valid receptive fields.
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tions are of paramount importance, particularly when a re-

gion in an image exhibits significant visual ambiguities. To

address this issue, several attempts have been made to intro-

duce spatial relations into networks by using either graphi-

cal models or spatial propagation networks. However, these

methods seek to capture global spatial relations implicitly

with a chain propagation way, whose effectiveness depends

heavily on the learning effect of long-term memorization.

Consequently, these models may not work well in some

cases like aerial scenes (see Figure 5 and Figure 6), in

which long-range spatial relations often exist (cf. Figure 1).

Hence, explicit modeling of long-range relations may pro-

vide additional crucial information but still remains under-

explored for semantic segmentation.

This work is inspired by the recent success of relation

networks in visual question answering [31], object detec-

tion [13], and activity recognition in videos [42]. Being able

to reason about relationships between entities is momentous

for intelligent decision-making. A relation network is capa-

ble of inferring relationships between an individual entity

(e.g., a patch in an image) and a set of other entities (e.g.,

all patches in the image) by agglomerating information. The

relations vary at both long-range and short-range scales and

are learned automatically, driven by tasks. Moreover, a re-

lation network can model dependencies between entities,

without making excessive assumptions on their feature dis-

tributions and locations.

In this work, our goal is to increase the representation

capacity of a fully convolutional network (FCN) for seman-

tic segmentation in aerial scenes by using relation modules:

describing relationships between observations in convolved

images and producing relation-augmented feature represen-

tations. Given that convolutions operate by blending spa-

tial and cross-channel information together, we capture re-

lations in both spatial and channel domains. More specifi-

cally, two plug-and-play modules—a spatial relation mod-

ule and a channel relation module—are appended on top

of feature maps of an FCN to learn different aspects of

relations and then generate spatial relation-augmented and

channel relation-augmented features, respectively, for se-

mantic segmentation. By doing so, relationships between

any two spatial positions or feature maps can be modeled

and used to further enhance feature representations. Fur-

thermore, we study empirically two ways of integrating two

relation modules—serial and parallel.

Contributions. This work’s contributions are threefold.

• We propose a simple yet effective and interpretable

relation-augmented network that enables spatial and

channel relational reasoning in networks for semantic

segmentation on aerial imagery.

• A spatial relation module and a channel relation mod-

ule are devised to explicitly model global relations,

which are subsequently harnessed to produce spatial-

and channel-augmented features.

• We validate the effectiveness of our relation modules

through extensive ablation studies.

2. Related Work

Semantic segmentation of aerial imagery. Earlier stud-

ies [35] have focused on extracting useful low-level, hand-

crafted visual features and/or modeling mid-level semantic

features on local portions of images ([17, 26, 38, 27, 28, 44,

15] employ deep CNNs and have made a great leap towards

end-to-end aerial image parsing. In addition, there are

numerous contests aiming at semantic segmentation from

overhead imagery recently, e.g., Kaggle2, SpaceNet3, and

DeepGlobal4.

Graphical models. There are many graphical model-based

methods being employed to achieve better semantic seg-

mentation results. For example, the work in [5] makes use

of a CRF as post-processing to improve the performance

of semantic segmentation. [41] and [22] further make the

CRF module differentiable and integrate it as a joint-trained

part within networks. Moreover, low-level visual cues, e.g.,

object contours, have also been considered structure infor-

mation [3, 4]. These approaches, however, are sensitive to

changes in appearance and expensive due to iterative infer-

ence processes required.

Spatial propagation networks. Learning spatial propaga-

tion with networks for semantic segmentation have attracted

high interests in recent years. In [25], the authors try to pre-

dict entities of an affinity matrix directly by learning a CNN,

which presents a good segmentation performance, while the

affinity is followed by a nondifferentiable solver for spectral

embedding, which results in the fact that the whole model

cannot be trained end-to-end. The authors of [20] train a

CNN model to learn a task-dependent affinity matrix by

converting the modeling of affinity to learning a local lin-

ear spatial propagation. Several recent works [18, 21, 6]

focus on the extension of this work. In [2, 29], spatial rela-

tions are modeled and reinforced via interlayer propagation.

[2] proposes an Inside-Outside Net (ION) where four inde-

pendent recurrent networks that move in four directions are

used to pass information along rows or columns. [29] uti-

lizes four slice-by-slice convolutions within feature maps,

enabling message passings between neighboring rows and

columns in a layer. The spatial propagation of these meth-

ods is serial in nature, and thus each position could only

receive information from its neighbors.

2https://www.kaggle.com/c/

dstl-satellite-imagery-feature-detection
3https://spacenetchallenge.github.io/
4http://deepglobe.org/challenge.html
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Figure 2: An overview of the relation module-equipped fully convolutional network.

Relation networks. Recently, the authors of [31] propose a

relational reasoning network for the problem of visual ques-

tion answering, and this network achieves a super-human

performance. Later, [42] proposes a temporal relation net-

work to enable multi-scale temporal relational reasoning in

networks for video classification tasks. In [13], the authors

propose an object relation module, which allows model-

ing relationships among sets of objects, for object detection

tasks. Our work is motivated by the recent success of these

works, but we focus on modeling spatial and channel rela-

tions in a CNN for semantic segmentation.

Unlike graphical model-based [9, 37] and spatial propa-

gation network-based methods, we explicitly take spatial re-

lations and channel relations into account, so that semantic

image segmentation could benet from short- and long-range

relational reasoning.

3. Our Approach

In this section, an overview of the proposed relational

context-aware network is given to present a comprehensive

picture. Afterwards, two key components, the spatial re-

lation module and the channel relation module, are intro-

duced, respectively. Finally, we describe the strategy of in-

tegrating these modules for semantic segmentation.

3.1. Overview

As illustrated in Fig. 2, the proposed network takes

VGG-16 [34] as a backbone to extract multi-level features.

Outputs of conv3, conv4, and conv5 are fed into the chan-

nel and spatial relation modules (see Figure 2) for generat-

ing relation-augmented features. These features are subse-

quently fed into respective convolutional layers with 1 × 1
filters to squash the number of channels to the number of

categories. Finally, the convolved feature maps are upsam-

pled to a desired full resolution and element-wise added to

generate final segmentation maps.

3.2. Spatial Relation Module

In order to capture global spatial relations, we employ a

spatial relation module, where the spatial relation is defined

as a composite function with the following equation:

SR(xi,xj) = fφs
(gθs(xi,xj)) . (1)

Denote by X ∈ R
C×H×W a random variable represent-

ing a set of feature maps. xi and xj are two feature-map

vectors and identified by spatial positions indices i and j.

The size of xi and xj is C × 1× 1. To model a compact re-

lationship between these two feature-map vectors, we make

use of an embedding dot production as gθs instead of a mul-

tilayer perceptron (MLP), and the latter is commonly used

in relational reasoning modules [31, 42]. Particularly, gθs is

defined as follows:

gθs(xi,xj) = us(xi)
T vs(xj) , (2)

where us(xi) = Wus
xi and vs(xj) = Wvs

xj . Wus

and Wvs are weight matrices and can be learned during the

training phase. Considering computational efficiency, we

realize Eq. (2) in matrix format with the following steps:

1. Feature maps X are fed into two convolutional layers

with 1 × 1 filters to generate us(X) and vs(X), re-

spectively.

2. Then us(X) and vs(X) are reshaped (and transposed)

into HW × C and C ×HW , correspondingly.

3. Eventually, the matrix multiplication of us(X) and

vs(X) is conducted to produce a HW ×HW matrix,

which is further reshaped to form a spatial relation fea-

ture of size HW ×H ×W .

It is worth nothing that the spatial relation feature is not

further synthesized (e.g., summed up), as fine-grained con-

textual characteristics are essential in semantic segmenta-

tion tasks. Afterwards, we select the ReLU function as fφs

to eliminate negative spatial relations.

However, relying barely on spatial relations leads to a

partial judgment. Therefore, we further blend the spatial

relation feature and original feature maps X as follows:

Xs = [X, SR(X)] . (3)
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Here we simply use a concatenation operation, i.e., [·, ·],
to enhance original features with spatial relations. By doing

so, output features are abundant in global spatial relations,

while high-level semantic features are also preserved.

3.3. Channel Relation Module

Although the spatial relation module is capable of cap-

turing global contextual dependencies for identifying vari-

ous objects, misdiagnoses happen when objects share simi-

lar distribution patterns but vary in channel dimensionality.

In addition, a recent work [14] has shown the benefit of en-

hancing channel encoding in a CNN for image classification

tasks. Therefore, we propose a channel relation module to

model channel relations, which can be used to enhance fea-

ture discriminabilities in the channel domain. Similar to the

spatial relation module, we define the channel relation as a

composite function with the following equation:

CR(Xp,Xq) = fφc
(gθc(Xp,Xq)) , (4)

where the input is a set of feature maps X =
{X1,X2, · · · ,XC}, and Xp as well as Xq represents the

p-th and the q-th channels of X . Embedding dot production

is employed to be gθc , defined as

gθc(Xp,Xq) = uc(GAP(Xp))
T vc(GAP(Xq)) , (5)

for capturing global relationships between feature map

pairs, where GAP(·) denotes the global average pooling

function. Notably, considering that the preservation of spa-

tial structural information distracts the analysis of chan-

nel inter-dependencies, we adopt averages of Xp and Xq

as channel descriptors before performing dot production.

More specifically, we feed feature maps into a global aver-

age pooling layer for generating a set of channel descriptors

of size C× 1× 1, and then exploit two convolutional layers

with 1×1 filters to produce uc(X) and vc(X), respectively.

Afterwards, an outer production is performed to generate a

C × C channel relation feature, where the element located

at (p, q) indicates gθc(Xp,Xq).
Furthermore, we emphasize class-relevant channel rela-

tions as well as suppress irrelevant channel dependencies by

adopting a softmax function as fφc
, formulated as

fφc
(gθc(Xp,Xq)) =

exp(gθc(Xp,Xq))
∑C

q=1
exp(gθc(Xp,Xq))

, (6)

where we take Xp as an example. Consequently, a discrimi-

native channel relation map CR(X) can be obtained, where

each element represents the corresponding pairwise channel

relation.

To integrate CR(X) and original feature maps X , we

reshape X into a matrix of C ×HW and employ a matrix

multiplication as follows:

Xc = X
TCR(X) . (7)
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Fig 3: Diagrams of (a) spatial relation module and (b) chan-

nel relation module.

With this design, the input features are enhanced with

channel relations and embedded with not only initial dis-

criminative channel properties but also global inter-channel

correlations. Eventually, Xc is reshaped to C×H×W and

fed into subsequent procedures.

3.4. Integration of Relation Modules

In order to jointly enjoy benefits from spatial and chan-

nel relation modules, we further aggregate features Xs and

Xc to generate spatial and channel relation-augmented fea-

tures. As shown in Fig. 4, we investigate two integration

patterns, namely serial integration and parallel integration,

to blend Xs and Xc. For the former, we append the spa-

tial relation module to the channel relation module and in-

fer Xs from Xc instead of X , as presented in Eq. (1) and

Eq. (7). For the latter, spatial relation-augmented features

and channel relation-augmented features are obtained si-

multaneously and then aggregated by performing concate-

nation. Influences of different strategies are discussed in

Section 4.2.

4. Experiments

To verify the effectiveness of long-range relation mod-

eling in our network, aerial image datasets are used in ex-

periments. This is because aerial images are taken from

nadir view, and the spatial distribution/relation of objects in

these images is diverse and complicated, as shown in Fig-

ure 1. Thus, we perform experiments on two aerial image

semantic segmentation datasets, i.e., ISPRS Vaihingen and

Potsdam datasets, and results are discussed in subsequent

sections.
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Fig 4: Two integration manners: (a) serial and (b) parallel.

4.1. Experimental Setup

Datasets. The Vaihingen dataset5 is composed of 33 aerial

images collected over a 1.38 km2 area of the city, Vaihin-

gen, with a spatial resolution of 9 cm. The average size of

each image is 2494 × 2064 pixels, and each of them has

three bands, corresponding to near infrared (NIR), red (R),

and green (G) wavelengths. Notably, DSMs, which indi-

cate the height of all object surfaces in an image, are also

provided as complementary data. Among these images, 16

of them are manually annotated with pixel-wise labels, and

each pixel is classified into one of six land cover classes.

Following the setup in [24, 36, 32, 27], we select 11 images

for training, and the remaining five images (image IDs: 11,

15, 28, 30, 34) are used to test our model.

The Potsdam dataset6 consists of 38 high resolution

aerial images, which covers an area of 3.42 km2, and each

aerial image is captured in four channels (NIR, R, G, and

blue (B)). The size of all images is 6000 × 6000 pixels,

which are annotated with pixels-level labels of six classes

as the Vaihingen dataset. The spatial resolution is 5 cm, and

coregistered DSMs are available as well. To train and eval-

uate networks, we utilize 10 images for training and build

the test set with the remaining images (image IDs: 02 11,

02 12, 04 10, 05 11, 06 07, 07 08, 07 10), which follows

the setup in [24, 32].

Implementation. The proposed network is initialized with

separate strategies with respect to two dominant compo-

nents: the feature extraction module is initialized with

CNNs pre-trained on ImageNet dataset [7], while convolu-

tional layers in relation modules are initialized with a Glorot

uniform initializer. Notably, weights in the feature extrac-

tion module are trainable and fine-tuned during the training

phase.

Regarding the used optimizer, we choose Nestrov

5http://www2.isprs.org/commissions/comm3/wg4/

2d-sem-label-vaihingen.html
6http://www2.isprs.org/commissions/comm3/wg4/

2d-sem-label-potsdam.html

Table 1: Ablation Study on the Vaihingen Dataset.

Model Name crm srm mean F1 OA

Baseline FCN [23] 83.74 86.51

RA-FCN-crm X 87.24 88.38

RA-FCN-srm X 88.36 89.03

P-RA-FCN X X 88.50 89.18

S-RA-FCN X X 88.54 89.23

1 RA-FCN indicates the proposed relation-augmented

FCN.
2 crm indicates the channel relation module.
3 srm indicates the spatial relation module.
4 P-RA-FCN indicates that crm and srm are appended

on top of the backbone in parallel.
5 S-RA-FCN indicates that crm is followed by srm.

Adam [8] and set parameters of the optimizer as recom-

mended: β1 = 0.9, β2 = 0.999, and ǫ = 1e−08. The learn-

ing rate is initialized as 2e−04 and decayed by 0.1 when

validation loss is saturated. The loss of our network is sim-

ply defined as categorical cross-entropy. We implement the

network on TensorFlow and train it on one NVIDIA Tesla

P100 16GB GPU for 250k iterations. The size of the train-

ing batch is 5, and we stop training when the validation loss

fails to decrease.

Evaluation metric. To evaluate the performance of net-

works, we calculate F1 score with the following formula:

F1 = (1 + β2) ·
precision · recall

β2 · precision+ recall
, β = 1, (8)

for each category. Furthermore, mean F1 score is computed

by averaging all F1 scores to assess models impartially. No-

tably, a large F1 score suggests a better result. Besides,

mean IoU (mIoU) and overall accuracy (OA) that indicates

overall pixel accuracy, are also calculated for a comprehen-

sive comparison with different models.

4.2. An Ablation Study for Relation Modules

In our network, spatial and channel relation modules are

employed to explore global relations in both spatial and

channel domains. To validate the effectiveness of these

modules, we perform ablation experiments (cf. Table 1).

Particularly, instead of being utilized simultaneously, spa-

tial and channel relation modules are embedded on top of

the backbone (i.e., VGG-16), respectively. Besides, we also

discuss different integration strategies (i.e., parallel and se-

rial) of relation modules in Table 1.

The ablation experiments are conducted on the Vaihin-

gen dataset. As can be seen in Table 1, relation modules

bring a significant improvement as compared to the base-

line FCN (VGG-16), and various integration schemes lead
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Table 2: Experimental Results on the Vaihingen Dataset

Model Name Imp. surf. Build. Low veg. Tree Car mean F1 mIoU OA

SVL-boosting+CRF∗ [10] 86.10 90.90 77.60 84.90 59.90 79.90 - 84.70

RF+dCRF∗ [30] 86.90 92.00 78.3 86.90 29.00 74.60 - 85.90

CNN-FPL∗ [36] - - - - - 83.58 - 87.83

FCN [23] 88.67 92.83 76.32 86.67 74.21 83.74 72.69 86.51

FCN-dCRF [5] 88.80 92.99 76.58 86.78 71.75 83.38 72.28 86.65

SCNN [29] 88.21 91.80 77.17 87.23 78.60 84.40 73.73 86.43

Dilated FCN [5] 90.19 94.49 77.69 87.24 76.77 85.28 - 87.70

FCN-FR∗ [24] 91.69 95.24 79.44 88.12 78.42 86.58 - 88.92

PSPNet (VGG16) [40] 89.92 94.36 78.19 87.12 72.97 84.51 73.97 87.62

RotEqNet∗ [27] 89.50 94.80 77.50 86.50 72.60 84.18 - 87.50

RA-FCN-srm 91.01 94.86 80.01 88.74 87.16 88.36 79.48 89.03

P-RA-FCN 91.46 95.02 80.40 88.56 87.08 88.50 79.72 89.18

S-RA-FCN 91.47 94.97 80.63 88.57 87.05 88.54 79.76 89.23

Image nDSM Ground Truth FCN FCN-dCRF SCNN RA-FCN-srm RA-FCN

Figure 5: Examples of segmentation results on the Vaihingen dataset. Legend—white: impervious surfaces, blue: buildings,

cyan: low vegetation, green: trees, yellow: cars.

to a slight influence on the performance of our network. In

detailed, the use of only the channel relation module yields

a result of 87.24% in the mean F1 score, which brings

a 3.50% improvement. Meanwhile, RA-FCN with only

the spatial relation module outperforms the baseline by a

4.62% gain in the mean F1 score. In addition, we note that

squeeze-and-excitation module [14] can also model depen-

dencies between channels. However, in our experiments,

the proposed channel relation module performs better.

Moreover, by taking advantage of spatial relation-

augmented and channel relation-augmented features si-

multaneously, the performance of our network is further

boosted up. The parallel integration of relation modules

brings increments of 1.26% and 0.14% in the mean F1 score

with respect to RA-FCN-crm and RA-FCN-srm. Besides, a

serial aggregation strategy is discussed, and results demon-

strate that it behaves superiorly as compared to other mod-

els. To be more specific, such design achieves the highest

mean F1 score, 88.54%, as well as the highest overall accu-

racy, 89.23%. To conclude, spatial- and channel-augmented
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Table 3: Numerical Results on the Potsdam Dataset

Model Name Imp. surf. Build. Low veg. Tree Car Clutter mean F1 mIoU OA

FCN [23] 88.61 93.29 83.29 79.83 93.02 69.77 84.63 78.34 85.59

FCN-dCRF [5] 88.62 93.29 83.29 79.83 93.03 69.79 84.64 78.35 85.60

SCNN [29] 88.37 92.32 83.68 80.94 91.17 68.86 84.22 77.72 85.57

Dilated FCN∗ [5] 86.52 90.78 83.01 78.41 90.42 68.67 82.94 - 84.14

FCN-FR∗ [24] 89.31 94.37 84.83 81.10 93.56 76.54 86.62 - 87.02

RA-FCN-srm 90.48 93.74 85.67 83.10 94.34 74.02 86.89 81.23 87.61

P-RA-FCN 90.92 94.20 86.64 83.00 94.44 77.88 87.85 81.85 88.30

S-RA-FCN 91.33 94.70 86.81 83.47 94.52 77.27 88.01 82.38 88.59

Image nDSM Ground Truth FCN FCN-dCRF SCNN RA-FCN-srm RA-FCN

Figure 6: Examples of segmentation results on the Potsdam dataset. Legend—white: impervious surfaces, blue: buildings,

cyan: low vegetation, green: trees, yellow: cars, red: clutter/background.

features extracted from relation modules carry out not only

high-level semantics but also global relations in spatial and

channel dimensionalities, which reinforces the performance

of a network for semantic segmentation in aerial scenes.

4.3. Comparing with Existing Works

For a comprehensive evaluation, we compare our model

with six existing methods, including FCN [23], FCN with

fully connected CRF (FCN-dCRF) [5], spatial propagation

CNN (SCNN) [29], FCN with atrous convolution (Dilated

FCN) [5], FCN with feature rearrangement (FCN-FR) [24],

CNN with full patch labeling by learned upsampling (CNN-

FPL) [36], RotEqNet [27], PSPNet with VGG16 as back-

bone [40], and several traditional methods [10, 30].

Numerical results on the Vaihingen dataset are shown in

Table 2. It is demonstrated that RA-FCN outperforms other

methods in terms of mean F1 score, mean IoU, and overall

accuracy. Specifically, comparisons with FCN-dCRF and

SCNN, where RA-FCN-srm obtains increments of 4.98%

and 3.69% in mean F1 score, respectively, validate the high

performance of the spatial relation module in our network.

Besides, compared to FCN-FR, RA-FCN reaches improve-

ments of 1.96% and 1.57% in mean F1 score and overall ac-

curacy, which indicates the effectiveness of integrating the

spatial relation module and channel relation module. Fur-

thermore, per-class F1 scores are calculated to assess the

performance of recognizing different objects. It is notewor-

thy that our method remarkably surpasses other competi-

tors in identifying scattered cars for its capacity of capturing

long-range spatial relation.

12422



Image Ground truth FCN

FCN-dCRF SCNN RA-FCN

Fig 7: Example segmentation results of an image in the test set on Potsdam dataset (90, 000 m2). Legend—white: impervious

surfaces, blue: buildings, cyan: low vegetation, green: trees, yellow: cars, red: clutter/background. Zoom in for details.

4.4. Qualitative Results

Fig. 5 shows a few examples of segmentation results.

The second row demonstrates that networks with local re-

ceptive fields or relying on fully connected CRFs and spatial

propagation modules fail to recognize impervious surfaces

between two buildings, whereas our models make relatively

accurate predictions. This is mainly because in this scene,

the appearance of impervious surfaces is highly similar to

that of the right building, which leads to a misjudgment of

rival models. Thanks to the spatial relation module, RA-

FCN-srm or RA-FCN is able to effectively capture useful

visual cues from more remote regions in the image for an

accurate inference. Besides, examples in the third row il-

lustrate that RA-FCN is capable of identifying dispersively

distributed objects as expected.

4.5. Results on the Potsdam Dataset

In order to further validate the effectiveness of our net-

work, we conduct experiments on the Potsdam dataset, and

numerical results are shown in Table 3. The spatial relation

module contributes to improvements of 2.25% and 2.67% in

the mean F1 score with respect to FCN-dCRF and SCNN,

and the serial integration of both relation modules brings in-

crements of 1.39% and 1.54% in the mean F1 score, mean

IoU, and overall accuracy, respectively.

Moreover, qualitative results are presented in Figure 6.

As shown in the first row, although low vegetation regions

comprise intricate local contextual information and are li-

able to be misidentified, RA-FCN obtains more accurate re-

sults in comparison with other methods due to its remark-

able capacity of exploiting global relations to solve visual

ambiguities. The fourth row illustrates that outliers, i.e., the

misclassified part of the building, can be eliminated by RA-

FCN, while it is not easy for other competitors. To provide a

thorough view of the performance of our network, we also

exhibit a large-scale aerial scene as well as semantic seg-

mentation results in Figure 7.

5. Conclusion

In this paper, we have introduced two effective network
modules, namely the spatial relation module and the chan-
nel relation module, to enable relational reasoning in net-
works for semantic segmentation in aerial scenes. The com-
prehensive ablation experiments on aerial datasets where
long-range spatial relations exist suggest that both relation
modules have learned global relation information between
objects and feature maps. However, our understanding of
how these relation modules work for segmentation prob-
lems is preliminary and left as future works.
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